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Abstract: The integration level is a significant index that can be used to characterize the performance
of non-volatile memory devices. This paper proposes innovative design schemes for high-density
integrated phase change memory (PCM). In these schemes, diploid and four-fold memory units,
which are composed of nano-strip film GST-based memory cells, are employed to replace the memory
unit of a conventional vertical PCM array. As the phase transformation process of the phase change
material involves the coupling of electrical and thermal processes, an in-house electrothermal coupling
simulator is developed to analyze the performance of the proposed memory cells and arrays. In
the simulator, a proven mathematical model is used to describe the phase change mechanism, with
a finite element approach implemented for numerical calculations. The characteristics of the GST-
strip-based memory cell are simulated first and compared with a conventional vertical cell, with a
decrease of 32% in the reset current amplitude achieved. Next, the influences of geometric parameters
on the characteristics of memory cell are investigated systematically. After this, the electrothermal
characteristics of the proposed vertical PCM arrays are simulated and the results indicate that they
possess both excellent performance and scalability. At last, the integration densities of the proposed
design schemes are compared with the reference array, with a maximum time of 5.94 achieved.

Keywords: vertical array architecture; phase change memory; high-density integration; selective
circuit; electrothermal simulation

1. Introduction

Phase change memory (PCM), a promising non-volatile storage technology, along with
resistive random access memory (RAM) [1], ferroelectric RAM [2], and magneto-resistive
RAM [3], has drawn a lot of attention. Its outstanding embeddability, endurance, stability,
and compatibility with the CMOS process make it promising for meeting storage capacity
requirements in the big data era [4–6].

The storage component in a PCM cell is composed of a chalcogenide compound,
e.g., Ge2Sb2Te5 (GST), and the origin of information storage is the electrical contrast be-
tween the high resistive amorphous and conductive crystalline states of these phase change
materials. The thermally switching phase state of the phase change component makes it
possible to write and erase the stored information dynamically. In writing and erasing oper-
ations, self-heating and thermoelectric effects occurring in the phase change structure work
as heating sources to motivate the temperature increase, i.e., the switching process [7,8];
that is, the PCM performances are intimately linked to the microscopic properties of the
phase change materials, and a fully coupled electrothermal mathematical model should be
utilized to evaluate the phase transition process [9]. In [10–13], models based on a current
continuity equation and thermal conduction equation were developed and validated by
comparing the simulated results with measured ones.
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To analyze the characteristics of PCM cells, numerical approaches such as finite
element time-domain (FETD) and finite difference time-domain methods were employed to
numerically discrete the electrothermal coupling mathematical models [10,12]. However, all
reported studies focused on the simulation of the performance of PCM cells based on 2-D or
3-D geometric models. In this paper, a coupled FETD method and domain decomposition
method (DDM)-based parallel numerical approach is specially implemented to investigate
the PCM cells and arrays [12].

The integration density and power dissipation are two key indexes of a PCM
device [14,15]. As the phase transition of the PCM mainly depends on the Joule heat gener-
ated inside the chalcogenide itself, reducing the size of the phase change region is an effective
means to reduce power dissipation. Based on this rule, lots of impressive memory cell de-
signs have been reported in previous studies, such as the mushroom [16], pillar [17], and
wall structures [18]. Further, to achieve highly integrated storage devices, 3-D array archi-
tectures were proposed by reasonably designing the selective and peripheral circuits [6,19].
The crosspoint (X-point) array is one of the mostly studied and fabricated PCMs, whereby
the memory component is connected to a selector device that is located at the crosspoint
of the paired electrodes [20]. As reported in [21], an ideal 4F2 architecture was possible
when a two-terminal selector was implemented. However, the silicon-based selector devices
should be made using single-crystal silicon, and it is usually hard to grow single-crystal
silicon over a large area on an amorphous oxide. Another promising array architecture is the
3-D vertical chain-cell-type PCM (VCCPCM) [22,23]. Compared with the X-point version,
the vertical architecture features the formation of a memory chain in stacked multi-layer
gates by using a single mask, and a vertical MOS-like thin film channel was designed to
allow the selection of a single memory cell, replacing the selection transistor. These features
ensure the excellent scalability of the VCCPCM. In this paper, improved design schemes for
high-density integrated PCM based on the conventional architecture are proposed and a
performance analysis is carried out utilizing an in-house simulator.

