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Abstract: End effectors like firearms, cameras and fire water guns can be classified as pointing end
effectors. When installed on wearable manipulators, a new function can be given to the wearer.
Different from gripper end effectors (GEEs), target pointing end effectors (TPEEs) have different
working tasks, and the requirements for path planning are also different. There is very limited
research on wearable manipulators with TPEEs. Meanwhile, manipulator with GEE path planning
tends to be mature, but with a relatively low efficiency concerning its algorithm in solving high-
dimensional problems. In this paper, a degree of freedom (DOF) allocation scheme and a path
planning strategy (unlike manipulator with gripper end effector) were proposed for manipulators
with a target pointing end effector in order to reduce the difficulty of path planning. Besides, this
paper describes a new algorithm-dimension rapid-exploration random tree (dimension-RRT) to
divide the manipulator DOFs into groups and unify DOFs groups by adding a fake time. The
dimension-RRT was compared with the rapid-exploration random tree star algorithm (RRT*) in
the same simulation environment; when there are 500 random points, the dimension-RRT time
consumption is 0.556 of RRT* and the path length is 0.5 of RRT *. To quickly obtain a path that can
avoid the human body, dynamic movement primitives (DMPs) were used to simulate typical spatial
motion path and obstacle avoidance path efficiently.

Keywords: manipulator; path planning; RRT; DMPs; target pointing end effector

1. Introduction

As an effective substitute to human beings, manipulators have found a wide appli-
cation in aviation, mechanical and military industries. Seamless function switches can be
implemented through modularized manipulator end effectors. A selection of task-specific
end effectors brings about a quick operation adaptation. At present, manipulator devel-
opments are limited within the range of GEEs in the replacement of human manipulation
tasks, such as grasping, picking, processing, supporting and so on [1–4].

Previous achievements center on manipulators carrying GEEs which are fixed around
the human body to assist people or around a base to complete tasks independently within
a certain range. In these tasks, manipulator end effectors need to physically contact the
task targets. By contrast, TPEEs in this research aimed at an orientation or a trajectory line
toward the target point. The manipulator with TPEE is designed to control its orientation
toward the target, and then to perform aiming, shooting, exploration or other tasks, as those
used in firearms, fire water guns, laser guns, searchlights, photography machines, etc. Thus,
there is a largely expanded manipulator operation range. As is often the case, manipulators
with TPEE bases are either built in a vehicle or located in a relatively open and barrier free
position; one to two DOFs are sufficient for the target pointing end and large-scale tracking
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and aiming. As the wearable equipment is becoming increasingly lightweight, professional,
diversified and dimensionalized, the physical operation ranges and types are further
extended for solo missions. TPEEs are expected to take the lead in wearable manipulators
by promising more potential applications for wearable equipment. The fact that most TPEEs
are still operated by the wearer and fail to complete an independent task reveals inadequate
study of TPEEs [5,6]. Manipulator performances can be effectively improved by designing
robot arm path planning strategies and specific methods corresponding to different end
effector types. While traditional manipulator path planning methods with GEEs are
applicable to most manipulators, they cannot be readily applied to TPEEs. Different in
operation tasks, GEEs need to approach and contact the target point with a certain attitude,
while TPEEs need their extension lines or trajectories to pass through the target point. A
mere copy of the traditional manipulator algorithm and structural forms would complicate
path planning with increased DOFs, flexibility and inverse kinematics solutions. If the
solution is narrowed down to the obstacle avoidance process of the manipulator body,
factors such as blocking in the pointing direction will be ignored. This research focused
on robotics was thus targeted at an effective reduction of the manipulator path planning
difficulty [7]. A new path planning algorithm for TPEEs will be discussed in this paper,
which can effectively reduce the path planning difficulty of wearable manipulators on the
premise of ensuring functions.

RRT is a sampling-based algorithm, it can quickly expand a tree like path to explore
most areas of space and wait for opportunities to find a feasible path, as proposed by
Steven in 1998 [8]. However, the RRT algorithm ends when it finds the first path, and
usually cannot obtain the optimal solution. Various algorithms have been proposed to
enhance the original RRT algorithm. As the number of iterations approaches infinity, RRT*,
proposed by Sertac Karaman in 2011, is able to continue optimizing the initial path in
successive iterations and obtain an optimal or near optimal path to the target [9]. For
faster initial path finding, Jordan proposed the bidirectional rapidly exploring random tree
algorithm (Bi-RRT*) in 2013, which can provide solutions rapidly in planning problems
by improving utilization efficiency of samplings [10]. The informed-RRT*, proposed by
Jonathan D. Gammell in 2014, sets a hyper-ellipsoid whose focal points are initial state
and the goal state once one path is found, while the new states generated in the ellipsoid
make it possible to optimize the path [11]. Binghui Li and Badong Chen proposed a
new improved algorithm called adaptive RRT-Connect (ARRT-Connect) in 2022, where
bidirectional search like Bi-RRT was applied. In ARRT-connect, a new sampler is designed
for the sampling process; the type judging process of local environments is simplified [12].
For better performance in the initial cost solution, convergence time, and the number of
nodes visited, directional RRT*(D-RRT*) was proposed to focus on the direction of the goal
from the starting configuration through a simple elliptical heuristic, which is different from
informed RRT* [13]. In 2022, inspired by the sparse A* and the improved evolutionary
algorithms, flight cost-based rapidly-exploring random tree star (FC-RRT*) was proposed.
FC-RRT* uses heuristic information to guide the expansion of the tree node, which extends
RRT* to deal with the safety requirements and flight constraints of UAVs in a complex 3D
environment [14]. RRT and its improved algorithms are widely used in path planning of
manipulators, UAVs, unmanned vehicles [13–21]. In the mentioned algorithms, RRT and
RRT* are improved by guiding the growth direction of random tree, improving utilization
efficiency of samples, reducing the sampling space, etc. However, when solving a multi-
dimensional environment like a 3D environment or configuration space of manipulators,
the solution efficiency decreases. Therefore, how to efficiently solve high-dimensional
variables becomes much more significant and is regarded as a key to improving RRT.

