Multi-Objective Quantum-Inspired Seagull Optimization Algorithm
Abstract
:1. Introduction
2. Related Work
2.1. Multi-Objective Optimization Problems
2.2. Seagull Optimization Algorithm
2.3. Quantum Computing
3. The Multi-Objective Quantum-Inspired Seagull Optimization Algorithm
3.1. Initialization with Opposition-Based Learning
Algorithm 1 Multi-Objective Quantum-Inspired Seagull Optimization Algorithm (MOQSOA) |
Input: Seagull population P Output: Archive non-dominated optimal solutions. Initialize P with opposition-based learning. Calculate the corresponding objective values for each search agent. Find all the non-dominated solutions and initialize these solutions to the archive of non-dominated optimal solutions. Select the current optimal solution with global grid ranking and grid density ranking methods. Encode the current optimal solution by real-coded quantum representation. while (t < Maxiter) do for each search agent do Update the position of current search agent by nonlinear seagull migration and attacking operations. end for Apply mutation and crossover operators on these updated search agents. Calculate the objective values for all search agents. Find the non-dominated solutions from the updated search agents. Update the obtained non-dominated solutions to the archive. if archive is full then Remove one of the most crowded solutions in the archive with the grid density ranking method. Add the new solution to the archive. end if Adjust search agent if any one goes beyond the search space. Calculate the objective values for each non-dominated solution in the archive. Select the current optimal solution with global grid ranking and grid density ranking methods. Conduct quantum update operation depending on whether the current optimal solution has changed or not. t ← t + 1 end while return archive of non-dominated optimal solutions end MOQSOA |
3.2. Selection of Current Optimal Solution
3.3. Real-Coded Quantum Representation of Current Optimal Solution
3.4. Nonlinear Seagull Migration Operation
3.5. Seagull Attacking Operation
3.6. Quantum Update Operation
3.7. Archive Controller
- -
- If the archive is empty, the current solution will be accepted;
- -
- If the new solution is dominated by an individual in the archive, then this solution should be discarded;
- -
- If solutions in the archive are dominated by the new solution, then they are discarded from the archive. Additionally, the new solution will be accepted;
- -
- If the new solution is not dominated by external solutions in the archive, then the particular solution should be accepted and stored within the archive. If the archive is full, then the solution with the largest GDR value is removed and the new solution goes into the archive for storage.
3.8. Algorithm Complexity
4. Experimental Results and Discussion
4.1. Experimental Setting
4.2. Evaluation Performance
4.3. The Influence of Strategies
4.3.1. The Influence of Real-Coded Quantum Representation
4.3.2. The Influence of Nonlinear Migration Operation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Available online: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/145755/eth-24689-01.pdf (accessed on 27 September 2001).
- Ahmad, I.; Liu, Y.; Javeed, D.; Ahmad, S. A decision-making technique for solving order allocation problem using a genetic algorithm. In Proceedings of the 2020 6th International Conference on Electrical Engineering, Control and Robotics, Xiamen, China, 10–12 January 2020. [Google Scholar]
- Gong, M.; Jiao, L.; Du, H.; Bo, L. Multiobjective immune algorithm with nondominated neighbor-based selection. Evol. Comput. 2008, 16, 225–255. [Google Scholar] [CrossRef] [PubMed]
- Coello, C.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056. [Google Scholar]
