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Abstract: The quality of the input text image has a clear impact on the output of a scene text
recognition (STR) system; however, due to the fact that the main content of a text image is a sequence
of characters containing semantic information, how to effectively assess text image quality remains a
research challenge. Text image quality assessment (TIQA) can help in picking a hard sample, leading
to a more robust STR system and recognition-oriented text image restoration. In this paper, by arguing
that the text image quality comes from character-level texture feature and embedding robustness,
we propose a learning-based fine-grained, sharp, and recognizable text image quality assessment
method (FSR–TIQA), which is the first TIQA scheme to our knowledge. In order to overcome the
difficulty of obtaining the character position in a text image, an attention-based recognizer is used to
generate the character embedding and character image. We use the similarity distribution distance
to evaluate the character embedding robustness between the intra-class and inter-class similarity
distributions. The Haralick feature is used to reflect the clarity of the character region texture feature.
Then, a quality score network is designed under a label–free training scheme to normalize the texture
feature and output the quality score. Extensive experiments indicate that FSR-TIQA has significant
discrimination for different quality text images on benchmarks and Textzoom datasets. Our method
shows good potential to analyze dataset distribution and guide dataset collection.

Keywords: scene text recognition; image quality assessment; attention

1. Introduction

Scene text recognition is a significantly well-researched topic [1–5]. Current text
recognizers have achieved impressive results on clear text images [6,7]; however, their
performance drops dramatically in unconstrained conditions dealing with low-quality
text images [4]. Text image quality has gradually become an important factor for high-
performance STR systems. Recent works improve the recognition performance on super-
resolution (SR) dataset Textzoom [6] and benchmarks by introducing SR methods as a
pre-processing procedure before recognition [6,8–11] or joint training [4,12].

However, few researchers pay attention to text image quality assessment. The goal of
TIQA is to predict the quality of a text image, which is helpful for picking hard samples
and leads to a more robust STR system and recognition-oriented text image restoration.

A large number of image quality assessment (IQA) studies [13] have been proposed
during recent years, which are widely applied to various modalities: 2D image [14–17],
stereoscopic image [18], 3D point cloud [19], etc. Our work is inspired by face image quality
assessment (FIQA). Both face images and text images contain special textures and semantic
information. The performance of face recognition and scene text recognition is affected
by the quality of the input image. Different from IQA, TIQA should be more relevant to
character texture feature and recognizability for the STR system. The main influencing
factors of text image quality include image properties (such as low-resolution (LR), blurri-
ness, contrast, and background) and text properties (such as sloped, curved, and irregular

Electronics 2022, 11, 1611. https://doi.org/10.3390/electronics11101611 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101611
https://doi.org/10.3390/electronics11101611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5391-5931
https://orcid.org/0000-0002-7893-2866
https://doi.org/10.3390/electronics11101611
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101611?type=check_update&version=2


Electronics 2022, 11, 1611 2 of 15

shapes). This is why character position [8], character skeleton [10], and character stoke [11]
are essential for recovering text images with more details.

In this work, we evaluate the quality of scene text images with characters as the main
content. High-quality and low-quality text images are shown in Figure 1. Each character
contributes to understanding the whole word in the text image. Some text images are
easy to read, some can be vaguely recognize a few characters, some are even completely
invisible. Scoring each character allows for a more fine-grained assessment of the text
image quality. Due to the difficulty of labeling, character position in the text image is
expensive to obtain. The attention-based STR systems can solve this problem implicitly by
predicting the attention map of sequence characters, which is the most relevant region of
the feature map to identify the character. To some extent, it can also indicate the position
of each character. In addition, the position-aware module in [8], which is actually used to
generate the attention map, is proposed to constrain the image recovery.

(a) (b)

Figure 1. Examples of text images. (a): high-quality text images. (b): low-quality text images. The
height of the input image is set to 32 and the width is calculated with the original aspect ratio (up
to 128). Due to the degree of blur, low-resolution, and irregular shape, some images may become
impossible to recognize. Text image quality assessment aims to design a novel method that is adaptive
to text image quality.

For low-quality text images, humans often try to find easily recognizable characters
and then make semantic assumptions [20]. In [8], the content-aware module is proposed to
pave the way for distinguishing confusable characters. TIQA should measure the recogniz-
ability of each character. Inspired by face embedding [21], we define the 512-dimensional
feature before the last fully connected layer in the STR attention decoder as the charac-
ter embedding. The uncertainty of character embedding is the key factor in accurately
classifying the character.