In this paper, after a new DOF allocation set scheme, a path planning strategy was
designed to simplify the issue for wearable manipulators with TPEEs. A new path planning
method named dimension rapid-exploration random tree (dimensions-RRT) is proposed
with a reference to the rapid-exploration random tree (RRT) sampling principle and its
optimization algorithm rapid-exploration random tree (RRT*) and informed RRT*. This
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algorithm can simplify the path planning problem by decomposing the high-dimensional
problem into multiple low-dimensional problems. To unify the low-dimensional paths,
a fake time dimension is added in the algorithm. Then dimension-RRT can optimize the
paths in low dimensions and quickly obtain high-quality paths. To solve more complex
paths, the DMP algorithm accomplished the omni-directional real-time aiming and tracking
of the wearable manipulator with TPEE.

2. Degree of Freedom Allocation Scheme of Wearable Target Pointing End
Effector Manipulators

Comparing the existing structures of wearable manipulators, it is found that, due to
different operation tasks, the structural schemes of wearable manipulator with a GEE is not
suitable for those with TPEE. This chapter proposed a corresponding calculation and DOF
distribution scheme according to the functional characteristics of wearable manipulators
with TPEEs.

2.1. Problem Description (Target Pointing End Effector Task Description)

Wearable manipulators with TPEE have their peculiarity in path planning and DOF
allocation. In terms of task requirements, the TPEE requires the following: 1. No collision
in the operation process is allowed between the manipulator and the human body except
the connecting part, and obstacles must be strictly avoided between the end effector and
the target point. 2. End effectors must constantly face their locked targets, and quickly
plan a new path and resume the tracking even if the target enters a blind area. 3. It can
quickly give up an original target and lock a new one. Since the chief aim is at the path
planning problem of wearable manipulators with TPEE, this paper did not consider the
environmental factors outside the obstacles and the impact of special tasks performed by
the end effector system after aiming, such as that of shooting on the aiming accuracy. Here,
the manipulator posture is defined as the target posture when the target point is on the
extension line of the end effector.

2.2. The Degree of Freedom Assignment Scheme

A strict posture is required for manipulators with GEEs because they need to extend
the end effector to the target position. Besides giving certain DOFs to the end effector, two
DOFs will be arranged at the arm near the end effector, and their rotation axes are designed
to be parallel to each other [22–24], as is shown in Figure 1.

Figure 1. Structural forms of some manipulators with GEEs.

These two DOFs can ensure that if other DOFs remain unchanged, the end effectors
can be sent to all points that meet the joint structure constraints in the plane of the current
manipulator, but obviously this ability has no significance for the end of the TPEEs. Once
the target point is in its pointing direction, the end effectors would initiate the task. Thus, a
reduction in the DOFs for relevant manipulators is realized.

As a certain length is demanded for TPEE to guide the movement of projectiles and
provide acceleration or enabling distance, space utilization and self-collision also need to
be taken into account during manipulator movement. The structures need to be as concise
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as possible. Referring to the existing TPEEs [25–29], the end effectors in this paper were
given two DOFs to achieve large-scale aiming. Considering the motor installation and
TPEE structure styles, there are two combination schemes of the two DOFs, as shown
in Figure 2.

Figure 2. DOF assignment scheme for end effectors. (a) with a cylinder blind area; (b) with a cone
blind area.

In the above two combination schemes, their pointing blind area in Figure 2b will
become larger with the increase of the distance from the target, and the combination scheme
is not convenient storage and portability. Because the target points in TPEE tasks are
usually located far away from end effectors, the blind area of Figure 2a is smaller than that
of Figure 2b and the DOF combination scheme in Figure 2a is selected. Extra requirements
would be exerted on the end effectors installed on the manipulator, considering the different
tasks. For example, it needs to automatically avoid obstacles in the pointing direction, or to
adjust the end effector position when the target is located in the blind area. Therefore, the
end effector needs to be given two rotational DOFs to move in the space. In order to ensure
the overall weight of wearable equipment is as light as possible and the manipulator is
sufficiently flexible, the number of overall motors of the equipment should be as small
as possible. In this case, this paper proposed a 4-DOF wearable manipulator with TPEE,
whose third and fourth DOFs were applied to ensure that the end effector can point to all
directions in the space. Meanwhile, its first and second DOFs are responsible for adjusting
the spatial position of the TPEE. The DOF distribution scheme is shown in Figure 3.