- Han, F.; Chen, W.; Ling, Q.; Han, H. Survey Paper Multi-objective particle swarm optimization with adaptive strategies for feature selection. Swarm Evol. Comput. 2021, 62, 100847. [Google Scholar] [CrossRef]
- Tufail, A.B.; Ullah, I.; Khan, W.U.; Asif, M.; Ahmad, I.; Ma, Y.-K.; Khan, R.; Kalimullah; Ali, M.S. Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples. Wirel. Commun. Mob. Comput. 2021, 2021, 6013448. [Google Scholar] [CrossRef]
- Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; SSalama, A.; Daradkeh, Y.I.; Javeed, D.; Ur Rehman, A.; Hamam, H. A Hybrid Deep Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [Google Scholar] [CrossRef]
- Cui, Y.; Meng, X.; Qiao, J. A multi-objective particle swarm optimization algorithm based on two-archive mechanism. Appl. Soft Comput. 2022, 119, 108532. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Mirjalili, S. A novel whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems. Knowl.-Based Syst. 2021, 212, 106619. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, Z. A multi-objective lion swarm optimization based on multi-agent. J. Ind. Manag. Optim. 2022. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Z.; Zou, J.; Yang, S.; Ou, J.; Hu, Y. A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution. Swarm Evol. Comput. 2022, 69, 100987. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, Q.; Li, X.; Li, X. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems. Knowl.-Based Syst. 2021, 223, 107049. [Google Scholar] [CrossRef]
- Adetunji, K.E.; Hofsajer, I.W.; Abu-Mahfouz, A.M.; Cheng, L. A review of metaheuristic techniques for optimal integration of electrical units in distribution networks. IEEE Access 2020, 9, 5046–5068. [Google Scholar] [CrossRef]
- Liu, H.; Lei, Y.; Fu, Y.; Li, X. A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle. Energy 2022, 247, 123357. [Google Scholar] [CrossRef]
- Xie, X.; Zheng, J.; Feng, M.; He, S.; Lin, Z. Multi-Objective Mayfly Optimization Algorithm Based on Dimensional Swap Variation for RFID Network Planning. IEEE Sens. J. 2022, 22, 7311–7323. [Google Scholar] [CrossRef]
- Ahmad, I.; Ullah, I.; Khan, W.U.; Rehman, A.U.; Adrees, M.S.; Saleem, M.Q.; Cheikhrouhou, O.; Hamam, H.; Shafiq, M. Efficient algorithms for E-healthcare to solve multiobject fuse detection problem. J. Healthc. Eng. 2021, 2021, 9500304. [Google Scholar] [CrossRef]
- Javeed, D.; Gao, T.; Khan, M.T.; Shoukat, D. A Hybrid Intelligent Framework to Combat Sophisticated Threats in Secure Industries. Sensors 2022, 22, 1582. [Google Scholar] [CrossRef]
- Javeed, D.; Gao, T.; Khan, M.T. SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT. Electronics 2021, 10, 918. [Google Scholar] [CrossRef]
- Ahmad, I.; Liu, Y.; Javeed, D.; Shamshad, N.; Sarwr, D.; Ahmad, S. A review of artificial intelligence techniques for selection & evaluation. In Proceedings of the 2020 6th International Conference on Electrical Engineering, Control and Robotics, Xiamen, China, 10–12 January 2020. [Google Scholar]
- Javeed, D.; Gao, T.; Khan, M.T.; Ahmad, I. A Hybrid Deep Learning-Driven SDN Enabled Mechanism for Secure Communication in Internet of Things (IoT). Sensors 2021, 21, 4884. [Google Scholar] [CrossRef]
- Wang, W.L.; Li, W.K.; Wang, Z.; Li, L. Opposition-based multi-objective whale optimization algorithm with global grid ranking. Neurocomputing 2019, 341, 41–59. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Dhiman, G.; Singh, K.K.; Soni, M.; Nagar, A.; Dehghani, M.; Slowik, A.; Kaur, A.; Sharma, A.; Houssein, E.H.; Cengiz, K. MOSOA: A new multi-objective seagull optimization algorithm. Expert Syst. Appl. 2021, 167, 114150. [Google Scholar] [CrossRef]
