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Abstract: In this paper, the problem of vehicle guidance by means of an external leader is described.
The objective is to navigate a four-wheeled vehicle through unstructured environments, character-
ized by the lack of availability of typical guidance infrastructure like lane markings or HD maps.
The trajectory-following approach is based on an estimate of the leader’s path. For that, position
measurements are stored over time with respect to an inertial frame. A new strategy is proposed to
rate the significance of position measurements and ensure that a certain threshold of stored samples
is not exceeded. Having an estimate of the leader path is essential to prevent the cutting-corner
phenomenon and for exact path following in general. A spline-approximation technique is applied
to obtain a smooth reference path for the underlying lateral and longitudinal motion controllers.
For longitudinal tracking, a constant time-headway policy was implemented, to follow the leader
with a constant time gap along the estimated path. The algorithm was first developed and tested
in a simulation framework and then deployed in a demonstrator vehicle for validation under real
operating conditions. The presented experimental results were achieved using only on-board sensors
of the demonstrator vehicle, while high-accuracy differential GPS-based position measurements serve
as the ground truth data for visualization.

Keywords: vehicle following; path following; path tracking; splines; spline approximation

1. Introduction

Automated-driving solutions and ADAS (Advanced Driver Assistance System) func-
tions promise many advantages for driving comfort and safety, as a result of a reduced
need for driver attention. While fully autonomous driving in the sense of SAE Level-5 [1]
is far away in the distant future, many manufacturers are already bringing ADAS solu-
tions such as emergency braking, adaptive cruise control, or lane keeping to their vehicles,
due to the obvious safety and comfort benefits. However, there are other use cases for
automated driving, which are not typically considered in everyday-driving scenarios. One
such use case is the navigation of a vehicle by means of an external leader through an
unstructured environment, such as a construction site, or in a convoying application, where
trucks need to transfer loads several times. For an agriculture use case refer to [2]. In such
environments, infrastructure elements like lane markings, vehicle-to-infrastructure com-
munication or HD maps are not available to serve as a source for the automated vehicle’s
reference path. Lane markings also often exhibit the drawback of poor visibility due to
wear and tear, occlusion by other vehicles, or lighting and weather conditions that result in
an intermittent perception.

1.1. Problem Statement

The starting point is a convoy of two vehicles, where the preceding leader vehicle is
manually driven, and its driven path defines the reference path for the automated follower
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vehicle. It is the leader’s responsibility to avoid obstacles and take a collision-free path.
Consequently, the follower’s task is to track the leader’s path as close as possible, to keep
a safe distance to obstacles. The follower’s longitudinal motion has to be controlled such
that a safe distance is kept from the leader. For the special case of constant leader speed, a
constant distance has to be maintained. For the practical implementation, two additional
requirements need to be satisfied:

(R1) The vehicle-following system must not rely on vehicle-to-vehicle communication.
Consequently, it was decided to only rely on on-board sensors for leader observations
as well as follower-state estimation.

(R2) The vehicle-following system must not rely on GPS to avoid narrowing the driving
function’s operational-design domain to environments where undisturbed communi-
cation to GPS satellites can be guaranteed.

1.2. Literature Review

The problem statement of tracking a leader vehicle’s trajectory dates back to at least
1998. In the framework of platooning, [3] discusses the drawbacks of direct-vehicle follow-
ing, i.e., following the current leader position. Using this approach, the path between the
follower and leader needs to be interpolated, causing the autonomous follower vehicle to
deviate from the leader vehicle’s path. Considering e.g., a straight-line interpolation [4],
this effect scales with the distance from the leader vehicle. To overcome this issue, the
authors propose an algorithm that makes use of the time history of stored leader positions.
Results from field tests on a circular path, entered via a clothoid transition curve, showed a
reduction of the maximum lateral deviation from approximately 1.2 m to 0.8 m, by applying
the proposed algorithm. Unfortunately, a comparison of the leader/follower path as well as
the exact path-tracking error model used for the implementation are not presented, making
interpretation of and benchmarks against the results difficult.

A military convoying scenario in [5,6] motivates the goal of following a leader vehicle’s
trajectory with large inter-vehicle spacing without cutting corners. The authors propose
following the leader vehicle by a constant time delay utilizing the stored trajectory of the
leader obtained from on-board sensors consisting of a camera, a heading gyroscope, and
wheel encoders. To deal with noisy measurements, cubic splines are proposed, motivated by
their property of minimum curvature. The actual fitted curve is constructed as a weighted
sum of identical splines and introduces parameters for the spline width, the separation
between each spline, and the number of splines. Unfortunately, the strategy to obtain the
leader trajectory in the first place is not covered in [5,6].