Figure 3. Wearable manipulators with TPEE DOF allocation scheme.

In Figure 3, L4 was an end effector; L3 pushed the end effector out a distance to ensure
that the TPEE can rotate freely without collision. The kinematic modeling of the DOF
scheme was carried out by the D-H method. In order to calculate the feasible manipulator
workspace, the TPEE was regarded as a translational DOF to build a five-degrees-of-
freedom manipulator. The feasible manipulator workspace was solved by the Monte Carlo
method, as shown in Figure 4.
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Figure 4. Feasible manipulator workspace solved by the Monte Carlo method.

The blue points in the figure represent the space positions that can be reached by the
end of the 5-DOF manipulator model, which corresponds to the space position of the target
point that the manipulator can point to in the space. It proved that this structural form fully
meets the omni-directional work requirements. Among other schemes, this is the minimum
DOF design scheme that can meet the omni-directional pointing requirements while the
wearer is in a stationary state.

2.3. Inverse Kinematics Calculation of Four-Degrees-of-Freedom Manipulator with the Target
Pointing End Effector

The manipulator kinematics is usually analyzed by the D-H model, and the inverse
kinematics operation can be completed through the analytical method or Matlab Robotic
toolbox. However, when this model is applied to the manipulator with TPEE, the end
effector of the manipulator does not have to make contact with the target point, as the task
has changed. It is necessary to add a translational DOF at the end effector to represent the
distance from the end effector to the target point, which is a complication of the inverse
kinematics problem of manipulators with TPEE, while the planning of this DOF is mean-
ingless in practice. Considering that the TPEE can complete the large-scale pointing task
with two DOFs, this paper simplified the path planning problem of wearable manipulators
with TPEE. Considering the human body as the main obstacle in the wearable manipulator,
the space was divided into multiple spaces called posture sectors. The first and second
DOFs in posture sectors were clearly set (described in detail later). Combined with the data
of the first two DOFs, an inverse kinematics calculation was completed, whose method is
as follows.

The two DOFs at the end effector are regarded as a whole with the end effector,
which is hereinafter referred to as the pointing system, as shown in Figure 5. When the
target coordinate in the world coordinate system Wxyz is obtained, the information of the
posture sector is obtained and used to determine the rotation data of the first two DOFs
corresponding to the posture sector. Combined with the angles of the first two DOFs, the
coordinate position target in Sxyz can be obtained.
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Figure 5. World coordinate system (Wxyz) and pointing system coordinate system (Sxyz).

The calculation process is as follows:

Wxyz = [x, y, z]T (1)

Rx =

 1 0 0
0 cos(DOF1) − sin(DOF1)
0 sin(DOF1) cos(DOF1)

 (2)

Ry =

 cos(−DOF2) 0 sin(−DOF2)
0 1 0

sin(DOF2) 0 cos(DOF2)

 (3)

M = Rx·Ry (4)

T =
[

154.5 0 −468
]T (5)

Sxyz = Wxyz·M − T (6)

DOF1 and DOF2, respectively, represent the motion amounts of the first and the
second DOF. The value of matrix T comes from the specific structural design. In the
pointing system coordinate system, the target point is projected to the XOY plane, as shown
in Figure 6.

Figure 6. Schematic diagram of the third degree of freedom calculation process.
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In the above figure, the short green line is the initial position of the end effector in
the pointing system, while the long green line is a segment in the end effector direction.
The third DOF of the manipulator rotates J2 or J1 angle so that the target point is in the
plane which can pass through the long green line and perpendicular to the short green
line. Accurate data of arccos(lOC/lAO) can be obtained through Equations (8) and (9) in
combination with the interval in which interval point A is located.

JAOD = arctan
(

ys

xs

)
(7)

J1 = arccos(lOC/lAO) + JAOD − π (8)

J2 = −arccos(lOB/lAO) + JAOD − π (9)

Because the value range of arctan is [−pi, pi], the value of JAOD shall be adjusted
according to the interval where the target point is located; JAOD is the angle between the
target point and the x axis in the coordinate system XOY plane. The smaller rotation angle
in J1 J2 will be selected as the motion data of the third DOF, and then the fourth DOF will
be calculated, as shown in Figure 7.

Figure 7. Schematic diagram of the fourth degree of freedom calculation process.

The data of the fourth DOF refer to JPBA, which is obtained by the following formula:

JPBA = arctan(sz/lAB) (10)

JAB =
√

sx2 + sy2 + lOB (11)

The complete data of four DOFs obtained above will be used as the target posture of
path planning problem. The path planning strategy for the wearable manipulator with
TPEE will be discussed in detail as follows.