- Dhiman, G.; Singh, K.K.; Slowik, A.; Chang, V.; Yildiz, A.R.; Kaur, A.; Garg, M. EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization. Int. J. Mach. Learn. Cybern. 2021, 12, 571–596. [Google Scholar] [CrossRef]
- Narayanan, A.; Moore, M. Quantum-inspired genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation (CEC 1996), Nagoya, Japan, 20–22 May 1996; pp. 61–66. [Google Scholar]
- Han, K.-H.; Kim, J.-H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 2002, 6, 580–593. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz, A.V.A.; Barbosa, C.R.H.; Pacheco, M.A.C.; Vellasco, M.B.R. Quantum-inspired evolutionary algorithms and its application to numerical optimization problems. In Proceedings of the International Conference on Neural Information Processing, Siem Reap, Cambodia, 13–16 December 2018; Springer: Berlin/Heidelberg, Germany, 2004; pp. 212–217. [Google Scholar]
- Jiao, L.; Li, Y.; Gong, M.; Zhang, X. Quantum-inspired immune clonal algorithm for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2008, 38, 1234–1253. [Google Scholar] [CrossRef] [PubMed]
- Layeb, A. A hybrid quantum inspired harmony search algorithm for 0–1 optimization problems. J. Comput. Appl. Math. 2013, 253, 14–25. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation (CEC 2004), Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 325–331. [Google Scholar]
- Sun, J.; Xu, W.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; Volume 1, pp. 111–116. [Google Scholar]
- Sun, J.; Xu, W.; Feng, B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA, 12 October 2005; Volume 4, pp. 3049–3054. [Google Scholar]
- Sun, J.; Fang, W.; Palade, V.; Wu, X.; Xu, W. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl. Math. Comput. 2011, 218, 3763–3775. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, R.; Jiao, L.; Liu, R. An improved cooperative quantum-behaved particle swarm optimization. Soft Comput. 2012, 16, 1061–1069. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput. 2011, 1, 173–194. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, N.Z.; Mou, J.; Zhang, B. A quantum-behaved particle swarm optimization algorithm with the flexible single-/multi-population strategy and multi-stage perturbation strategy based on the characteristics of objective function. Soft Comput. 2020, 24, 6909–6956. [Google Scholar] [CrossRef]
- You, Q.; Sun, J.; Pan, F.; Palade, V.; Ahmad, B. Dmo-qpso: A multi-objective quantum-behaved particle swarm optimization algorithm based on decomposition with diversity control. Mathematics 2021, 9, 1959. [Google Scholar] [CrossRef]
- Fan, W.; Liu, Q.; Wang, M. Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm. Energies 2021, 14, 4740. [Google Scholar] [CrossRef]
- Hesar, A.; Kamel, S.; Houshmand, M. A quantum multi-objective optimization algorithm based on harmony search method. Soft Comput. 2021, 25, 9427–9439. [Google Scholar] [CrossRef]
- Dayana, R.; Kalavathy, G. Quantum Firefly Secure Routing for Fog Based Wireless Sensor Networks. Intell. Autom. Soft Comput. 2022, 31, 1511–1528. [Google Scholar] [CrossRef]
- Hu, W.; Wang, H.; Qiu, Z.; Nie, C.; Yan, L. A quantum particle swarm optimization driven urban traffic light scheduling model. Neural Comput. Appl. 2018, 29, 901–911. [Google Scholar] [CrossRef]
- Xu, H.; Hu, Z.; Zhang, P.; Gu, F.; Wu, F.; Song, W.; Wang, C. Optimization and Experiment of Straw Back-Throwing Device of No-Tillage Drill Using Multi-Objective QPSO Algorithm. Agriculture 2021, 11, 986. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L. Multi-objective QPSO for short-term load forecast based on diagonal recursive neural network. J. Comput. Methods Sci. Eng. 2021, 21, 1113–1124. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Qi, J.; Peng, W. Improved quantum particle swarm optimization algorithm for offline path planning in AUVs. IEEE Access 2020, 8, 143397–143411. [Google Scholar] [CrossRef]