The issue of measurement dropouts that is often experienced with vision sensors is
addressed in [7]. The authors apply a particle filter, utilizing observations from a vision
sensor and the odometry data of the follower/leader pair, to estimate the leader’s trajectory.
A simple trajectory-reconstruction approach is presented in [8], basically implementing
a first-in–first-out buffer where the oldest measurement is removed from the list of mea-
surements before the current measurement is added. Unfortunately, both works [7,8] only
present results obtained from simulations lacking experimental data.

With a focus on lateral-string stability in platooning applications, [9] also proposes
a path-following approach over the direct-vehicle following approach, to avoid cutting
corners. To estimate the path of the leader vehicle, position measurements are stored over
time considering the following vehicle’s moving reference frame. The actual reference path
for the underlying lateral controller is constructed via polynomial fitting. A third order
polynomial was chosen as this seemed “to be a good compromise between having enough
degree of freedom to describe the actual path and filtering out the measurement noise” [9]
(p. 61). In contrast to the works discussed above, the process to obtain the leader path is
presented in quite a lot of detail. The stored leader measurements are maintained based on
a first-in–first-out method similar to [8].

A sophisticated approach to generate a continuous-curvature trajectory using Sequen-
tial Quadratic Programming (SQP) is presented in [10]. The vehicle’s maximum curvature,
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limits of the lateral and longitudinal acceleration, and the vehicle’s maximum steering
rate are considered in the optimization problem. The generated trajectory is represented
as a sequence of clothoid arcs, with cartesian coordinates that are defined by Fresnel in-
tegrals. Unfortunately, Fresnel integrals cannot be solved analytically, which complicates
the calculation of path-tracking errors. Although there are approximations for the Fresnel
integrals [11], we decided to come up with another approach, also due to the fact that this
topic was not addressed in [10].

An “integrated longitudinal and lateral control framework in vehicle following sce-
narios” is presented in [12]. In contrast to the work at hand, they use a radar sensor instead
of a camera sensor to measure the inter-vehicle distance, velocity difference, and azimuth
of the leader vehicle. Furthermore, the leader’s velocity and yaw rate buffered at the host
vehicle are obtained via vehicle-to-vehicle (V2V) communication. The leader path is then
calculated backwards iteratively and tracked by a model-predictive controller (MPC).

There are further publications related to vehicle following. In contrast to the work at
hand, they and the above discussed works differ at least in one of these points:

• They focus on the design of lateral and/or longitudinal controllers [5,12–15].
• They rely on V2V communication [12–16] or GPS [6].
• They lack experimental results [7,8,13–15].
• They focus on the design of a camera system for leader tracking [2], handling intermit-

tent vision observations [7], or state-estimation techniques [16].

With this work, mainly two shortcomings observed in the literature are addressed
with the following contributions:

1. A detailed explanation to obtain an estimate of the leader path from the on-board
measurements, which are stored in a buffer, is given. To support the process of
obtaining and maintaining the stored leader path, a new strategy to consider the
importance of each measured sample for the estimated path is proposed. (Section 2.1)

2. To handle noisy position measurements, we propose smoothing the estimated path
resulting from (1) via a computationally inexpensive spline-approximation approach.
(Section 2.2)

In this respect, the most relevant existing works are [8,9,12] regarding contribution (1)
and [9,10] regarding contribution (2).

1.3. Structure of the Article

The overall system architecture of the vehicle-following system is presented in Section 2.
The main components are covered in detail in Section 2.1 (path estimation) and Section 2.2
(path smoothing). The control architecture is presented in Section 2.3. Section 3 deals
with vehicle deployment of the proposed vehicle-following system, starting with the
demonstrator vehicle in Section 3.1, state estimation in Section 3.2, leader-vehicle selection
in Section 3.3, and experimental results in Section 3.4. The conclusion and outlook are given
in Section 4.