The rest of this article is organized as follows. The geometric architectures of the
proposed PCM arrays are presented first in Section 2. Then, the operation sequences,
physical model, and numerical computation scheme are outlined. The numerical scheme is
implemented to develop an in-house simulator. In Section 3, the electrothermal characteris-
tics of nano-strip PCM cells are systematically investigated using the in-house simulator.
In Section 4, the electrothermal characteristics of the proposed arrays are studied and the
integration densities of the conventional VCCPCM are presented. Some conclusions are
finally drawn in Section 5.

2. Modeling and Numerical Scheme
2.1. Array Architecture

Figure 1 presents the schematics of the conventional PCM array and the separated
unit [22]. In this structure, vertical memory chains are uniformly arranged on the bottom
electrode array. At the bottom of a vertical memory chain, a chain switch such as a silicon
MOSFET and p-n diode is firstly fabricated to ensure flexible activation of a certain vertical
chain. The stacked storage units are fabricated on the electrode of the chain switch. Here,
the p-n diode is chosen as the chain switch. To further locate the operated memory unit,
a poly-Si layer with a thin film insulator layer is fabricated adjacent to the GST layer to
form a MOS-like switch. When the switch is in “on” state, the conductivity of the poly-Si
channel is much larger than that of the GST film, and almost all of the current flows through
the poly-Si channel. In the opposite state, the conductivity of the poly-Si channel is much
smaller that the GST film. The current that flows through the GST film can induce a phase
change, i.e., a writing or erasing operation. Consequently, by applying the bias voltage to
the adjacent gate electrode plane, the chosen memory cell can be operated.
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Figure 1. Schematic of a conventional 3-D vertical PCM array.

To improve the integration density of the PCM array, two innovative design schemes
are proposed. The architectures of the improved PCM arrays are shown in Figure 2a,b,
where diploid and four-fold memory units are designed to replace the unit in the conven-
tional array. The diploid unit and four-fold unit are composed of two and four nano-strip
GST film memory cells, respectively. The lateral and cross-sectional views of the nano-strip
GST film memory cell are illustrated in Figure 3. A poly-Si thin-film-based MOS-like switch
is also designed to work as the unit switch.
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However, these polycell units would bring a challenge to the selection operation pro-
cess, as the switch framework in the conventional array structure cannot select a specified
cell in a single memory unit. To overcome this issue, an additional selective circuit is
designed and integrated into the array architecture, as shown in Figure 2. In the array with
the diploid unit, a dual-layer selective circuit is added. One of the two current channels in
the same layer is designed to be a poly-Si-based MOS-like switch and another is filled with
a thin metal film. The opposite configuration is assigned to the other layer. In this way, the
switch between the two current channels can be separately controlled, and the designated
memory cell can be located. In other words, the improved switch framework, which is
composed of a memory chain switch, unit switch, and additional selective circuit, can
locate to any designated memory cell in the array through a specific switch configuration.
Similarly, in the array composed of four-fold units, an additional four-layer selective circuit
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is integrated to realize the operation of the designated memory cell, as shown in Figure 2b.
The definitions and values of the geometric parameters are given in Table 1.

Table 1. Geometric parameters of the PCM cells and arrays.

Parameter Definition Value

wcbar Width of core insulator bar 28 nm
hcell Height of memory unit 54 nm
tch Thickness of poly-Si channel 7.5 nm
wch Width of poly-Si channel 24 nm
tins Thickness of gate insulator layer 4 nm

tgetd Height of crossgate electrode 25 nm
wgetd Space between two memory chain 20 nm
hGST Height of storage film 25 nm
wGST Width of a storage film 24 nm
tGST Thickness of storage film 2 nm

The operation sequences of the proposed PCM arrays are illustrated in Figure 4. To
achieve information writing and erasing of the designated memory cell, the selection
framework should be configured appropriately. A nominal bias voltage and reference
voltage are applied to the top and bottom electrode line pair of the selected memory chain
to turn on the chain switch. At the same time, a bias voltage Voff is applied to both the
gate electrode planes of the unit switch and the related selective circuit layer. As shown in
Figure 4a, the bias voltage Voff applied to the second electrode of the selective circuit turns
the left poly-Si channel off, and the current flows through the right channel. Meanwhile,
the bias voltage Voff applied to the second gate electrode plane turns the unit switch off
(high-impedance state) and the current route is changed. The resulting current path is
indicated by the blue line. The operation sequence for the array with the four-fold unit
is illustrated in Figure 4b, and a similar biasing configuration is utilized to achieve the
required current path.
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Figure 4. Operation sequences of the proposed PCM arrays: (a) diploid unit array; (b) four-fold
unit array.