For high-quality text images, the easily legible characters have similar texture feature:
character color is uniform and differentiated from the background. Meanwhile, the bound-
ary between character and background is clear. The sharpness of character edge is an
important factor in TIQA. The clearer the character edge, the more accurate the charac-
ter skeleton information prediction [10], and the more readable the characters; however,
the edge information of the whole text image contains useless background information,
which interferes with the clarity assessment of the text content area. With the help of the
attention map, the sharpness of each character can be calculated on the character region
cropped from the original text image.

Text image quality is strongly correlated with the sharpness and recognizability of each
character. In this paper, we propose a learning-based fine-grained, sharp, and recognizable
text image quality assessment method.

We split the text image into character images, character embeddings and corresponding
recognition results in the fine-grained manner by attention-based STR system. In order
to calculate the intra-class similarity distribution and inter-class similarity distribution of
the test character embedding, the character embedding library (CEL) is established using
the correctly recognized character embedding. Then the Wasserstein distance between
intra-class and inter-class similarity distribution is calculated as character recognizability.
We present a new approach for assessing character edge sharpness by use of the Haralick
feature (dissimilarity) extracted from the gray level co-occurrence matrix (GLCM) [22].
The dissimilarity values reflect the degree and clarity of the textured grooves of the character
region, which is one of the thirteen Haralick features. A quality score network is trained
under the recognition accuracy of the whole batch to normalize the dissimilarity values.
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In order to distribute the scores evenly, we propose a data sampling method based on the
random proportion of the recognition results. Our method can accurately predict the text
image quality score in a label-free manner.

To sum up, this paper introduces three main contributions:

• We are the first to propose the text image quality assessment framework from three
perspectives: character-level-based evaluation, sharp texture feature, and embed-
ding robustness.

• We propose a learning-based fine-grained, sharp, and recognizable text image quality
assessment method. The Wasserstein distance between the intra-class and inter-class
similarity distributions is used to evaluate embedding robustness. The multiscale
Haralick feature reflects the degree and clarity of the texture feature of character region.
A quality score network is designed under the label-free training manner to normalize
the texture feature and output the quality score.

• Extensive experiments indicate that FSR-TIQA has significant discrimination for
different quality text images on benchmarks and Textzoom. Meanwhile, our method
shows good potential to analyze dataset distribution and guide dataset collection.

2. Analysis and Comparison on Related Work
2.1. Image Quality Assessment

Image quality assessment is a fundamental problem in the field of image processing.
Many learning-based IQA methods for various image multi-modalities are proposed. In the
image field, a deep neural network [14] with hierarchical multi-scale features is proposed
to tackle the challenging problem of distorted image quality prediction. In the field of 3D
vision, StereoQANet [18] proposed a novel general-purpose architecture that contains the
multi-layer network interaction between the left and right view of sub-networks for no-
reference stereoscopic image quality assessment. For omnidirectional images, VGCN [23]
presented a viewport-oriented graph convolutional neural network to estimate the per-
ceptual quality of omnidirectional images. There are also some deep neural networks for
evaluating the quality of knowledge representations for 3D point cloud processing [19] and
the perceptual quality of SR images [24].

2.2. Low-Quality Scene Text Image Recovery

Recent works have noticed the text image degradation problem. TextZoom [6] is the
first real paired scene text image super-resolution dataset, which is divided into three
difficulty levels with different focal lengths. A lot of SR methods are proposed as pre-
processing modules before recognition. TSRN [6] used sequential residual block and
gradient profile loss to improve the context information and sharper edge of refined
images. The position-aware module and content-aware module in [8] are proposed to
focus on text-level layouts and character-level details. In addition, more fine-grained text
detail constraints are proposed. Such as character skeleton loss [10] and stroke-focused
module [11].

We arrive at the conclusion that the above methods strive to recover character details
and character semantic information. In this work, we believe that the text image quality
assessment should focus on character-level texture feature and embedding robustness.