3. A Path Planning Strategy of Target Pointing End Effector Wearable Manipulators

Because the wearable manipulator with the TPEE cooperates with a human wearer,
collision with or hindrance by the human body in the movement process should be avoided.
The traditional path planning algorithm will consume part of the calculation amount
in collision detection. In addition, the calculation difficulty of various path planning
algorithms rose with the increase of the input data dimension, i.e., the number of DOFs. By
reasonably reducing the number of DOFs involved in the calculation or deconstructing, the
manipulator can effectively improve the calculation efficiency. Considering the TPEEs, it
is meaningless to plan the spatial trajectory of the end effector of the manipulator. With a
reference to the Constrained BiDirectional RRT [30] proposed by Dmitry Berenson et al. in
2009 and the random programming algorithm proposed by Jinkyu Kim et al. in 2014 for
the manipulator to grasp or release objects in different pose states [31], this paper carried



Electronics 2022, 11, 1615 8 of 21

out path planning for the manipulator in configuration space. It can be inferred from the
above that the TPEE can realize the locking task of most positions in the space when the
end effector is given two DOFs. When the target is in a pointing blind area, the target
point is re-exposed to the pointing range by adjusting the end space position. Therefore,
four representative spatial position points were selected in this paper, i.e., four groups
of first and second DOFs were set. The pointing range formed by the TPEE on the four
spatial position points can completely cover all directions around the wearer. The overall
space was divided into four posture sectors according to the four spatial position points, as
shown in Figure 8.

Figure 8. Posture sectors division.

The relationships between posture sector and the first and second DOFs are shown
in Table 1.

Table 1. Correspondence between the first and second DOFs in posture sector.

Posture Sector DOF1 DOF2

1 −50 160
2 50 160
3 −50 20
4 50 20

The posture sector corresponds to the first and second DOF one by one, and there is
no common space between the posture sectors. Only the posture sector is used to judge
whether the pointing system needs spatial position to be changed. Tracking the target
points that frequently move across the posture sector at the boundary of the posture sector
will lead to frequent and unnecessary movement of the manipulator. Therefore, on the basis
of the posture sector, four pointing sectors were divided. The posture sector corresponds
to the pointing sector one by one. The pointing sector represents the effective pointing
range of the pointing system under the spatial position points provided by the first and
second DOFs based on the posture sector. The division criteria are shown in Figure 9
and Table 2.
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Figure 9. Pointing sector division.

Table 2. Pointing sector division judgment criteria.

Pointing Sector Judgment Criteria

1 x ≥ 0 and y < x ∗ tan(30◦);
x < 0 and z > x ∗ tan(200◦) and y < x ∗ tan(160◦)

2 x < 0 and z > x ∗ tan(200◦) and y > x ∗ tan(200◦);
x ≥ 0 and y > x ∗ tan(−30◦)

3 y < x ∗ tan(160◦) and x < 0 and z < x ∗ tan(160◦);
x ≥ 0 and y < x ∗ tan(30◦)

4 x < 0 and z < x ∗ tan(160◦) and y > x ∗ tan(200◦);
x ≥ 0 and y > x ∗ tan(−30◦)

When the first target point is obtained, the data of the first and second DOFs and
the corresponding pointing sector are judged through its posture sector. The position of
the target point is detected in the subsequent tracking process. If the target point exceeds
the pointing sector in the subsequent movement, the posture sector is rejudged, the first
and second DOFs and pointing sector are updated, and the pointing system moves into
a new position. This method can simplify the collision detection when moving in the
same pointing sector. Delimiting the pointing sector and posture sector respectively can
effectively avoid the frequent cross sector motion of the target when the target moves at
the boundary.

The process of path planning strategy is shown in Figure 10.
The above method ensured the safety of wearable manipulator with the TPEE could

safely cooperate with the human body in each sector. Because the manipulator can aim at
uncertain target points in the pointing sector without collision, the collision detection steps
can be omitted without cross sector motion. A rapid calculation and real-time tracking
can be realized in the face of the targets moving in the same pointing sector. When the
target moves out of the current pointing sector, or a new target has a different pointing
sector with the current, the motion amplitude will be large. The above method can only
ensure that the manipulator has no collision in the same pointing sector in the posture
sector. Since collision may arise as a result of the direct movement of the manipulator to
the target posture, path planning strategies and algorithms are required to realize the safe
cross sector motion of the manipulator. Based on the principle of RRT series algorithms,
this paper designed a path planning algorithm for cross sector motion without collision.
However, due to the high uncertainty in the target point of the third and fourth DOFs,
algorithmic path settlement is required for each cross sector motion but fails to meet real-
time requirements. To solve this problem, this paper constructed a path library, designed
sufficient paths in the sector, and transmitted high-quality paths to the manipulator in the
form of experience strategies, realizing the cross sector motion of the manipulator in any
pose state. The above algorithm will be described in detail below.
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Figure 10. Flow chart of path planning strategy.

4. The Path Planning Strategy Target Pointing End Effector Manipulators

According to the path planning strategy proposed in this paper, the manipulator
experienced uncertainty in the cross sector motion. Combined with the principle of RRT,
this paper appropriately simplified the path planning of the wearable manipulator with the
pointing target end effector, and decomposed the high-dimensional problem into multiple
low-dimensional problems for optimization. Then it proposed a fast path optimization
algorithm of the manipulator in configuration space. The optimization results were stored
in the path library.

4.1. Dimension Rapid-Exploration Random Tree

At present, there are many path planning algorithms. Algorithms that can solve multi-
dimensional variables, such as artificial potential field method [32] and A* algorithm [33],
are often applied to the manipulator path planning. With reference to the principle of the
RRT algorithm, this paper adapts the RRT algorithm based on its sampling method so that
wearable manipulators with TPEEs can quickly obtain high-quality calculation results.
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4.1.1. Rapid-Exploration Random Tree and Optimization Algorithm Principle

The RRT algorithm was proposed by Steven in 1998 where a detailed environment does
not need to be built; meanwhile, for high-dimensional path planning, it shows noticeable
advantages over other path planning algorithms. Improvements in this area had been
made, including RRT*, informed RRT*, RRT*smart [34], Bi-RRT*, etc.