2. System Architecture and Design

The overall system architecture of the developed vehicle-following system is shown in
Figure 1. The Object Sensor attached to the follower vehicle is assumed to provide relative
position and speed measurements (∆sx, ∆sy) and (∆vx, ∆vy) of the leader vehicle. The
Planner component estimates the leader path and applies a spline-approximation algorithm
to achieve a certain geometric continuity. Based on the state-of-the-art approach outlined in
Section 1.2, the estimate of the leader path is obtained by storing the position measurements
over time. Additionally, the relevance of each position measurement, with respect to the
estimated leader path, is taken into account. Since the position measurements are in relation
to the object sensor’s frame, the motion of the follower needs to be taken into account. We
decided to state the leader path with respect to an inertial frame, making it necessary to
estimate the follower’s position and orientation. As indicated by the State Estimation block
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and in compliance with the requirements from Section 1.1, position estimates (x̂, ŷ) and
orientation estimate ψ̂ as well as estimates of lateral and longitudinal velocity v̂x and v̂y
were obtained from the on-board vehicle measurements speed v, yaw rate ψ̇, and steering
angle δ.

Path
estimation

&
smoothing

Planner

Lat.
control

Lon.
control

Follower

Object
Sensor

State
Estimation

[
∆sx
∆sy

]
,
[

∆vx
∆vy

]
[

x̂
ŷ

]
, ψ̂,

[
v̂x
v̂y

]
ref.
path

s, vset

δset

brake/
throttle

v, ψ̇, δ

Figure 1. System architecture of the developed vehicle-following system. Shaded components are
addressed in this paper, while the main contribution is regarding the Planner component.

The estimated leader path then servers as the reference path for the lateral and lon-
gitudinal controller. In addition to the control law, the lateral control component also
implements the related error model, which calculates the control errors based on the ref-
erence path and the current vehicle position and orientation. The longitudinal controller
maintains a constant time-gap to the leader by regulating the follower’s speed v and the
inter-vehicle distance s. Since the follower aims to track the estimated path as close as
possible, it is reasonable to determine the distance s to the leader along the path. For that, a
Frenet transformation is applied to the follower position with respect to the reference path.

The corresponding control signals, in terms of desired steering angle δset and pedal
actuations, are then passed to the vehicle. For further details on the vehicle interfaces refer
to Section 3.1.

2.1. Leader-Path Estimation

This section details the procedure to obtain the leader path from a series of position
measurements. For that, the first step is to convert the position measurements from the
sensor frame to an inertial frame, considering the motion of the follower vehicle. Given
a follower position (x, y) and heading ψ, this is achieved by a rotation and translation
according to

p =

[
x
y

]
+

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
∆sx
∆sy

]
. (1)

In the second step, these measurements are collected over time, resulting in a list

P(t) = (p1, p2, . . . , pN) (2)

of N points pi, i = 1, . . . N, at time t. The following is worth noting here:

• To guarantee the real-time capability of this strategy, the number N of points in the list
P must not exceed an upper bound N, i.e., N ≤ N, where N depends on the memory
and computing resources of the target hardware.

• New position measurements might not contain relevant information in terms of the
estimated path, due to low speed or standstill maneuvers and/or measurement noise.
That is, a new point pN+1 is equal or very close to the most recent point pN ∈ P.

The measure to address both constraints is motivated by a point-reduction algo-
rithm [17] that determines the “importance” of a point within a polygonal chain, by the
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area of the triangle created by the point itself and its immediate neighbors. According to
that, the point pN+1 is appended to the list P if the area

A = 0.5
∣∣∣∣det

([
pN−1 pN pN+1

1 1 1

])∣∣∣∣ (3)

of the triangle formed by the points pN−1, . . . , pN+1 exceeds a certain threshold A, other-
wise pN is replaced by pN+1. In the case of N = N and A > A, pN+1 is appended to the
list P after removing the point associated with the smallest area.

This procedure results in a list P(t) that represents the leader’s path as a polygonal
chain, with respect to an inertial frame at a certain time t. This polygonal path could already
serve as the reference path for the underlying path-tracking controller. However, path-
tracking controllers usually require geometric derivatives of the path such as heading and
curvature. From that perspective, the polygonal path representation is disadvantageous as it
is only G0 continuous. For more details regarding the impact of specific path representations
on the path-tracking performance, refer to [18].

2.2. Smoothing the Estimated Path

To achieve a specific continuity of the estimated path, an analytic representation satis-
fying the corresponding continuity requirements is required. For that, a parametric path

γ : R→ R2, τ 7→ γ(τ) (4)

with path parameter τ is advantageous, as it allows the definition of arbitrary paths. There
are two basic possibilities to obtain γ(τ): interpolation or approximation of the underlying
data points. The fact that an interpolant would pass through every point makes the first
one an inappropriate choice, especially considering the presence of measurement noise. On
the other hand, similar arguments can be made to justify the approximation approach.