2.2. Model and Solution

To describe the physical mechanism of the phase state transformation in the PCM,
an electrothermal mathematic model in which the current continuity equation is coupled
with the Fourier heat equation is utilized. In this paper, an in-house simulator is developed
to conduct the simulation of the proposed PCM cells and arrays. The architecture of the
in-house simulator is presented in Figure 5, where the finite element method is employed
to numerically solve the electrothermal mathematic model. To solve the current continuity
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equation, the Dirichlet boundary condition (i.e., V = Vo) and the impedance boundary
condition (i.e.,

→
n · σ∇V = V/(RA)) are used, where R and A are the surface resistance

and cross-sectional area, respectively. In these simulations, the selectors are modeled as
a cube with equivalent high and low conductivity for on and off states, respectively. In
the solution of the Fourier heat equation, the thermoelectric effect is included by adding

the Peltier heating QP = T
→
J · ∇S(T) to the left-hand side of the equation [12]. Meanwhile,

the equivalent thermal resistance boundary models are assigned to the contact boundary
between the different materials [24]. In addition, a non-linear material model library is
included in the in-house simulator to characterize the influence of the physical fields
on the material properties and to serve as coupling paths between electric and thermal
fields [25–27]. The influences of geometry-induced quantum effects presented in [28] are
not included in this work.
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On the other hand, parallel computation is a powerful way to solve large-scale prob-
lems. In this paper, the J parallel adaptive unstructured mesh applications infrastructure
(JAUMIN) is employed to implement the parallel computing [29]. With the help of the
METIS software package, the whole computational domain is divided into a number of
small subdomains and the electrothermal coupling problem is solved separately on each
subdomain [30]. Meanwhile, the massage passing interface (MPI) parallel programming
scheme is implemented to minimize the number of successive subdomains and improve
the efficiency of the information interaction. The reliability and performance of the in-
house-developed parallel simulator was evaluated in our previous paper [12].

3. Electrothermal Simulation of PCM Cells

To implement the information writing and erasing phases in a PCM cell, the reset and
set operations should be performed. During the reset operation, the GST in the crystalline
state is amorphized via melting using high-power pulse injection (~873 K), followed by
rapid solidification to prevent state reversion. To reset the PCM cell, the GST is crystallized
via heating above the glass transition temperature (~428 K). The maximum temperature of
the reset operation is much higher than that of the set operation; therefore, only the reset
operation is investigated here. In this section, the reset operation of the nano-strip film
PCM cells is simulated using the in-house simulator. A short trapezoidal current pulse
with a 2 ns duration and 0.2 ns rising–falling time is injected into the GST film to melt it via
self-heating. The performance of the nano-strip film PCM cell is first compared with that of
a conventional vertical PCM cell, and then the influences of geometric parameters hGST and
wGST on the PCM cells’ characteristics are studied. In the simulations, the channel width
wch is in step with wGST. The characteristics of nano-strip film PCM cells with different
hGST and wGST are finally concluded.
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3.1. Characteristics of PCM Cells

The electrothermal characteristics of nano-strip film PCM cells with the dimensions
given in Table 1 are simulated and compared with those of the reference vertical PCM cell
shown in Figure 1. The width of the core bar and GST film and the thicknesses of the GST
film, poly-Si channel and insulator layer are set to be 28 nm, 24 nm, 2 nm, 7.5 nm, and 4 nm,
respectively, which ensures that the cross-sectional areas of the GST film in the proposed
and reference PCM cells are calculated to be 48 nm2.