- Al-Wesabi, F.; Obayya, M.; Hilal, A.; Castillo, O.; Gupta, D.; Khanna, A. Multi-objective quantum tunicate swarm optimization with deep learning model for intelligent dystrophinopathies diagnosis. Soft Comput. 2022. [Google Scholar] [CrossRef]
- Grotti, E.; Mizushima, D.M.; Backes, A.D.; de Freitas Awruch, M.D.; Gomes, H.M. A novel multi-objective quantum particle swarm algorithm for suspension optimization. Comput. Appl. Math. 2020, 39, 105. [Google Scholar] [CrossRef]
- Hou, J.; Wang, W.; Zhang, Y.; Liu, X.; Xie, Y. Multi-objective quantum inspired evolutionary SLM scheme for PAPR reduction in multi-carrier modulation. IEEE Access 2020, 8, 26022–26029. [Google Scholar] [CrossRef]
- Hou, G.; Gong, L.; Yang, Z.; Zhang, J. Multi-objective economic model predictive control for gas turbine system based on quantum simultaneous whale optimization algorithm. Energy Convers. Manag. 2020, 207, 112498. [Google Scholar] [CrossRef]
- Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23. [Google Scholar] [CrossRef]
- Chen, B.; Lei, H.; Shen, H.; Liu, Y.; Lu, Y. A hybrid quantum-based PIO algorithm for global numerical optimization. Sci. China Inf. Sci. 2019, 62, 70203. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Jin, Y.; Narukawa, K.; Sendhoff, B. A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling. IEEE Trans. Evol. Comput. 2015, 19, 838–856. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. A decision variable clustering based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 2018, 22, 97–112. [Google Scholar] [CrossRef] [Green Version]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable test problems for evolutionary multiobjective optimization. In Evolutionary Multiobjective Optimization: Theoretical Advances and Applications; Abraham, A., Jain, L., Goldberg, R., Eds.; Springer: London, UK, 2005; pp. 105–145. [Google Scholar]
- Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Liu, W.; Tiwari, S. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition. Available online: https://www.al-roomi.org/multimedia/CEC_Database/CEC2009/MultiObjectiveEA/CEC2009_MultiObjectiveEA_TechnicalReport.pdf (accessed on 20 April 2009).
- Ye, T.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar]
- Rey, D.; Neuhäuser, M. Wilcoxon-signed-rank test. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1658–1659. [Google Scholar]
Test Problems | Properties | Number of Objectives |
---|---|---|
ZDT1 | Convex | 2 |
ZDT2 | Concave | 2 |
ZDT3 | Disconnected | 2 |
ZDT4 | Convex | 2 |
ZDT6 | Concave | 2 |
DTLZ1 | Linear | 3 |
DTLZ2 | Concave | 3 |
DTLZ3 | Concave | 3 |
DTLZ4 | Concave | 3 |
DTLZ5 | Concave | 3 |
DTLZ6 | Concave | 3 |
DTLZ7 | Disconnected | 3 |
DTLZ8 | Linear | 3 |
DTLZ9 | Concave | 3 |
UF1 | Convex | 2 |
UF2 | Convex | 2 |
UF3 | Convex | 2 |
UF4 | Concave | 2 |
UF5 | Disconnected | 2 |
UF6 | Disconnected | 2 |
UF7 | Linear | 2 |
UF8 | Concave | 3 |
UF9 | Disconnected | 3 |
UF10 | Concave | 3 |
Algorithm | Parameter | Value |
---|---|---|
NSGA-II | Crossover probability pc | 0.8 |
Mutation probability pm | 0.1 | |
MOEA/D | Number of neighbors T | 10 |
Probability of selecting parents pp | 0.9 | |
Distribution index Di | 30 | |
Differential weight | 0.5 | |
MOPSO | Number of grids nGrid | 10 |
Inertia weight w | 0.5 | |
Personal coefficient c1 | 1 | |
Social coefficient c2 | 2 | |
IMMOEA | K | 10 |
RVEA | α | 2 |
fr | 0.1 | |
LMEA | nSel | 5 |
nPer | 50 | |
nCor | 5 |
Function | Metrics | NSGAII | MOEA/D | MOPSO | IMMOEA | RVEA | LMEA | MOQSOA |
---|---|---|---|---|---|---|---|---|
ZDT1 | Average | 4.8116 × 10−3 (−) | 4.6968 × 10−3 (−) | 4.8735 × 10−3 (−) | 7.9935 × 10−3 (−) | 5.5528 × 10−3 (−) | 5.1070 × 10−3 (−) | 4.1101 × 10−3 |