2.3. Face Image Quality Assessment

The FIQA works can be categorized into factor-specific FIQA approaches and mono-
lithic FIQA approaches [25]. The factor-specific branch [26,27] subdivides methods into
size, blur, illumination, pose, and so on. The monolithic approaches produce comparatively
opaque quality scores, which can indicate overall FR utility. It is unrealistic to consider all
factors artificially. More current methods focus on learning-based approaches [15,16,28,29].
Ref. [28] was the first to propose the learning-based FIQA method. SER-FIQA [16] proposed
a learnable estimation of face image quality, which calculated the variations of embed-
dings coming from the random subnetworks of a face recognition model as quality scores.
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SDD-FIQA [15] considered the Wasserstein distance between intra-class and inter-class
recognition similarity distributions as the scores. Furthermore, Magface [29] proposed a
category of losses that learns a universal feature embedding whose magnitude can measure
the quality of the given face.

Through the observation of FIQA, we propose a monolithic TIQA method with our
two kinds of quality inputs: character-level texture feature and embedding robustness.

3. Methodology

Text image quality assessment aims at excavating the relationship between the qual-
ity score of a text image and the clarity and recognition performance of each character.
The framework of the proposed FSR-TIQA is shown in Figure 2.
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Figure 2. An overview of FSR-TIQA. Step 1: The character embedding and the corresponding
character image region are obtained by traversing the real-world text images in the pre-trained STR
model. The character embedding library is collected. Step 2: The paired data obtained by the uniform
sampler are used to extract the Haralick feature and Wasserstein distance, respectively. Step 3: The
score network is trained under the constraints of the whole batch recognition accuracy.

3.1. Data Preparing

Under the fine-grained principle, we introduce the text image to character-level trans-
formation by extracting the character embedding and character region using the attention-
based STR system. In this work, we choose DAN [3] as our STR model. For text image
Itext of size H ×W, the feature encoder F has multi-scale visual features F = F (Itext), F ∈
RC× H

4 ×W
4 . The convolutional alignment module (CAM) takes F as input and generates

attention maps A = {α1, α2, ..., αmaxT} with a fully convolutional network [30] in the
channel-wise manner. The attention maps effectively indicate the importance of every
character in the visual feature. Then, the decoupled text decoder takes visual features and
attention maps as input. It works iteratively for maxT steps, producing a character sequence.
The context vector fed into the GRU at each step is computed as: ct = ∑W/4

x=1 ∑H/4
y=1 αt,x,yFx,y.

The feature map region relevant to each character will be extracted by attention map A.
After GRU models context global semantics, character embeddings are represented by a
hidden layer: ht = GRU((et−1, ct), ht−1), et is an embedding vector of the previous de-
coding result. Finally, the classifier output: yt = ωht + b. In this way, we can obtain the
paired attention maps αt, character embeddings ht, character recognition results, and the
corresponding order of the ground truth.

Our FSR-TIQA focuses on evaluating each character region. As shown in Figure 3,
the attention maps of sequence characters are the most relevant region of the feature map
to identify the character. To some extent, it can also indicate the position of each char-
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acter; however, attention maps contain decimals between 0 and 1. In order to preserve
the pixel information of the original text image, a binary algorithm named OTSU [31] is
used to maximize the preservation of the most important location regions in the atten-
tion map. It

char is cropped by the upsampled binary attention map from the text image:
It
char = Binary(Upsample(αt))Itext. As such, the assessment of the character texture feature

is not affected by background pixels in Section 3.3.

Figure 3. An overview of character image cropped by the upsampled binary attention map from
text image. The attention maps generated from DAN are shown in the first line. In the second line,
the character image is cropped by the upsampled binary attention maps.

Meanwhile, the character embedding library consists of the correctly recognized
character embeddings from the benchmark. For each character class, CEL represents the
high-quality character embedding set in the real scene, which is used to calculate the
character recognizability in Section 3.2.

3.2. Similarity Distribution Distance

In order to assist the stability and reliability of STR system performance in an uncon-
strained scenario, TIQA should consider the recognizability of the text image. Inspired by
a lot of FIQA works [15,16,29], we aim to estimate the pair-wise similarity as a part of the
text image quality score. In this work, we argue that a high-quality character embedding
should be similar to its intra-class samples and dissimilar to its inter-class samples.