The simulated results of two types of PCM cells are presented in Figure 6, where Ireset
indicates the reset current pulse amplitude, Tmax is the maximum temperature, and Rset
and Rreset are the cell resistances of the set and reset states, respectively. Here, the resistance
ratio of a PCM cell is Rreset/Rset, and the reset current is the amplitude of the current pulse,
which can achieve a resistance ratio of 700 ± 5. The maximum temperature and reset
resistance versus the current pulse amplitude are shown in Figure 6a,b, respectively. It is
evident that the Ireset of the nano-strip film cell is 32% smaller than that of the conventional
cell. This is mainly because the effective GST thickness in the four corners of the square
loop is about 2.8 nm, which is 1.4 times thicker than the thickness of the nano-strip. The
larger reset current would also result in a higher maximum temperature in the conventional
cell than that in the nano-strip cell, thereby increasing the potential for thermal crosstalk.
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Figure 6. (a) Maximum temperature and (b) reset resistance of norm and stripe cells versus the reset 
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sections and 3-D GST strips of cells at t = 1.8 ns. 

Figure 6. (a) Maximum temperature and (b) reset resistance of norm and stripe cells versus the
reset current pulse amplitude. The inserts show the temperature distributions on symmetrical
cross-sections and 3-D GST strips of cells at t = 1.8 ns.

Moreover, with the increase in current amplitude, an inflection point appears in the
reset resistance curve. This is because the temperature is at a maximum at the center point
of the GST component and decreases with the distance from the center, i.e., the region
around the center of the GST component will be amorphized first, then the amorphized
region extends outward with the increasing input power. Before the middle part of the GST
film is totally amorphized, the total resistance can be treated as a parallel of Rreset and Rset
and is dominated by Rset, while at the time that the amorphized region reaches the side
boundary of the film, Rreset becomes dominant, as shown in Figure 7.
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Figure 7. Amorphized regions and equivalent circuit models of GST film with different input current
pulses: (a) Ireset = 0.96 mA; (b) Ireset = 0.1095 mA.

3.2. Scaling Effect of Cells

Here, the influences of geometric parameters hGST and wGST on the cell characteristics
are studied. In Figure 8, the reset resistance and the resistance ratio curves of nano-strip cells
with different hGST values (15 nm, 20 nm, and 25 nm) versus the current pulse amplitude
are presented. It is evident that the set and reset resistances are in proportion to hGST,
which is mainly because the resistance of a conducting wire is proportional to its length. In
Figure 8b, the resistance ratio curves versus the current amplitudes for all three cases obey
a similar regular pattern. However, the reset current pulse amplitude is increased from
0.1095 mA to 0.1199 mA with hGST decreasing from 25 nm to 15 nm, as given in Figure 8c–e.
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Figure 8. (a) Reset resistance and (b) resistance ratio of cells with different hGST values. (c–e) The
temperature distributions on symmetrical cross-sections and 3-D GST strips at t = 1.8 ns.

The reset resistance, resistance ratio, amorphized volume, and maximum temperature
curves of the cells with different values of wGST (24 nm, 18 nm, and 12 nm) versus the
current amplitude are presented in Figure 9a–d. It is shown that with the decreasing wGST, a
dramatic decrease in the reset current amplitude from 0.1095 mA to 0.0606 mA is achieved,
and the maximum temperature drops from ~938K to ~922K. This is mainly because the
smaller the wGST, the faster the amorphized region reaching the side boundary of GST film.
At the same time, the decrease in the amorphized volume and the inverse increase in reset
resistance result from the decrease in the cross-sectional area of the GST film.
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Figure 9. (a) Reset resistance, (b) resistance ratio, (c) phase change volume, and (d) maximum 

temperature values of cells with different 𝑤ch. (e–g) The temperature distributions of 3-D GST strips 
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Figure 9. (a) Reset resistance, (b) resistance ratio, (c) phase change volume, and (d) maximum
temperature values of cells with different wch. (e–g) The temperature distributions of 3-D GST strips
at t = 1.8 ns.

The characteristics of PCM cells with different hGST and wGST values are summarized
in Table 2, with the following information concluded:

(a) Ireset, Tmax, the reset power Wreset, and the amorphized volume Va are in proportion
to wGST, while Rset and Rreset are in inversely proportional for specific hGST values;

(b) Rset, Rreset, Wreset, and Va are proportional to hGST and an inverse trend can be ob-
served in Ireset for specific wGST values;

(c) Tmax for cells with the same wGST remains stable.