Std | 2.06 × 10−4 | 3.14 × 10−4 | 1.77 × 10−4 | 1.12 × 10−4 | 9.19 × 10−4 | 5.00 × 10−4 | 7.28 × 10−5 | |
ZDT2 | Average | 4.8719 × 10−3 (−) | 5.4469 × 10−3 (−) | 5.2469 × 10−3 (−) | 1.1104 × 10−2 (−) | 7.2369 × 10−3 (−) | 4.6753 × 10−3 (−) | 3.8136 × 10−3 |
Std | 1.81 × 10−4 | 4.94 × 10−4 | 3.24 × 10−4 | 1.67 × 10−4 | 1.74 × 10−3 | 1.51 × 10−4 | 5.67 × 10−5 | |
ZDT3 | Average | 5.2780 × 10−3 (+) | 1.4329 × 10−2 (−) | 5.5320 × 10−3 (+) | 1.2438 × 10−2 (−) | 7.9570 × 10−3 (−) | 1.0940 × 10−2 (−) | 6.4169 × 10−3 |
Std | 2.39 × 10−4 | 2.67 × 10−3 | 2.12 × 10−4 | 5.25 × 10−4 | 1.88 × 10−4 | 2.69 × 10−3 | 1.39 × 10−4 | |
ZDT4 | Average | 5.1081 × 10−3 (−) | 7.2439 × 10−3 (−) | 4.8082 × 10−3 (−) | 4.8076 × 10−3 (−) | 5.4592 × 10−3 (−) | 4.7664 × 10−3 (−) | 4.1890 × 10−3 |
Std | 6.53 × 10−4 | 1.69 × 10−3 | 3.00 × 10−4 | 9.77 × 10−5 | 1.44 × 10−3 | 3.22 × 10−4 | 2.64 × 10−4 | |
ZDT6 | Average | 3.6160 × 10−3 (−) | 4.3208 × 10−3 (−) | 4.2740 × 10−3 (−) | 9.4301 × 10−1 (−) | 3.3918 × 10−3 (−) | 3.3078 × 10−3 (−) | 3.0046 × 10−3 |
Std | 1.20 × 10−4 | 3.92 × 10−3 | 2.73 × 10−4 | 4.10 × 10−2 | 2.25 × 10−4 | 3.60 × 10−5 | 2.18 × 10−4 | |
DTLZ1 | Average | 2.7850 × 10−2 (−) | 2.0565 × 10−2 (=) | 2.7105 × 10−2 (−) | 1.2940 (−) | 2.0558 × 10−2 (=) | 2.1025 × 10−2 (=) | 2.0557 × 10−2 |
Std | 2.03 × 10−3 | 1.07 × 10−5 | 5.59 × 10−4 | 6.58 × 10−2 | 6.79 × 10−5 | 2.55 × 10−4 | 1.92 × 10−4 | |
DTLZ2 | Average | 6.8830 × 10−2 (−) | 5.4464 × 10−2 (=) | 6.9818 × 10−2 (−) | 7.9795 × 10−2 (−) | 5.4465 × 10−2 (=) | 5.3844 × 10−2 (=) | 5.4465 × 10−2 |
Std | 3.19 × 10−3 | 1.65 × 10−5 | 3.22 × 10−3 | 3.65 × 10−3 | 1.28 × 10−5 | 2.76 × 10−4 | 1.34 × 10−4 | |
DTLZ3 | Average | 6.297 × 10−2 (−) | 5.5516 × 10−2 (=) | 3.8831 × 10−1 (−) | 2.8865 (−) | 5.5358 × 10−2 (=) | 5.4197 × 10−2 (=) | 5.4711 × 10−2 |
Std | 4.49 × 10−3 | 1.32 × 10−3 | 5.40 × 10−1 | 5.21 × 10−1 | 1.15 × 10−3 | 4.76 × 10−4 | 1.23 × 10−4 | |
DTLZ4 | Average | 6.7988 × 10−2 (+) | 5.4464 × 10−2 (+) | 7.1277 × 10−2 (+) | 7.7431 × 10−2 (+) | 5.4465 × 10−2 (+) | 9.6411 × 10−2 (+) | 3.7873 × 10−1 |
Std | 4.16 × 10−3 | 4.87 × 10−4 | 1.60 × 10−3 | 3.48 × 10−3 | 4.01 × 10−4 | 7.37 × 10−2 | 2.81 × 10−1 | |
DTLZ5 | Average | 5.4096 × 10−3 (=) | 3.3904 × 10−2 (−) | 6.3037 × 10−3 (−) | 2.0947 × 10−2 (−) | 6.2925 × 10−2 (−) | 4.6503 × 10−3 (=) | 5.0756 × 10−3 |
Std | 6.67 × 10−5 | 1.63 × 10−5 | 9.93 × 10−5 | 3.35 × 10−3 | 2.09 × 10−3 | 5.79 × 10−5 | 1.90 × 10−4 | |
DTLZ6 | Average | 5.8399 × 10−3 (−) | 3.3926 × 10−2 (−) | 6.7322 × 10−3 (−) | 3.9896 (−) | 1.1591 × 10−1 (−) | 4.4731 × 10−3 (=) | 4.9789 × 10−3 |
Std | 6.36 × 10−5 | 3.15 × 10−5 | 8.78 × 10−4 | 7.10 × 10−2 | 6.35 × 10−4 | 9.76 × 10−5 | 3.38 × 10−5 | |
DTLZ7 | Average | 8.0964 × 10−2 (+) | 1.5431 × 10−1 (=) | 9.0199 × 10−2 (+) | 3.2745 × 10−1 (−) | 1.0659 × 10−1 (+) | 5.8854 × 10−2 (+) | 1.6107 × 10−1 |
Std | 4.70 × 10−3 | 2.15 × 10−4 | 1.30 × 10−2 | 5.03 × 10−2 | 2.21 × 10−3 | 4.52 × 10−4 | 1.62 × 10−1 | |
DTLZ8 | Average | 4.4234 × 10−2 (=) | NaN | NaN | NaN | 5.8818 × 10−2 (−) | NaN | 4.3927 × 10−2 |
Std | 3.83 × 10−3 | NaN | NaN | NaN | 1.43 × 10−3 | NaN | 2.44 × 10−3 | |
DTLZ9 | Average | 5.9530 × 10−3 (−) | NaN | NaN | 4.4744 (−) | 2.6833 × 10−2 (−) | NaN | 5.1492 × 10−3 |
Std | 4.08 × 10−4 | NaN | NaN | 6.01 × 10−2 | 1.19 × 10−3 | NaN | 4.92 × 10−4 | |
UF1 | Average | 9.7093 × 10−2 (=) | 2.6021 × 10−1 (−) | 7.8469 × 10−2 (+) | 6.7741 × 10−2 (+) | 8.2189 × 10−2 (+) | 1.6381 × 10−2 (+) | 1.4502 × 10−1 |
Std | 3.41 × 10−3 | 1.08 × 10−1 | 7.31 × 10−2 | 6.25 × 10−3 | 5.02 × 10−3 | 3.87 × 10−3 | 4.59 × 10−2 | |
UF2 | Average | 3.2343 × 10−2 (+) | 8.2332 × 10−2 (−) | 2.3067 × 10−2 (+) | 5.4120 × 10−2 (=) | 7.2716 × 10−2 (−) | 1.5039 × 10−2 (+) | 5.3761 × 10−2 |