Similar to face recognition, we discover that the character embedding robustness
can be well described by the similarity distribution distance [15]. As shown in Figure 4a,
the samples distribute more compactly in each class with high-quality character embed-
dings. High quality encourages better intra-class compactness. Such discovery can also
be explained intuitively. For example, a high-quality character image is always easily rec-
ognized, which means the character embedding of a high-quality character image is close
to the intra-class samples and far from inter-class samples. In other words, the distance
between the intra-class similarity distribution and the inter-class similarity distribution
is large. Inversely, the low-quality character produces a small distance. Specifically, we
assume that SP

It
char

and SN
It
char

are the set of Euclidean distance between the character embed-

ding It
char and same or different category embeddings in CEL. As shown in Figure 4c, we

use the Wasserstein metric to measure the distance between SP
It
char

and SN
It
char

as DIt
char

, which

is expressed by:
DIt

char
=WD(SP

It
char
||SN

It
char

) (1)

whereWD denotes Wasserstein distance. Each step of the proposed similarity distribution
distance is explained in Algorithm 1.
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Algorithm 1 Pseudocode of Similarity Distribution Distance

Input: ht: character embedding; yt: character recognition result; CEL: character embedding
library; characters: 36 character classes, including alphabets and digits;

Output: SP
It
char

: set of intra-class similarity distribution; SN
It
char

: set of inter-class similarity

distribution; DIt
char

: character similarity distribution distance;
1: for c in characters do
2: if c = yt then
3: compute SP

It
char

= Euclidean distance between ht and all character embeddings in

CEL[c];
4: else
5: compute SN

It
char

append Euclidean distance between ht and all character embed-

dings in CEL[c];
6: end if
7: end for
8: compute DIt

char
=WD(SP

It
char
||SN

It
char

);

9: return DIt
char

;

(a) (b) (c)

Figure 4. Embedding plot of 36 character classes from STR benchmark. (a): character embedding
in the benchmark training set. (b): character embedding in the Hard high-resolution (HR) subset
of Textzoom. The embeddings are dimension reduced using t-SNE. (c): illustration of the character
similarity distribution distance.

3.3. Haralick Feature Extractor

Given a character image, character edge sharpness is an important factor in character
texture feature, which is measured by one of the Haralick features: dissimilarity [22]
extracted from the gray level co-occurrence matrix (GLCM). GLCM is a statistical method
of examining the texture of a grayscale image, which is used to calculate the degree
of correlation between the gray levels of two pixels at a certain distance and direction.
Character image It

char with 256 different pixel values produces a 256× 256 co-occurrence
matrix GLCM for the given offset (∆x, ∆y):

GLCM∆x,∆y(i, j) =
W

∑
x=1

H

∑
y=1

{
1, if It

char(x, y) = i and It
char(x + ∆x, y + ∆y) = j

0, otherwise
(2)

The (i, j) value of GLCM gives the number of times in the image that the i and j
pixel values occur in the relation given by the offset. As shown in Figure 5, the GLCM is
computed on a character image. The GLCM in Equation (2) are then normalized to express
the matrix elements as probability measures:

pθ(i, j) =
GLCM∆x,∆y(i, j)

∑i=1 ∑j=1 GLCM∆x,∆y(i, j)
(3)
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We use the normalized co-occurrence matrices to calculate the particular Haralick
feature as defined below:

Dissimilarityθ = ∑
i

∑
j
|i− j|pθ(i, j) (4)

Dissimilarityθ gives pixels with similar gray-level values a low weight but pixels with
dissimilar gray-levels a high weight along the θ direction, which is closely related to charac-
ter edge sharpness. In this work, we analyze four different angular (0◦, 45◦, 90◦, 135◦)
and three offsets (1, 3, 4) to assess character edge sharpness, which in turn produces
12 dissimilarity features. As shown in Figure 5, the GLCM is computed on a character
image and the texture feature Dissimilarity is shown on the left. The GLCM is similar to a
counter for every combination of gray-level pairs in the image. For each pixel, its value and
the neighboring pixel at a certain distance and direction are counted in a specific GLCM.

R
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Image pixel
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Figure 5. An illustration of how the GLCM is computed. A character image is cropped from the text
image; 256 gray-levels are represented by numerical values from 0 to 255. Pixel values are displayed
in the non-zero area of the character. As shown in the image pixel, there are three instances of a
reference pixel with a neighbor pixel: ∆x = 1, ∆y = 0, θ = 0◦ (indicated in three black rectangles). In
addition, there is an instance: ∆x = 4, ∆y = 4, θ = 45◦ (indicated in the blue rectangle).