Table 2. Simulated results of the PCM cells with different wGST and hGST values.

wGST
(nm)

wch
(nm)

hGST
(nm)

Ireset
(mA)

Rreset
(MΩ) Rset (kΩ) Rreset/Rset Tmax (K) Wreset (J) Vpc (nm3)

12 12
15 0.0660 124.97 178.13 701.6 922.4 5.735 × 10−14 2.307 × 10−24

20 0.0629 162.43 231.64 701.2 922.2 6.537 × 10−14 2.974 × 10−24

25 0.0606 200.40 285.23 702.6 921.9 7.314 × 10−14 3.645 × 10−24

18 18
15 0.0926 83.37 118.74 702.3 930.6 7.622 × 10−14 5.609 × 10−24

20 0.0881 108.78 154.82 702.6 930.6 8.650 × 10−14 4.591 × 10−24

25 0.0849 134.12 190.65 703.5 930.6 9.675 × 10−14 5.593 × 10−24

24 24
15 0.1199 62.61 89.03 703.3 937.7 9.598 × 10−14 4.956 × 10−24

20 0.1137 81.35 115.84 702.3 937.7 1.084 × 10−13 6.248 × 10−24

25 0.1095 100.50 142.97 703.0 937.6 1.212 × 10−13 7.610 × 10−24

4. Electrothermal Simulation of PCM Arrays

This section presents an electrothermal simulation of the PCM arrays. The influences
of geometric parameters wGST and wgetd on the performance are analyzed. The integration
densities of the proposed arrays referring to the vertical array reported in [22] are estimated.

4.1. Array with Diploid Unit

The electrothermal properties of the 3 × 3 × 3 array composed of diploid units
are simulated. In the simulation, one of the memory cells of the diploid unit located in
the second layer of the middle memory chain is activated. The obtained temperature
distributions on the yz-plane cross-section, 3-D structure, and zx-plane cross-section of
the array with wGST = 12 nm are presented in Figure 10a–c. It is evident that thermal
crosstalk occurs in adjacent cells. To further illustrate the influence of thermal crosstalk,
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the temperature distributions on lines through the weight point of the activated cell’s GST
component along the coordinate axis are extracted and shown in Figure 11. The simulated
results show that the thermal-crosstalk-induced temperature increases in adjacent cells are
much lower than the crystalized temperature of the amorphous GST, i.e., 423 K.
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Figure 11. Temperature distributions on lines through the center point of the GST structure of the 

activated cell along the axis with changing wGST values. 

Figure 10. Temperature distributions of a PCM array composed of a diploid unit with wGST = 12 nm:
(a) cross-section in yz-plane; (b) 3-D structure; (c) cross-section in zx-plane.
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Further, the influence of wgetd on the electrothermal properties of the arrays is studied
here, and wGST is set as 12 nm. Figure 12 shows the temperature distributions on lines along
the x-axis and y-axis. The inserts in Figure 12a,b show the temperature distributions of adjacent
cells in x- and y-directions. It can be observed that the temperatures in adjacent cells increase
slightly with the decreasing wgetd. For example, the maximum temperature in the cell to the
right of the activated cell along x-direction increases from 320.4 K to 325.9 K as wgetd decreases
from 20 nm to 10 nm. However, the temperature increases are small and the maximum
temperatures in victim cells for all cases are much lower than the crystalized temperature of
GST, indicating that the integration density can be improved by decreasing wgetd.
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Figure 12. Temperature distributions on lines through the center point of the GST structure of the
activated cell along the axis with changing hGST values: (a) temperature distributions along x-axis;
(b) temperature distributions along y-axis.

4.2. Array with Folder Unit

In this subsection, the influences of wGST and wgetd on the electrothermal characteristics
of the 3 × 3 × 3 array composed of four-fold units are investigated. Similarly, one of the
memory cells located in the second layer of the middle memory chain is activated. Figure 13
shows the temperature distributions in the array with wGST = 12 nm, and thermal crosstalk
can be observed in adjacent cells. In Figure 14, the temperature distributions on lines
through the weight point of the activated cell’s GST component are presented to further
illustrate the influence of thermal crosstalk on the victim cells. Similar to the previous
results, the simulated results indicate that the thermal-crosstalk-induced temperature
increases in victim cells are much lower than the crystalized temperature of the GST.
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(d) cross-section in the xy-plane.
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activated cell along axis with changing wGST values.