Std | 3.81 × 10−3 | 4.43 × 10−2 | 3.00 × 10−3 | 3.78 × 10−2 | 7.74 × 10−3 | 1.34 × 10−3 | 2.03 × 10−2 | |
UF3 | Average | 1.8641 × 10−1 (+) | 3.1030 × 10−1 (=) | 1.1567 × 10−1 (+) | 1.1030 × 10−1 (+) | 3.1836 × 10−1 (=) | 1.6484 × 10−1 (+) | 2.8865 × 10−1 |
Std | 1.19 × 10−2 | 4.77 × 10−2 | 2.14 × 10−2 | 1.60 × 10−2 | 2.26 × 10−3 | 5.07 × 10−3 | 1.40 × 10−2 | |
UF4 | Average | 4.9113 × 10−2 (=) | 8.3692 × 10−2 (−) | 4.5962 × 10−2 (=) | 6.6832 × 10−2 (−) | 9.5207 × 10−2 (−) | 3.7822 × 10−2 (+) | 4.6945 × 10−2 |
Std | 1.75 × 10−3 | 3.42 × 10−3 | 2.79 × 10−3 | 4.24 × 10−3 | 2.04 × 10−3 | 5.38 × 10−4 | 1.89 × 10−3 | |
UF5 | Average | 3.9011 × 10−1 (−) | 5.8082 × 10−1 (−) | 6.7952 × 10−1 (−) | 6.6328 × 10−1 (−) | 3.4518 × 10−1 (=) | 2.1331 × 10−1 (+) | 3.2603 × 10−1 |
Std | 1.19 × 10−1 | 8.90 × 10−2 | 1.64 × 10−1 | 9.79 × 10−2 | 8.50 × 10−2 | 3.20 × 10−2 | 9.33 × 10−2 | |
UF6 | Average | 1.2527 × 10−1 (+) | 4.9777 × 10−1 (−) | 4.3455 × 10−1 | 2.6280 × 10−1 (=) | 1.2725 × 10−1 (+) | 3.1444 × 10−1 (−) | 2.6237 × 10−1 |
Std | 1.25 × 10−2 | 4.34 × 10−1 | 8.01 × 10−2 | 1.39 × 10−1 | 9.55 × 10−3 | 1.26 × 10−2 | 1.35 × 10−1 | |
UF7 | Average | 1.7075 × 10−1 (=) | 4.3857 × 10−1 (−) | 6.2768 × 10−2 (+) | 1.5326 × 10−1 (=) | 1.3181 × 10−1 (=) | 1.1450 × 10−1 (=) | 1.4492 × 10−1 |
Std | 1.56 × 10−1 | 1.87 × 10−1 | 7.63 × 10−2 | 1.55 × 10−1 | 1.70 × 10−1 | 6.78 × 10−2 | 1.32 × 10−1 | |
UF8 | Average | 2.7066 × 10−1 (−) | 3.2370 × 10−1 (−) | 2.6221 × 10−1 (−) | 2.7670 × 10−1 (−) | 3.3376 × 10−1 (−) | 1.5603 × 10−1 (+) | 2.1688 × 10−1 |
Std | 7.49 × 10−2 | 3.07 × 10−2 | 7.18 × 10−2 | 3.10 × 10−3 | 5.66 × 10−3 | 1.60 × 10−2 | 7.29 × 10−2 | |
UF9 | Average | 2.6615 × 10−1 (=) | 3.4263 × 10−1 (−) | 2.8580 × 10−1 (−) | 3.0671 × 10−1 (−) | 3.6412 × 10−1 (−) | 9.0845 × 10−2 (+) | 2.3198 × 10−1 |
Std | 9.57 × 10−2 | 8.27 × 10−3 | 2.09 × 10−2 | 1.22 × 10−1 | 1.89 × 10−2 | 3.04 × 10−2 | 5.95 × 10−2 | |
UF10 | Average | 4.3683 × 10−1 (=) | 7.9220 × 10−1 (−) | 5.5064 × 10−1 (−) | 2.9879 × 10−1 (+) | 6.5234 × 10−1 (−) | 4.6990 × 10−1 (=) | 4.3228 × 10−1 |
Std | 5.88 × 10−2 | 1.35 × 10−1 | 3.59 × 10−2 | 5.14 × 10−3 | 2.11 × 10−1 | 3.90 × 10−2 | 1.41 × 10−1 | |
6/11/7 | 1/16/5 | 7/14/1 | 4/16/3 | 4/14/6 | 9/6/7 |
Function | Metrics | NSGAII | MOEA/D | MOPSO | IMMOEA | RVEA | LMEA | MOQSOA |
---|---|---|---|---|---|---|---|---|
ZDT1 | Average | 6.8090 × 10−3 (−) | 5.3019 × 10−3 (−) | 7.7359 × 10−3 (−) | 1.4474 × 10−2 (−) | 9.7893 × 10−3 (−) | 1.3206 × 10−2 (−) | 5.3225 × 10−3 |
Std | 5.22 × 10−4 | 4.93 × 10−4 | 7.03 × 10−4 | 6.41 × 10−3 | 5.08 × 10−4 | 3.48 × 10−3 | 6.57 × 10−4 | |
ZDT2 | Average | 7.5232 × 10−3 (−) | 5.0442 × 10−3 (=) | 7.7292 × 10−3 (−) | 9.2439 × 10−3 (−) | 7.1899 × 10−3 (−) | 5.0437 × 10−3 (=) | 4.4243 × 10−3 |
Std | 8.84 × 10−4 | 5.62 × 10−4 | 4.86 × 10−4 | 4.41 × 10−4 | 2.32 × 10−3 | 1.07 × 10−3 | 1.27 × 10−4 | |
ZDT3 | Average | 7.4689 × 10−3 (+) | 1.9846 × 10−2 (=) | 7.8757 × 10−3 (+) | 3.3663 × 10−2 (−) | 1.1866 × 10−2 (+) | 1.2563 × 10−2 (=) | 1.3825 × 10−2 |
Std | 6.95 × 10−4 | 2.08 × 10−3 | 7.14 × 10−4 | 9.87 × 10−4 | 9.30 × 10−4 | 2.53 × 10−3 | 3.47 × 10−5 | |
ZDT4 | Average | 7.1956 × 10−3 (+) | 5.6232 × 10−3 (+) | 7.1330 × 10−3 (+) | 7.4260 × 10−3 (+) | 9.7327 × 10−3 (+) | 1.4311 × 10−2 (−) | 1.0226 × 10−2 |
Std | 5.70 × 10−4 | 1.18 × 10−3 | 5.23 × 10−4 | 5.01 × 10−4 | 3.54 × 10−4 | 1.59 × 10−3 | 6.01 × 10−4 | |
ZDT6 | Average | 5.6569 × 10−3 (−) | 3.2179 × 10−3 (=) | 7.6746 × 10−3 (−) | 5.3819 × 10−2 (−) | 2.3782 × 10−3 (−) | 3.7229 × 10−3 (−) | 2.1262 × 10−3 |
Std | 5.31 × 10−4 | 2.58 × 10−4 | 4.97 × 10−4 | 1.60 × 10−2 | 7.91 × 10−5 | 4.36 × 10−4 | 3.36 × 10−4 | |
DTLZ1 | Average | 2.1135 × 10−2 (+) | 3.7899 × 10−5 (+) | 2.2926 × 10−2 (+) | 2.2280 (−) | 1.6424 × 10−4 (+) | 1.8593 × 10−2 (+) | 3.1105 × 10−2 |