3.4. Quality Score Network

A quality score network is designed to normalize the texture features Dissimilarity.
We use a simple fully connected networkFC for regression quality scores. Then, we employ
a dropout operator with 0.5 probability to avoid overfitting during training. To match the
predictions of the quality score network with the recognition system, the recognition result
of each character is collected to supervise the network training. As shown in Figure 2,
the output quality score of the entire batch is supervised under the recognition accuracy of
the whole batch. We use the mean squared error (MSE) loss function to train the quality
score network. In order to uniformly sample from the fixed quantity true and false dataset,
we propose a uniform sampler to randomly generate the quality score and sample from
the true and false subset. During training stage, the data score of each batch is randomly
distributed between 0 to 1, which can avoid the network directly fitting to the average score
of all training data. The final character quality score is defined as:

QIt
char

= λ1FC(Dissimilarity) + λ2DIt
char

(5)

We set balanced factors λ1 = 0.17 and λ2 = 1.7.
For the testing stage, Figure 6 shows the scoring process of a text image. Unlike the

training process, each text image contains a different number of characters. The quality
score for a text image QItext is defined by:

QItext =
1
N

N

∑
i

QIt
char

(6)

Our method considers both character texture feature and character embedding ro-
bustness, which is more amicable to recognition performance. Moreover, our approach is
label-free without any human quality annotation.
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Figure 6. Predicting text image quality scores in the testing phase.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets and STR System

Seven standard benchmarks include ICDAR 2003 (IC03) [32], ICDAR 2013 (IC13) [33],
ICDAR 2015 (IC15) [34], IIIT5K (IIIT) [35], Street View Text (SVT) [36], Street View Text-
Perspective (SVTP) [37], CUTE80 (CUTE) [38], and TextZoom were used as the testing
datasets. In addition, TextZoom is the first super-resolution text dataset and contains large
variations in illumination, blurriness, and occlusion, whose test dataset was divided into
three testing subsets [6] according to the camera focal length and the distance between the
camera and the object.

For the STR system, we adopted an opensource implementation of https://github.
com/Wang-Tianwei/Decoupled-attention-network (accessed on 29 November 2020) DAN.
The height of the input image is set to 32 and the width is calculated with the original
aspect ratio (up to 128).

4.1.2. Implementation Details

In our work, the training set of above benchmarks was utilized as CEL and training
data for the quality score network. During data preparation, text images are sent into the
STR system. According to the recognition result, the paired attention map and character
embedding are split into two parts: right and wrong. A fixed number of character em-
beddings are randomly sampled from the right part to form the CEL. Each character class
contains 50 paired data.

Our score network was built on the PyTorch framework with NVIDIA RTX 2080Ti
GPUs. The model was trained by an Adam optimizer. The initial learning rate is 1× 10−3

and is decayed to 1× 10−4 and 1× 10−5, respectively, after 4 and 5 epochs.

4.1.3. Evaluation Protocols

To evaluate the text quality assessment performance, we use the error versus reject
curve (EVRC), which is first proposed in [39] and a widely used metric in FIQA [15,16].
The goal is to state how efficiently rejection of low-quality samples results in improved
performance, which shows an STR system error rate over the fraction of images with low
quality scores. From another perspective, text images with quality scores are shown to
reflect the correspondence between quality score and image clarity.

4.2. Results and Discussion

In our experiments, we report the quality assessment performance on benchmarks and
Textzoom from the character level, image level, and dataset level. The proposed FSR-TIQA
method is compared with the analytics-based method BRISQUE [17], which is reproduced
using the released codes directly. The results of BRISQUE and FSR-TIQA are shown in
Figure 7. In the three LR datasets, the word error rate decreases when the proportion
of unconsidered images increases. In most datasets, BRISQUE lead to an increase in the
word error rate. The results demonstrate that analytics-based methods are not suitable for
assessing text images with rich semantic information. It is necessary to design a text image
quality assessment method according to the characteristics of the text.

Figure 6. Predicting text image quality scores in the testing phase.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets and STR System

Seven standard benchmarks include ICDAR 2003 (IC03) [32], ICDAR 2013 (IC13) [33],
ICDAR 2015 (IC15) [34], IIIT5K (IIIT) [35], Street View Text (SVT) [36], Street View Text-
Perspective (SVTP) [37], CUTE80 (CUTE) [38], and TextZoom were used as the testing
datasets. In addition, TextZoom is the first super-resolution text dataset and contains large
variations in illumination, blurriness, and occlusion, whose test dataset was divided into
three testing subsets [6] according to the camera focal length and the distance between the
camera and the object.

For the STR system, we adopted an opensource implementation of https://github.
com/Wang-Tianwei/Decoupled-attention-network (accessed on 29 November 2020) DAN.
The height of the input image is set to 32 and the width is calculated with the original
aspect ratio (up to 128).