As a sampling-based path planning algorithm, in the path finding process of RRT, the
direction will be randomly generated and extended. Its path growth mode is similar to a
tree growth in nature. The path planning goes on until the path tree reaches the target point.
The path planning steps are as follows: (1) The starting point and target point locations
are determined and the starting point is input into the path point set; (2) a random point
is generated. The point closest to the random point in the path grows a certain length in
this direction to generate a new path. The end point of the new path is stored in the path
point set, named new point. Path information will be retained by establishing the parent–
child relationship between points, and the path will be discarded in cases where there is a
collision on the path. (3) Cycle step 2 until the distance between the newly generated point
and the target point is small enough. The RRT algorithm has strong exploration ability in
space, but blind exploration leads to poor path quality.

The RRT algorithm can effectively solve the path planning problem with multiple
DOFs. However, with the increase of DOFs, the posture randomness as a variable also
increases, resulting in the optimization efficiency reduction. Dimensionality reduction can
improve the optimization efficiency and shorten the optimization time, thereby providing
optimization space for improving the path quality.

4.1.2. Application of Dimension Rapid-Exploration Random Tree Path
Optimization Algorithm

The path planning will decompose the high-dimensional problem into multiple low-
dimensional problems on account of the problems existing in the original algorithm. A
unified variable is constructed between low dimensional problems to relate the low dimen-
sional problems. In this paper, the fake time dimension t was used as a unified variable. The
high-dimensional path planning problem was deconstructed by adding the t dimension in
the planning process. The fake time t here was not used as the time in motion planning,
but only as a unified variable to unify each group of low-dimensional problems. Figure 11
shows the path planning effect of the algorithm. In this figure, multiple manipulators
represent the manipulator postures at different time steps in the path planning.

Figure 11. Path planning algorithm results schematic diagram.

In the path planning of the manipulator with the number of DOFs R, the algorithm
divides the DOFs into n groups, each representing one or more manipulator segments.
Group i contains ki DOFs, in which Group i can affect the spatial position of DOFs in the
next group. From Group 1, each group of DOFs will be planned in turn. The DOFs in
Group i + 1 are planned in combination with those of groups that have completed planning.
In the process of planning the path of Group i, in order to build a stable relationship
between different DOF groups, a fake time dimension is added to the path. Upon an
account of manipulator size and obstacle size, the whole path is divided into h + 2 fake
time steps, which mean steps required from the starting point to the ending point. The
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path dimension is extended to h*ki except the start and end. In this way, the path planning
goal for this group changes from finding a series of collision-free ki-dimensional points in
configuration space to finding a collision-free h*ki-dimensional coordinate point in path
space. As the dimension increases, the randomness of random points increases, resulting in
a significant probability reduction of obtaining an effective path. This is contrary to the goal
of algorithm efficiency improvement. Considering that the (h*k)i-dimensional DOFs are
essentially different manifestations of the same object at different times, the DOF description
in different time steps in fact depicts the same motor’s rotation in continuous time. In other
words, a random point in the configuration space has the same optimization significance for
each time step. Therefore, the high-dimensional problem can be reduced to h ki-dimensional
problems for optimization. For example, a random point in Bi-RRT* can be used to optimize
the first and last trees. In dimension-RRT, only ki-dimensional variables need to be given for
h times to realize efficient path search and optimization. Next, the algorithm will be further
described according to the wearable manipulator with TPEE path planning.

Four DOFs are included in this paper based on the DOF allocation scheme of the
wearable manipulator with the TPEE. According to their structural characteristics and the
algorithm principle, four DOFs are divided into two sub-groups, with two DOFs in each.
For the first group of DOFs, the first two DOFs in different posture sectors will be fixed in
order to simplify the calculation. In the two same cross sector motions, the first two DOFs of
the starting point and the target point in configuration space will not change because the
corresponding posture sector is the same. Therefore, the trajectories of the first two DOFs in
different inter-region motions can be planned in advance as fixed trajectories, so the first
group planning process of DOFs is omitted. The path in this paper is divided into seven
fake time steps owing to the manipulator–human body size ratio, the path length under
the DOF allocation scheme of the wearable manipulator with TPEE. Combined with the
actual man–machine space position, the parameters of the first and the second DOF are set
in Table 3.

Table 3. DOF1, DOF2 path data between different posture sectors.