Std | 1.33 × 10−3 | 7.94 × 10−5 | 1.98 × 10−3 | 8.39 × 10−1 | 6.07 × 10−4 | 1.74 × 10−3 | 1.15 × 10−3 | |
DTLZ2 | Average | 5.7049 × 10−2 (+) | 5.7179 × 10−2 (+) | 6.0138 × 10−2 (+) | 8.6819 × 10−2 (=) | 5.7164 × 10−2 (+) | 2.7904 × 10−2 (+) | 8.4078 × 10−2 |
Std | 4.56 × 10−3 | 4.49 × 10−5 | 6.81 × 10−3 | 3.42 × 10−3 | 6.08 × 10−5 | 2.99 × 10−3 | 3.39 × 10−3 | |
DTLZ3 | Average | 1.4015 × 10−1 (−) | 5.6364 × 10−2 (+) | 8.4753 × 10−2 (=) | 5.5285 (−) | 5.4953 × 10−2 (+) | 3.0975 × 10−2 (+) | 8.3840 × 10−2 |
Std | 1.47 × 10−1 | 1.51 × 10−3 | 3.47 × 10−2 | 1.63 | 3.93 × 10−3 | 1.06 × 10−3 | 2.00 × 10−3 | |
DTLZ4 | Average | 5.4198 × 10−2 (−) | 5.7166 × 10−2 (−) | 6.3045 × 10−2 (−) | 7.1517 × 10−2 (−) | 5.7146 × 10−2 (−) | 5.8702 × 10−2 (−) | 3.2762 × 10−2 |
Std | 4.46 × 10−3 | 1.01 × 10−4 | 4.18 × 10−3 | 5.65 × 10−3 | 2.37 × 10−4 | 5.31 × 10−2 | 4.08 × 10−2 | |
DTLZ5 | Average | 8.8231 × 10−3 (+) | 1.3776 × 10−2 (=) | 1.1250 × 10−2 (=) | 5.2354 × 10−2 (−) | 1.2206 × 10−1 (−) | 7.9189 × 10−3 (+) | 1.2907 × 10−2 |
Std | 1.53 × 10−4 | 8.58 × 10−5 | 2.95 × 10−4 | 2.41 × 10−3 | 1.43 × 10−2 | 4.14 × 10−4 | 6.24 × 10−4 | |
DTLZ6 | Average | 1.1714 × 10−2 (=) | 1.2549 × 10−2 (=) | 1.1354 × 10−2 (=) | 4.6209 × 10−1 (−) | 1.0722 × 10−1 (−) | 7.0155 × 10−3 (+) | 1.2237 × 10−2 |
Std | 5.38 × 10−4 | 6.61 × 10−5 | 4.92 × 10−5 | 9.05 × 10−2 | 1.32 × 10−3 | 1.25 × 10−3 | 2.05 × 10−4 | |
DTLZ7 | Average | 6.3775 × 10−2 (+) | 1.9627 × 10−1 (−) | 7.6841 × 10−2 (=) | 2.5247 × 10−1 (−) | 1.1524 × 10−1 (−) | 5.9592 × 10−2 (+) | 8.2865 × 10−2 |
Std | 9.14 × 10−3 | 9.65 × 10−4 | 4.31 × 10−3 | 3.51 × 10−2 | 1.25 × 10−3 | 7.30 × 10−3 | 2.81 × 10−2 | |
DTLZ8 | Average | 3.6512 × 10−2 (=) | NaN | NaN | NaN | 3.3160 × 10−2 (=) | NaN | 3.8990 × 10−2 |
Std | 9.12 × 10−3 | NaN | NaN | NaN | 5.54 × 10−3 | NaN | 4.24 × 10−3 | |
DTLZ9 | Average | 8.4354 × 10−3 (−) | NaN | NaN | 8.7077 × 10−2 (−) | 3.0606 × 10−2 | NaN | 7.1642 × 10−3 |
Std | 6.68 × 10−4 | NaN | NaN | 2.46 × 10−2 | 5.96 × 10−3 | NaN | 1.29 × 10−3 | |
UF1 | Average | 2.3718 × 10−3 (=) | 3.5533 × 10−3 (−) | 1.5285 × 10−2 (−) | 2.4196 × 10−2 (−) | 2.3252 × 10−2 (−) | 1.6681 × 10−2 (−) | 2.4022 × 10−3 |
Std | 2.35 × 10−3 | 5.10 × 10−3 | 2.12 × 10−2 | 2.77 × 10−2 | 6.39 × 10−3 | 3.62 × 10−3 | 1.53 × 10−3 | |
UF2 | Average | 5.2999 × 10−3 (+) | 8.4767 × 10−3 (+) | 5.9590 × 10−3 (+) | 1.0650 × 10−2 (+) | 1.1906 × 10−2 (=) | 1.3808 × 10−2 (=) | 1.4313 × 10−2 |
Std | 7.03 × 10−4 | 5.03 × 10−3 | 3.62 × 10−4 | 8.10 × 10−4 | 8.61 × 10−4 | 4.06 × 10−3 | 1.12 × 10−2 | |
UF3 | Average | 2.0528 × 10−2 (−) | 2.5562 × 10−3 (+) | 1.1321 × 10−2 (−) | 1.0894 × 10−2 (−) | 6.5446 × 10−4 (+) | 4.3037 × 10−2 (−) | 4.7750 × 10−3 |
Std | 1.75 × 10−2 | 5.03 × 10−3 | 1.11 × 10−2 | 1.92 × 10−3 | 7.68 × 10−4 | 1.45 × 10−2 | 6.76 × 10−3 | |
UF4 | Average | 6.6588 × 10−3 (=) | 9.0938 × 10−3 (−) | 7.2809 × 10−3 (=) | 1.1696 × 10−2 (−) | 1.8483 × 10−2 (−) | 1.0004 × 10−2 (−) | 6.9043 × 10−3 |
Std | 8.69 × 10−4 | 1.51 × 10−3 | 5.88 × 10−4 | 1.18 × 10−3 | 5.22 × 10−3 | 1.44 × 10−3 | 6.55 × 10−4 | |
UF5 | Average | 2.7938 × 10−2 (=) | 4.5153 × 10−4 (+) | 1.4962 × 10−2 (+) | 6.5039 × 10−2 (−) | 6.7016 × 10−2 (−) | 1.4595 × 10−1 (−) | 2.7739 × 10−2 |
Std | 2.15 × 10−2 | 9.05 × 10−4 | 1.29 × 10−2 | 4.55 × 10−2 | 4.03 × 10−2 | 8.47 × 10−2 | 2.45 × 10−2 | |
UF6 | Average | 6.5459 × 10−2 (−) | 5.4275 × 10−2 (−) | 1.0577 × 10−2 (−) | 2.4009 × 10−2 (−) | 2.3187 × 10−1 (−) | 9.4877 × 10−2 (−) | 5.8230 × 10−3 |
Std | 6.07 × 10−2 | 7.86 × 10−2 | 1.83 × 10−2 | 1.45 × 10−2 | 2.95 × 10−1 | 4.76 × 10−2 | 5.38 × 10−3 | |
UF7 | Average | 2.5451 × 10−3 (+) | 4.0496 × 10−3 (+) | 7.8085 × 10−3 (−) | 1.2477 × 10−2 (−) | 1.6111 × 10−2 (−) | 3.7577 × 10−2 (−) | 6.0753 × 10−3 |
Std | 1.89 × 10−3 | 7.63 × 10−3 | 5.71 × 10−3 | 2.76 × 10−3 | 8.23 × 10−3 | 3.28 × 10−2 | 6.67 × 10−3 | |