4.1.2. Implementation Details

In our work, the training set of above benchmarks was utilized as CEL and training
data for the quality score network. During data preparation, text images are sent into the
STR system. According to the recognition result, the paired attention map and character
embedding are split into two parts: right and wrong. A fixed number of character em-
beddings are randomly sampled from the right part to form the CEL. Each character class
contains 50 paired data.

Our score network was built on the PyTorch framework with NVIDIA RTX 2080Ti
GPUs. The model was trained by an Adam optimizer. The initial learning rate is 1× 10−3

and is decayed to 1× 10−4 and 1× 10−5, respectively, after 4 and 5 epochs.

4.1.3. Evaluation Protocols

To evaluate the text quality assessment performance, we use the error versus reject
curve (EVRC), which is first proposed in [39] and a widely used metric in FIQA [15,16].
The goal is to state how efficiently rejection of low-quality samples results in improved
performance, which shows an STR system error rate over the fraction of images with low
quality scores. From another perspective, text images with quality scores are shown to
reflect the correspondence between quality score and image clarity.

4.2. Results and Discussion

In our experiments, we report the quality assessment performance on benchmarks and
Textzoom from the character level, image level, and dataset level. The proposed FSR-TIQA
method is compared with the analytics-based method BRISQUE [17], which is reproduced
using the released codes directly. The results of BRISQUE and FSR-TIQA are shown in
Figure 7. In the three LR datasets, the word error rate decreases when the proportion
of unconsidered images increases. In most datasets, BRISQUE lead to an increase in the
word error rate. The results demonstrate that analytics-based methods are not suitable for
assessing text images with rich semantic information. It is necessary to design a text image
quality assessment method according to the characteristics of the text.

https://github.com/Wang-Tianwei/Decoupled-attention-network
https://github.com/Wang-Tianwei/Decoupled-attention-network
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Figure 7. Text recognition performance on the predicted text image quality score. The curves show
the effectiveness of rejecting low-quality text images in datasets. (a) shows the result for benchmarks.
(b) shows the same for three subsets in Textzoom.

4.2.1. Results on Character Quality Score

To better understand how fine-grained images work in FSR-TIQA, we visualize the
character region and score results in Figure 8. On the one hand, “caution” is a high-quality
text image, almost every character obtains a score of more than 0.7. On the other hand, our
method can provide unclear characters (“proud”) and misrecognized characters (“b” and “r”
in “dunbar”) lower scores. The Haralick feature and Wasserstein distance of each character
are contributed to the quality score of whole text image. The proposed character region
and embedding extraction method shows a powerful assessment capabilities from the
character level.

Label:  caution
Result: caution
Score: 0.720

Label:  c
Result: c

Score: 0.914

Label:  a
Result: a

Score: 0.823

Label:  u
Result: u

Score: 0.655

Label:  t
Result: t

Score: 0.599

Label:  i
Result: i

Score: 0.746

Label:  o
Result: o

Score: 0.650

Label:  n
Result: n

Score: 0.652

Label:  dunbar
Result: dunnabar

Score: 0.556

Label:  d
Result: d

Score: 0.761

Label:  u
Result: u

Score: 0.751

Label:  n
Result: n

Score: 0.564

Label:  b
Result: n

Score: 0.373

Label:  a
Result: a

Score: 0.502

Label:  r
Result: b

Score: 0.387

Label:  proud
Result: proud
Score: 0.463

Label:  p
Result: p

Score: 0.756

Label:  r
Result: r

Score: 0.403

Label:  o
Result: o

Score: 0.477

Label:  u
Result: u

Score: 0.217

Label:  d
Result: d

Score: 0.465

Label:  edition
Result: edrion
Score: 0.384

Label:  e
Result: e

Score: 0.587

Label:  d
Result: d

Score: 0.609

Label:  i
Result: r

Score: 0.326

Label:  t
Result: i

Score: 0.300

Label:  i
Result: o

Score: 0.136

Label:  o
Result: n

Score: 0.347

Figure 8. Samples text images from benchmark with the corresponding quality scores of each
character in it.