Start Posture Sector Target Posture Sector (DOF1, DOF2) Path Data

1 2 [−50, 160], [−30, 150], [−15, 140], [0, 140],
[15, 140], [30, 150], [50, 160]

1 3 [−50, 160], [−50, 136], [−50, 113], [−50, 90],
[−50, 67], [−50, 44], [−50, 20]

1 4 [−50, 160], [−40, 136], [−20, 113], [0, 90], [20, 67],
[40, 44], [20, 50]

2 1 [50, 160], [30, 150], [15, 140], [0, 140], [−15, 140],
[−30, 150], [−50, 160]

2 3 [50, 160], [40, 136], [20, 113], [0, 90], [−20, 67],
[−40, 44], [−50, 20]

2 4 [50, 160], [50, 136], [50, 113], [50, 90], [50, 67],
[50, 44], [50, 20]

3 1 [−50, 20], [−50, 44], [−50, 67], [−50, 90],
[−50, 113], [−50, 136], [−50, 160]

3 2 [−50, 20], [−40, 44], [−20, 67], [0, 90], [20, 113],
[40, 136], [50, 160]

3 4 [−50, 20], [−40, 30], [−20, 40], [0, 40], [20, 40],
[40, 30], [50, 20]

4 1 [50, 20], [40, 44], [20, 67], [0, 90], [−20, 113],
[−40, 136], [−50, 160]

4 2 [50, 20], [50, 44], [50, 67], [50, 90], [50, 113],
[50, 136], [50, 160]

4 3 [50, 20], [40, 30], [20, 40], [0, 40], [−20, 40],
[−40, 30], [−50, 20]
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For the second group of DOFs, as a path, it is necessary to integrate all posture as a
whole in the time dimension to judge whether the path is feasible. Considering the integrity
of the whole path, intuitively, the posture network formed by the connection of posture in
the seven time steps is continuous without collisions, as shown in Figure 12.

Figure 12. Schematic diagram of posture network.

Here, according to the algorithm, the problem is upgraded to a 10-dimensional prob-
lem, except for the start point and target point. The optimization goal is to find a collision-
free coordinate point in the 10-dimensional path space and optimize it. While there is only
one search and optimization point, the search efficiency of high-quality paths will be very
low due to the high randomness of the 10-dimensional coordinates. As mentioned above,
the five two-dimension problems in the 10-dimension problem are essentially the same
object in different time dimensions. In order to ensure the calculation dimensions’ sim-
plification and the unity of path optimization, the 10-dimension problem is disassembled
into five two-dimension problems according to the dimension-RRT. For the simultaneous
optimization of five fake time steps, the specific process is as follows.

A two-dimensional point is randomly generated and used for the planning. The
random points are brought into the five fake time step calculation in turn. Combined with
the corresponding first and second DOFs, the manipulator’s obstacle collision in the task
space is judged. If there is no collision and the points that make the whole path are shorter,
the new point can be retained and replace the original. According to the observation, the
algorithm can obtain a complete collision-free path within 200 steps. After 200 steps, the
random point generation will gradually reduce the selection range based on existing path
results and further improve the optimization efficiency. In the actual operation process, it
appears that, with the increase in the optimization step, the DOF optimization frequency
update gradually decreases, which proves that the path quality is gradually improved and
the path optimization space is reduced.

4.1.3. Limitations of Dimension Rapid-Exploration Random Tree Algorithm

In essence, this algorithm realized path simplification by decomposing the manipulator
integrity. When faced with a higher dimension manipulator, the first few DOFs should
be determined in advance. Whether the manipulator would still have high-quality paths
on this path basis cannot be soundly guaranteed. At this time, the manipulator integrity
decomposition is likely to fall into the local minimum or fail to find an effective path, and
the algorithm may lose its value.

In addition, the algorithm was only applied to path planning problems since a direct
association between variables was lacking. For example, configuration space describes
a totally different concept from work space in a manipulator. Grouping the DOFs in the
way provided by the algorithm can completely describe the posture information of the
corresponding structure in the work space so that the collision can be accurately judged
in the collision detection process. However, when applied to path planning in UAVs or
cars, the way of deconstructing variables will lead to incomplete obstacle spatial position
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information, which will have a great impact on collision detection, resulting in misjudgment
and inability to obtain an effective path.

4.2. Manipulator with Target Pointing End Effector Path Imitation by Dynamic Movement
Primitives Algorithm

It is found that although the calculation efficiency of dimension-RRT is high, in a few
cases, there will be invalid paths that cannot be optimized. When this happens, it can only
be solved through re-planning the path, resulting in time-consuming instability. Therefore,
this paper passed the collision free optimization path to the manipulator system in the
form of experience, and constructed the motion primitive library. When the manipulator
faces similar motion conditions, fast path planning can be realized.

4.2.1. Introduction to Dynamic Movement Primitives Algorithm

Imitation learning is an important branch of robot skill learning. Some of its imitation
learning algorithms have been applied to path planning or motion planning of a manipula-
tor, such as kernelized movement primitives (KMPs), DMP and probabilistic movement
primitives (ProMPs) [35–37]. DMP was proposed by Professor Stefan Schaal’s team at the
University of Southern California in 2006 [38]. With high nonlinear characteristics and
high real-time performance, DMP can plan a path from any starting point and converge to
any target point, and a manipulator path simulation can be applied. It already has a good
application in manipulator path planning of a cross sector motion path planning. How
to organically combine different trajectory planning algorithms with imitation learning is
an important direction of future research [39]. In order to meet the wearable manipula-
tor with TPEE path planning real-time requirements, this paper combines DMP and the
above-mentioned dimension-RRT algorithm, and completes the imitation learning task of
wearable manipulator with TPEEs.