UF8 | Average | 1.3926 × 10−1 (=) | 2.1788 × 10−1 (−) | 1.0950 × 10−1 (=) | 1.5689 × 10−1 (−) | 2.6998 × 10−1 (−) | 6.3257 × 10−2 (+) | 1.2436 × 10−1 |
Std | 1.65 × 10−2 | 7.52 × 10−2 | 2.95 × 10−2 | 3.80 × 10−2 | 5.11 × 10−2 | 5.47 × 10−3 | 3.87 × 10−2 | |
UF9 | Average | 1.0959 × 10−1 (−) | 8.7028 × 10−2 (−) | 9.9912 × 10−2 (−) | 6.0917 × 10−1 (−) | 1.2816 × 10−1 (−) | 6.4226 × 10−2 (+) | 7.6352 × 10−2 |
Std | 1.96 × 10−2 | 1.70 × 10−2 | 2.67 × 10−2 | 1.72 × 10−1 | 5.27 × 10−3 | 6.94 × 10−3 | 1.44 × 10−2 | |
UF10 | Average | 2.1199 × 10−1 (−) | 2.8860 × 10−3 (+) | 1.7352 × 10−1 (−) | 3.2344 × 10−1 (−) | 5.5619 × 10−1 (−) | 9.4595 × 10−2 (+) | 1.3956 × 10−1 |
Std | 9.62 × 10−2 | 2.66 × 10−3 | 2.98 × 10−2 | 3.67 × 10−2 | 4.79 × 10−1 | 7.18 × 10−2 | 1.61 × 10−1 | |
8/10/6 | 9/8/5 | 6/10/6 | 2/20/1 | 6/16/2 | 9/10/3 |
Function | Metrics | MOSOA IGD | MOQSOA IGD | MOSOA Spacing | MOQSOA Spacing |
---|---|---|---|---|---|
ZDT1 | Average | 4.0025 × 10−3 (=) | 4.1101 × 10−3 | 5.1220 × 10−3 (=) | 5.3225 × 10−3 |
Std | 6.55 × 10−5 | 7.28 × 10−5 | 3.26 × 10−4 | 6.57 × 10−4 | |
ZDT2 | Average | 3.8531 × 10−3 (=) | 3.8136 × 10−3 | 4.7874 × 10−3 (=) | 4.4243 × 10−3 |
Std | 3.04 × 10−5 | 5.67 × 10−5 | 2.14 × 10−4 | 1.27 × 10−4 | |
ZDT3 | Average | 7.4483 × 10−3 (−) | 6.4169 × 10−3 | 1.4084 × 10−2 (=) | 1.3825 × 10−2 |
Std | 5.28 × 10−4 | 1.39 × 10−4 | 1.78 × 10−4 | 3.47 × 10−5 | |
ZDT6 | Average | 3.9728 × 10−3 (−) | 3.0046 × 10−3 | 2.2837 × 10−3 (=) | 2.1262 × 10−3 |
Std | 3.59 × 10−4 | 2.18 × 10−4 | 1.11 × 10−5 | 3.36 × 10−4 | |
DTLZ4 | Average | 5.1377 × 10−1 (−) | 3.7873 × 10−1 | 3.1023 × 10−2 (=) | 3.2762 × 10−2 |
Std | 4.46 × 10−1 | 2.81 × 10−1 | 4.54 × 10−2 | 4.08 × 10−2 | |
DTLZ6 | Average | 6.3906 × 10−3 (−) | 4.9789 × 10−3 | 1.2702 × 10−2 (=) | 1.2237 × 10−2 |
Std | 2.06 × 10−5 | 3.38 × 10−5 | 2.85 × 10−4 | 2.05 × 10−4 | |
UF6 | Average | 3.6369 × 10−1 (−) | 2.6237 × 10−1 | 8.1922 × 10−3 (−) | 5.8230 × 10−3 |
Std | 1.95 × 10−1 | 1.35 × 10−1 | 5.45 × 10−3 | 5.38 × 10−3 | |
0/5/2 | 0/1/6 |
Function | Metrics | MOQSOA-LD 200th Iteration | MOQSOA 200th Iteration | MOQSOA-LD 500th Iteration | MOQSOA 500th Iteration | MOQSOA-LD 1000th Iteration | MOQSOA 1000th Iteration |
---|---|---|---|---|---|---|---|
ZDT1 | Average | 5.7792 × 10−3 (−) | 4.1651 × 10−3 | 3.8902 × 10−3 (=) | 3.8901 × 10−3 | 3.8882 × 10−3 (=) | 3.8881 × 10−3 |
Std | 3.70 × 10−4 | 1.16 × 10−4 | 8.27 × 10−5 | 1.18 × 10−6 | 5.25 × 10−8 | 8.11 × 10−8 | |
ZDT2 | Average | 9.7120 × 10−3 (−) | 6.6238 × 10−3 | 6.4306 × 10−3 (=) | 6.4205 × 10−3 | 6.4202 × 10−3 (=) | 6.4162 × 10−3 |
Std | 4.52 × 10−3 | 1.61 × 10−4 | 2.00 × 10−5 | 1.07 × 10−5 | 2.72 × 10−6 | 7.51 × 10−6 | |
DTLZ6 | Average | 5.0310 × 10−3 (=) | 4.9659 × 10−3 | 5.0066 × 10−3 (=) | 4.9540 × 10−3 | 4.9813 × 10−3 (=) | 4.9534 × 10−3 |
Std | 4.28 × 10−5 | 7.84 × 10−5 | 9.53 × 10−5 | 3.38 × 10−5 | 5.38 × 10−5 | 8.62 × 10−5 | |
0/2/1 | 0/0/3 | 0/0/3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, W.; Ahmad, I.; Tag-Eldin, E. Multi-Objective Quantum-Inspired Seagull Optimization Algorithm. Electronics 2022, 11, 1834. https://doi.org/10.3390/electronics11121834
Wang Y, Wang W, Ahmad I, Tag-Eldin E. Multi-Objective Quantum-Inspired Seagull Optimization Algorithm. Electronics. 2022; 11(12):1834. https://doi.org/10.3390/electronics11121834
Chicago/Turabian StyleWang, Yule, Wanliang Wang, Ijaz Ahmad, and Elsayed Tag-Eldin. 2022. "Multi-Objective Quantum-Inspired Seagull Optimization Algorithm" Electronics 11, no. 12: 1834. https://doi.org/10.3390/electronics11121834
APA StyleWang, Y., Wang, W., Ahmad, I., & Tag-Eldin, E. (2022). Multi-Objective Quantum-Inspired Seagull Optimization Algorithm. Electronics, 11(12), 1834. https://doi.org/10.3390/electronics11121834