4.2.2. Results on Benchmarks

From the quality score of single image, Figure 9 shows benchmark images with
perdition quality scores. We can observe: (1) from the perspective of image texture, text
images with high quality scores usually have standard fonts, sharp edges, and high contrast
with the background color. In contrast, text images with low scores are harder to identify
the character and edge between content and background. (2) From the perspective of
recognition result, easy samples have high scores and accuracy; meanwhile, correctly
recognized hard examples can also obtain lower scores due to the bad texture feature.
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Label:  junk
Result: junk
Score: 0.903

Label:  san
Result: san

Score: 0.798

Label:  field
Result: field
Score: 0.763

Label:  clint
Result: clint
Score: 0.730

Label:  16
Result: 16

Score: 0.697

Label:  volume
Result: volume
Score: 0.673

Label:  haircut
Result: haircut
Score: 0.650

Label:  obloom
Result: obloom
Score: 0.624

Label:  cataldos
Result: cataldos

Score: 0.592

Label:  twin
Result: then
Score: 0.552

Label:  shell
Result: shell
Score: 0.523

Label:  es
Result: es

Score: 0.481

Label:  punecentas
Result: professional

Score: 0.425

Label:  paramount
Result: starmount

Score: 0.366

Label:  topshop
Result: coshor
Score: 0.279

Figure 9. Samples text images from benchmarks with the corresponding quality scores, recognition
ground truth, and results.

From the view of whole dataset, EVRC is shown in Figure 7a. Unconsidered images
with low-quality scores were removed from the dataset and the error rate was calculated
on the remaining images. The word error rate (WER) sharply decreases with the increase in
the ratio of unconsidered images. Although the WER was higher for IC15, SVTP, and CUTE,
the curve of CUTE falls faster. This is because the image quality of CUTE is better, and the
main reason for the recognition error is the irregular shape of the text. From the experiments
we can conclude: (1) the quality scores are strongly correlated with recognizability of text
images. (2) our FSR-TIQA is sensitive to text image texture feature.

4.2.3. Results on Textzoom

We also test our FSR-TIQA on three subsets of Textzoom. With the help of FSR-TIQA,
the quality score of each image can be easily calculated. The EVRC of Textzoom is shown in
Figure 7b. From the downward trend of the curve, it can be seen that the decline rate of the
three LR subsets is slower. That is to say, the LR subsets contain more difficult text images.
Meanwhile, high-scoring data in the Easy subset and low-scoring data in the Hard subset
are selected, as shown in Figure 10. From the quality score perspective, there is a small
percentage of data that do not match the difficulty it belongs to. Labeling datasets with
subjective metrics is difficult. In our view, dataset difficulty should be divided according
to its quality score. In this way, the performance of the STR system and image restoration
network can be better reflected. Our FSR-TIQA can provide a new approach for data
difficulty classification.

Label:  146
Result: the

Score: 0.289

HR

Label:  146
Result: 

Score: 0.000

LR

Label:  dahfa
Result: uniffa
Score: 0.283

Label:  dahfa
Result: to

Score: 0.193

Label:  master
Result: the

Score: 0.287

Label:  master
Result: a

Score: 0.140

Label:  171
Result: in

Score: 0.232

Label:  171
Result: a

Score: 0.166

Label:  150
Result: do

Score: 0.286

Label:  150
Result: 

Score: 0.000

(a)

Label:  sports
Result: sports
Score: 0.805

HR

Label:  sports
Result: sports
Score: 0.809

LR

Label:  22
Result: 22

Score: 0.882

Label:  22
Result: 22

Score: 0.825

Label:  1
Result: 1

Score: 0.969

Label:  1
Result: 1

Score: 0.868

Label:  of
Result: of

Score: 0.880

Label:  of
Result: of

Score: 0.835

Label:  3
Result: 3

Score: 0.897

Label:  3
Result: 3

Score: 0.886

(b)

Figure 10. Samples text images from Textzoom with the corresponding quality scores, recognition
ground-truth and results. (a) shows the paired images with low quality scores in Easy subset.
(b) shows the paired images with high quality scores in Hard subset.
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4.2.4. Results on Quality Score Distribution

We also implement an experiment to investigate whether there is a significant correla-
tion between the quality score and texture feature or embedding robustness. The quality
score distribution results on the benchmark and Textzoom dataset are shown in Figure 11.
The quality score is divided into 20 intervals of 0.05.