Eventually, a spline-approximation algorithm [19] that relies on least-squares adjust-
ment was implemented. Based on the estimated leader path given by (2), the algorithm
calculates a parametric, two-dimensional spline

Γ(τ) =


γ1(τ) τ0 ≤ τ < τ1

...
γn(τ) τn−1 ≤ τ ≤ τn

(5)

of n spline segments γi with n + 1 strictly monotonic breaks τ0 < τ1 < · · · < τn (also
known as knots), where the degree k for the spline segments

γi(τ) =

[
χi,k τk + · · ·+ χi,1 τ + χi,0
υi,k τk + · · ·+ υi,1 τ + υi,0

]
(6)

as well as the order l of geometric continuity Gl at the breaks τi can be specified. This
requires solving a system

AX = B, A ∈ Rα×α, B ∈ Rα×2 and α = (k + 1)n + (l + 1)(n− 1) (7)

of linear equations, which can be easily achieved under real-time requirements. Matrix A
is composed of the independent variable of the underlying data, i.e., the path parameter τ,
while B is composed of the corresponding dependent variable, i.e., pi(τ). The unknown
polynomial coefficients χi,j and υi,j, j = 0, . . . , k, are represented by X. Notice that (7) could
be extended to higher dimensional paths, e.g., 3D paths, at almost no computational cost,
since the inversion of matrix A is independent of the number of columns of B, i.e., the
number of dimensions. Furthermore it is worth noting, that the size of A does not depend
on the number of data samples per spline segment, but only on the number n of spline
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segments, the polynomial degree k and the order l of geometric continuity. In addition
to [19], the spline-approximation algorithm was extended by the possibility to also specify
boundary conditions for the differential continuity of the path’s (5) terminal points, Γ(τ0)
and Γ(τn).

Choosing the breaks τi in (5) is a research topic on its own [20,21]. For the presented
work, the calculation of a spline segment γi is triggered if the list (2) contains a certain
number ν of points, i.e., N = ν ≤ N. The points p1, . . . , pν are then removed from the list
P and the procedure is repeated if the condition N = ν is satisfied again, and so on. This
strategy has two advantages at the cost of one disadvantage over calculating the whole
spline Γ for all N points each iteration:

• Unfortunately, the resulting spline from the spline-approximation algorithm, accord-
ing to [19], lacks the local support property. That is, a variation of a single data point
not only affects the related spline segment but all spline segments, if just a single
point of the underlying approximation data changes. Considering that the spline Γ
serves as the reference path for the path-tracking controller, as shown in Figure 1,
this could result in jumps of the control reference and eventually of the control error
every time the spline is updated. Although there are controllers that implement bump-
less transfer functionality that could handle steps in the control reference to some
extent [22], this is usually not the case; see, for example, the well known Stanley [23]
and Pure-Pursuit [24] path-tracking controllers. Therefore, the iterative approach
mentioned above was implemented, since it enables the extension of the spline path Γ
by a spline segment γi+1, while letting the segments γ1, . . . , γi be unaffected.

• According to (7), the computational effort mainly depends on the number n of spline
segments, considering k and l as fixed. Therefore, the computational effort can be
reduced compared to calculating the spline Γ for all points p1, . . . , pN during each
iteration, depending on the actual values of ν and N.

• These improvements are at the cost of only achieving continuous zeroth derivatives at
the spline’s breaks. Simulation results showed that requesting higher order continuity
at the breaks results in a spline approximation becoming unstable over time. During
field tests, this disadvantage turned out to be neglectable.

This smoothing strategy is demonstrated in Figure 2 based on real-world measurement
data, where the leader/follower convoy was driving from the top-right corner to the bottom-
left corner of the graph.

−80 −75 −70 −65 −60 −55 −50 −45 −40

−42

−40

−38

x (m)

y
(m

)

Estimated path
Spline path

Figure 2. Estimated path from sensor measurements and resulting spline path after applying the
spline-approximation algorithm.

The black dotted line shows the estimated path, according to Section 2.1, where each
dot represents a position measurement obtained from a camera sensor. The red line shows
the resulting spline consisting of four spline segments, where the segment’s terminal points
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are highlighted by dots. Although the spline is only G0 continuous at the breaks, the overall
smoothness is significantly improved in contrast to the estimated path.

2.3. Vehicle Control

From a control-design point of view and according to Figure 1, the lateral and longitu-
dinal motion of the follower vehicle was considered to be decoupled. The corresponding
controllers are presented in the following.

2.3.1. Lateral Control

The theoretical background of the lateral control component used in the context of the
presented vehicle-following system was published in [22,25]. Since then, it was successfully
applied to several practical implementations such as lane keeping [26]. Therefore, only the
essence is recapitulated here.