In addition, the electrothermal characterizations of arrays with different wgetd values
are investigated here. Figure 15a,b show the extracted temperature distributions on lines
along x- and y-axes. The inserts in Figure 15a,b show the temperature distributions of
adjacent cells in x- and y-directions, respectively. It can be observed that the maximum
temperature rise in victim cells is kept smaller than 5 K as wgetd decreases from 20 nm to
10 nm, indicating that scaling wgetd can effectively improve the integration density of the
proposed PCM array.
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Figure 15. Temperature distributions on lines through the center point of the GST structure of
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4.3. Integration Density

Referencing the cross-sectional area of the referred conventional vertical PCM cell,
the integration densities of the proposed array schemes are calculated and presented in
Figures 16 and 17. Taking the conventional PCM array presented in Figure 1 as a reference,
the relative integration density of the proposed PCM array is defined as:

Dint =
sc∗
sref

ncell
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where the ncell values equal 2 and 4 for the diploid and four-fold unit, respectively; sref is
the cross-sectional area of the referenced memory unit; sc∗ is the cross-sectional area of the
array with diploid units or four-fold units.
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As shown in Figure 16, when the cross-sectional area of the nano-strip GST film is the
same as that of the reference unit, the integration densities of PCM arrays with a diploid
unit and four-fold unit are 2.5 and 3 times larger than that of the reference array, respectively.
As wGST scales from 24 nm to 12 nm, the integration densities of the arrays composed of
the diploid unit and four-fold unit increase from 2.5 to 3.5 and from 3.0 to 4.1. In Figure 17,
the integration densities of the proposed arrays versus wgetd are presented. As wgetd scales
from 20 nm to 10 nm, the integration density increases from 3.5 to 6.0 and from 4.1 to 5.8
for arrays with a diploid unit and four-fold unit, respectively. During the scaling down of
wgetd, the integration variation of the array composed of the diploid unit is much larger
than that of the four-fold-unit-based array. This can be interpreted as the change rate in
the cross-sectional area of the four-fold unit being much smaller than that of the diploid
unit as wgetd scales down. At last, the performances of the proposed PCM cells and arrays
are compared with those of the cells and arrays shown in [22]. It can be observed that
the proposed PCM cells and arrays perform better in terms of power consumption and
integration, as shown in Table 3.
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Table 3. Comparison between proposed PCM cells and the cell discussed in [22].

PCM Cell/Array Ireset (mA) Tmax (K) Wreset (J) Integration Level

wGST = 24 nm
hGST = 25 nm 0.1095 937.6 1.21 × 10−13 3.0

wGST = 12 nm
hGST = 15 nm 0.0660 922.4 5.7 × 10−14 6.0

Ref. [22] 0.1354 936.2 1.6 × 10−13 1.0

5. Conclusions

In this work, two design schemes for high-density phase change memory arrays were
proposed and numerically investigated. In these schemes, significant improvements in
power consumption and integration density were achieved by replacing the memory cell in
the conventional vertical array with a diploid unit and four-fold unit. Moreover, additional
selective circuits were specially designed to implement the operation on the designated
memory cell. The characteristics of the PCM cells and arrays were investigated by utilizing
an in-house-developed simulator. The results indicated that the power consumption of
the stripe film PCM cell was 32% lower than that of the cell in the conventional vertical
array, and with wGST scaling from 24 nm to 12 nm, a 40% drop in power consumption was
achieved. Further, the electrothermal characteristics of PCM arrays composed of a diploid
unit and four-fold unit were simulated and analyzed. Although thermal crosstalk could
be observed in cells adjacent to the activated cell, the induced maximum temperatures
in victims were much lower than the crystalized threshold of the amorphous GST. Next,
the influences of wGST and wgetd on the thermal crosstalk in arrays were also studied and
the results indicated that the scaling of both parameters just slightly influenced the arrays’
performance. At last, the integration densities of the proposed arrays were compared with
a reference design, with 1.5-fold and 2.0-fold increases achieved for the arrays with diploid
unit and four-fold unit, respectively, with wGST = 24 nm. Moreover, with wGST = 12 nm
and wgetd = 10 nm, the integration densities of the proposed PCM arrays were 6.0 times
and 5.8 times the values of the conventional array, respectively. Above all, the simulated
results showed that the proposed arrays possess both excellent performance and a high
integration density. In addition, the influences of the quantum effects on the performance
of the PCM cells and arrays were not studied in detail in this work, and more in-depth
studies will be carried out in following studies.
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