From the overall distribution of the dataset scores, most of the text image quality
scores are concentrated between 0.6 and 0.9. For low-resolution datasets, the proportion of
low-scoring samples increases. It can be seen from the proportion of the correctly identified
samples: (1) When the score is greater than 0.7, the main part is the correctly recognized text
image. (2) When the score is less than 0.4, more images are misidentified. (3) Meanwhile
we notice that samples with scores between 0.4 and 0.7, the recognition results are less
discriminative. The low discrimination of this part of the sample scores is mainly related
to the two scoring perspectives. It is reasonable to exist some samples with clear texture
but wrongly identified or poor textured but correctly identified samples. The recognizer
should improve the recognition accuracy of this part of the data to improve the overall
system robustness.
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Figure 11. Score distribution map of benchmarks and Textzoom. The last figure in (a) shows the
overall distribution of the benchmark. The last row in (b) shows the overall distribution of the HR
and LR dataset. We divide the scores into 20 parts and calculate the proportion of correctly recognized
samples shown in black line.

4.2.5. Generalization on License Plate Datasets

We further explore the generalization of FSR-TIQA on other text image datasets.
License plate recognition is a hot topic in intelligent transportation systems and computer
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vision. The license plate image is a special kind of text image. We chose two Chinese license
plate datasets: CLPD [40] and CCPD [41]. The CLPD dataset contains 1200 images of all
provinces in mainland China based on the real environment. CCPD contains more than
290k images under a variety of conditions. We chose the Challenge subset in CCPD.

In our experiment, since the STR system used in FSR-TIQA can only recognize numbers
and letters, the first character of each image is not considered during assessment. The score
is shown in Figure 12 which suggests that, although our method is not trained on the license
plate dataset, FSR-TIQA is consistent in scoring the texture features of license plate images.

Score: 0.681 Score: 0.606 Score: 0.575 Score: 0.549 Score: 0.520

Score: 0.306 Score: 0.297 Score: 0.279 Score: 0.256 Score: 0.233

(a)

Score: 0.653 Score: 0.545 Score: 0.513 Score: 0.491 Score: 0.476

Score: 0.307 Score: 0.294 Score: 0.279 Score: 0.258 Score: 0.233

(b)

Figure 12. Samples license plate images from CLPD (a) and CCPD Challenge subset (b) with the
corresponding quality scores.

4.3. Ablation Study on FSR-TIQA

In this subsection, an ablation study is presented to reason the design choices of
the proposed method with respect to clear texture feature and embedding robustness.
Hereafter, the method that only evaluates character texture feature is denoted by FS-TIQA,
and the method that only evaluates character embedding robustness is denoted by FR-
TIQA. The EVRC of benchmark, LR, and HR datasets in Textzoom are shown in Figure 13.
FS-TIQA fits character texture features to character recognition results through the quality
score network. The falling curve of FS-TIQA represents the relationship between a character
texture feature and the ability of the a text image to be recognized. The character similarity
distribution distance is used for assessing text image quality in FR-TIQA. The word error
rate of FR-FIQA sharply decreases with the increase in the ratio of unconsidered images
in the beginning; however, when the ratio is greater than 50%, FR-FIQA and FS-FIQA
have poor quality score discrimination for the remaining images. It can be clearly seen
that FSR-TQIA provides much higher performance and maintains stronger discrimination
across all data than FS-TIQA and FR-TIQA in all test datasets. As a result, the quality of
text images can be evaluated more comprehensively from the dimension of sharp texture
feature and embedding robustness.
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Figure 13. Text recognition performance of proposed methods on benchmark, LR, and HR datasets
in Textzoom. The EVRC shows the effectiveness of rejecting low-quality text images.

5. Conclusions

In this work, we are the first to propose a text image quality assessment framework
from three perspectives: character-level-based evaluation, clear texture feature, and em-
bedding robustness. Correspondingly, we propose a learning-based fine-grained, sharp,
and recognizable text image quality assessment method. With the help of an attention
recognizer, we evaluate each character in text images. The Wasserstein distance between the
intra-class and inter-class similarity distributions is used to evaluate embedding robustness.
The multiscale Haralick feature reflects the degree and clarity of the texture feature of
character region. A quality score network is designed under the label-free training man-
ner to normalize the texture feature and output the quality score. Extensive experiments
indicate that FSR-TIQA has significant discrimination for different quality text images
on benchmarks and Textzoom datasets from the character level, image level, and dataset
level. The results on license plate dataset shows that our FSR-TIQA can generalize to more
text datasets.

To some extent, our method provides a new way to assess text datasets based on image
quality. This is helpful for selecting training sets in restricted scenarios and evaluating
STR systems using datasets of different quality. In the future, FSR-TIQA can improve the
recognition capability and range of the STR system to assess a wider variety of text images.
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