The central principle of the DMP method is to rely on a dynamic system, adjust the
nonlinear part in the system, and let the output path imitate the expected behavior. The
basic formula of DMP is as follows:

τ2 ..
y = αy

(
βy(g − y)− τ

.
y
)
+ K f − Kx(g − y0) (12)

In the formula, y represents the system state,
.
y and

..
y represent the first and second

system state derivatives, g is the target state, τ is the time constant and αy, βy are the two
constants. The first term in the formula is the attractor model constructed by the second-
order dynamical systems with self-stability, and the forcing term f is used to adjust the
trajectory end point and trajectory shape, expressed as:

f (x, g) =
∑N

i=1 ϕi(x)ωi

∑N
i=1 ϕi(x)

x(g − y0) (13)

ϕi(x) = exp(−hi(x − ci)
2 = exp

(
− 1

2σ2
i
(x − ci)

2

)
(14)

where ϕi(t) is the basis function, σi and ci, respectively, represent the width and center
position of ϕi(t). In the learning process, ωi is the weight corresponding to each basis
function, N is the basis function number. Different trajectories are obtained by adjusting
the basis function and the corresponding weight. x comes from the first-order system and
satisfies (15).

τ
.
x = −αxx (15)

where αx is a positive constant, x is phase variable and f is a combination of nonlinear
function. By adjusting the f weight parameters, it can imitate the demo path to generate
any shape path from the starting point to the target point.
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4.2.2. Building a Path Library

In this paper, the construction process of the path library is as follows. By setting
different random cross sector motions, the manipulator’s third and fourth DOF data under
the start point and end point are calculated and stored as start posture and goal posture in
T. Any newly generated posture data will be compared with the data in T. If the difference
is large, the new data will be stored in T; otherwise, the data are discarded. The point set
obtained in this way is shown in Figure 13.

Figure 13. Start and end point set of random cross sector motion (red as the starting point and blue
as the ending point).

Figure 13 shows the random point set of the first pointing sector to the second posture
sector and the second pointing sector to the first posture sector. The path data are planned
through the dimension-RRT. The optimized path library is expanded, and 100 posture
points are evenly distributed between each seven path steps to form new paths ydemo1(t)
and ydemo2(t). ydemo1 represents the third DOF, ydemo2 represents the fourth DOF and t
represents fake time.

Take the start point and goal point of the demo as y0 and g and bring them into
the formula,

ftarget =
τ2 ..

ydemo − αy
(

βy(g − ydemo)− τ
.
ydemo

)
g − y0

(16)

The forced function ftarget(t) of the teaching trajectory is obtained, the model param-
eters of the basis function in ftarget(t) are learned through the local weighted regression
algorithm LWR, and optimized through the square loss function,

Ji =
P

∑
t=1

ϕi(t)
(

ftarget(t)− ωiξ(t)
)2 (17)

where P represents the total number of time steps, and ξ(t) = x(t)(g − y0). When Ji is
minimized, all the parameters of f under the teaching function are obtained.
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4.2.3. Trajectory Reproduction and Generalization

The DMP algorithm has a strong generalization ability. Since the DMP demos in this
case are from the collision-free path of the optimization algorithm, the obstacle avoidance
function will not be added here. Since the forcing function weight is the same as that of
the demo path in the new environment, the DMP path imitation generates a new path
according to the start and target points and the demo’s motion trend. While this kind of
situation can simulate the motion path with good performance in the configuration space,
the collision risk in the work space remains [40]. Besides, because the actual motion in the
work space cannot be directly observed in the configuration space, it simply imitates the
curve trend with a potential liability of collision risk. To solve this problem, this paper
constructs a path library and reverse path library at the same time. To generate a new path,
a three steps operation is implemented. Step 1, select the closest example start point and
end point from the motion primitive library as the imitation object; step 2, bring the actual
start point and demo goal point into the forward path library of the group closest to the new
path; and step 3, input the actual goal point and demo start point into the corresponding
reverse path library. The forward and reverse paths are obtained through DMP. They are
added according to their weight to obtain the completed path curve. Thus the generated
path, though starting from positions different from the demo path, quickly approaches the
demo curve during the movement, separates from the demo at the position close to the end
point, and moves to the target end point (Figure 14).

Figure 14. Effect after path adjustment.

In this case, there are four posture sectors and four pointing sectors. So there are
12 groups of cross interval motion, and 12 path libraries need to be constructed.

5. Experimental Verifications
5.1. Dimension Rapid-Exploration Random Tree Algorithm Effect Verification

This algorithm is based on the sampling principle of the RRT algorithm. Accord-
ing to the algorithm principle in this paper, this algorithm cannot complete the path
search of points in a two-dimensional or three-dimensional space. Therefore, it only
compares the advantages of various algorithms on the path planning effect of a four-
dimensional manipulator.

A total of 120 groups of spatial random points are generated, covering all kinds of
cross sector motion. The collision-free start and goal posture is calculated through inverse
kinematics as the path start point and goal point. The path planning is carried out through
the RRT* algorithm and the dimension-RRT algorithm, respectively. The optimization step
number is 500, 1000, 1500, 2000, 2500, respectively. Since the start and goal points are spatial
random points, the cost time, path length and other results do not have reference value.
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Here, the dimension data are processed taking RRT* results as the unit, and the average
value of 120 groups of data is taken (Table 4).

Table 4. Experimental results.

Random Points
Number in

Optimization

Time Consuming
Comparison

Path Length
Comparison

Path Length
Comparison of the

Second DOF Group

Path Length
Comparison of the
First DOF Group

500 0.523 0.500 0.409 0.582
1000 0.492 0.566 0.464 0.651
1500 0.462 0.636 0.531 0.714
2000 0.401 0.666 0.565 0.737
2500 0.377 0.684 0.585 0.745

This chart fully demonstrates the overall advantages of dimension-RRT over RRT*.
Under the same amount of random points, the path quality of dimension-RRT is higher
than of RRT*. With a gradual optimization, the optimization space decreases with the
optimization process, and the ratio of dimension-RRT path length to RRT* path length
increases. Compared with RRT*, the dimension-RRT algorithm has a higher optimization
efficiency. Dimension-RRT can quickly obtain a relatively short path with fewer random
points, which can be more intuitively shown in Figure 15.

Figure 15. Path length by Prandoms numbers.

However, due to the advance restriction of the first two DOFs in this algorithm, not all
paths adopt the path with the smallest movement. Compared with the third and fourth
DOFs, dimension-RRT will be overtaken by RRT* earlier in the length comparison of the
first and second DOFs. As shown in Table 4, in the case of more optimization steps, the
path length ratio of the first two DOFs is higher than that of the last two DOFs. So as
far as the time consumption is concerned, the algorithm, taking the relationship between
the path and obstacles in space into account, simplifies the path and estimates the time
steps. The collision detection between the time steps is mostly omitted in the optimization
process; therefore, the amount of calculation is greatly reduced and the planning efficiency
is improved. Moreover, after the algorithm plans a stable trajectory and as there is no
collision within the whole path network, the selection range of random points will be
narrowed and the optimization efficiency will be further improved. However, in order to
avoid a too large task space, a span of the two time steps in the task space before the stable
trajectory appeared, which may lead to obstacles between the time steps. The algorithm
will optimize the whole path network according to a predefined number of optimization
steps to ensure the realization of the stable trajectory. This method will lead to unstable
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path planning time. In a few cases, the consumption time will be much greater than the
average consumption time. This will be further discussed in Section 6.

5.2. Cross Sector Motion Planning

This algorithm can quickly obtain the path upon construction of building a perfect
path library. In the planning process, first judge the cross sector motion type of the motion,
and then screen the path with a closer distance in the cross sector motion path library as a
reference for path planning.

It can be seen from Figure 16 that the path planned by this algorithm is relatively
smooth. In the experiment, 50 groups of start and goal points are randomly generated for
planning in the movement between the fourth pointing sector and the third posture sector.
The average consumption time is 0.034 s. The path acquisition speed is faster than the RRT*
and dimension-RRT algorithms, and can be applied to real-time path planning.

Figure 16. The effect of path adjustment.

6. Discussion

As one of the main manipulator end effectors, the TPEE can effectively improve the
manipulator working range. Current achievements in the manipulator research centered
on the GEE, aiming to approach and contact the target position. The manipulator target
with TPEE is different from the GEE since TPEE only needs the target point in its direction.
Because of its different working objectives, the traditional path planning algorithms for
the GEE will complicate the whole issue and ignore some of the necessary problems when
applied to the TPEE. Designing the corresponding path planning strategy for the TPEE
enabled the end effector to better complete the task. At present, studies on the wearable
manipulator with the TPEE are limited, and most of them are passive manipulators. The
current path planning method and kinematic modeling method of the wearable manip-
ulator are not the optimal options for TPEE manipulator. This paper proposed a new
DOF allocation scheme for a wearable TPEE manipulator as well as a corresponding path
planning strategy which filled up this field blank. The division of the pointing sector and
posture sector can effectively simplify the obstacle avoidance issue of path planning. The
fake time dimension was also proposed to the path planning as the unified variable of multi
DOFs. After decomposing the DOFs, the relationship between multiple groups of DOFs
can be built through this unified variable. These above mentioned methods can also be
applied to the simplification and solution of path planning of multiple DOF manipulators
with various end effectors.
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7. Conclusions

This paper proposed a DOF allocation method of wearable manipulators with TPEE
and a path planning strategy for wearable manipulator with TPEE. Combined with the
RRT algorithm principle, a path optimization algorithm dimension-RRT was also proposed.
The optimized path result was referred for the manipulator in the form of a demo through
the DMPS algorithm. The cross sector motion problem in this paper was mainly focused on
the situation of target movement and target replacement, where the environment is a static
one. However, as more complex situations are there in the actual situations, the wearable
manipulators with TPEE should be more intelligent and more effective at solving the path
planning problem in complex environments in the future. Detailed pointing sector and
posture sector division is advisable to deal with the dynamic environment and non-ideal
situations in latter studies. For the dimension-RRT algorithm, an addition of the fake time
dimension to the algorithm should expand the potential to tackle the dynamic obstacle
avoidance by constructing the mapping between time step and the spatial position of
obstacles. Since there is no limitation on the path length between fake time steps in current
path planning, the uncertainty of speed information would come up; then, the fake time
in the obtained results should not be regarded as the real time or directly used for move
planning. As for our follow-up work, the dimension-RRT algorithm will be applied to
trajectory planning and dynamic obstacle avoidance by accurately dividing the fake time
step and limiting the path length in the fake time step.
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