Based on the linear single-track model [27] and a linearized and time-discretized
path-tracking error model [25,26], a state-feedback control law

δset = −
[
v̂y ψ̇ elat eψ χ

]
klat (8)

is obtained via LQR design. The path-tracking error model, according to the classification
introduced in [18], is as follows: The reference is located in the vehicle’s center of gravity,
the look-ahead distance is along the vehicle heading, while the lateral error elat and heading
error eψ, with respect to the reference path, are perpendicular to the vehicle heading.
To account for a varying vehicle speed and a speed-dependant look-ahead distance, the
feedback law (8) was gain scheduled and implemented using a look-up table. The dynamics
of the demonstrator vehicle’s steering actuator were considered by a first-order transfer
function [26], introducing one additional state χ.

The choice of the actual path-tracking controller was predetermined by the related
error model, which should fit the problem statement. For the present application, the task
is to follow the leader path as close as possible, to avoid cutting curves. As this requirement
can only be fulfilled for a single point of a four-wheeled vehicle, a reasonable choice is the
center of gravity along the vehicle’s longitudinal axis, in conjunction with zero look-ahead
distance. Given this configuration, a vanishing control error would imply that the center of
gravity perfectly tracks the reference path. Unfortunately, the look-ahead distance cannot
be decreased arbitrarily as this also reduces the closed-loop phase margin [28] and can
eventually lead to instability. The actual values used during deployment are given in
Section 3.

It is also worth noting, that with the presented design, it would have been easily
possible to replace the current controller with any other controller based on the same error
model. A classification of path-tracking controllers from the literature, regarding their
underlying error model, is given in Table 2 of [18].

2.3.2. Longitudinal Control

The task of the longitudinal controller is to maintain a constant time gap th from the
leader vehicle, according to the constant time-headway policy [29]

sset = max{vsetth, smin} (9)

given a desired speed vset and a minimum safety distance smin. The desired speed vset
refers to the leader vehicle’s speed and was estimated according to

vset =

∥∥∥∥[v̂x + ∆vx − ψ̇r sin(θ)
v̂y + ∆vy + ψ̇r cos(θ)

]∥∥∥∥ (10)
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from on-board measurements, where

r =
√

∆s2
x + ∆s2

y (11a)

θ = atan2(∆sy, ∆sx) (11b)

are the distance r and bearing θ to the leader.
Considering that the distance s from the follower to the leader vehicle is negative,

proportional with respect to the follower speed v, the follower’s longitudinal dynamics can
be modeled as

ẋ =

[
0 −1
0 0

]
x +

[
0
1

]
a, (12)

with acceleration a and state x = [s v]t. The distance s to the leader is with respect to the
reference path and determined via a Frenet transformation of the ego vehicle’s position.
The error model then reads as

e = xset − x (13)

with distance error es = sset − s and velocity error ev = vset − v. For the model (12),
a controller

aset = kt
lone (14)

can be designed via, e.g., pole placement.
The follower’s longitudinal-control strategy was eventually implemented as a cas-

caded control loop, according to Figure 3, where the desired acceleration (14) is tracked by
the inner loop, implementing a PI controller.

[
es ev

]
klon

PI
Controller

aset eas, v, vset

−
a

brake/
throttle

Figure 3. Longitudinal dynamics control structure consisting of an outer control loop that regulates
spacing error es and speed error ev as well as an inner loop regulating acceleration error ea.

This architecture was mainly motivated by the brake and throttle interfaces available
in the test vehicle, in terms of pedal positions.

3. Test-Vehicle Integration and Field Trials

Until here, the vehicle-following system was mainly presented from a simulation-
based perspective. This section discusses practical aspects related to the deployment of the
proposed following system and also presents test results obtained under real operating
conditions utilizing a series-production demonstrator car.

3.1. Demonstrator Vehicle

The demonstrator vehicle is a Ford Mondeo 2.0 Hybrid equipped with additional
sensors and hardware; an overview is shown in Figure 4.

A so-called ADAS Kit from Dataspeed Inc. gives access to the vehicle’s CAN-bus. This
allows for control of the steering wheel angle as well as brake and throttle via pedal-position
commands. It also provides on-board sensor measurements like speed, acceleration, yaw
rate, and series-production GPS readings.

The developed algorithms were deployed to a dSPACE MicroAutoBox II, equipped
with a DS1401 processor board and 1511/1512 I/O boards. This setup served as the
real-time control hardware executing the planning, state estimation, and vehicle-control
algorithms. Additionally, RTMaps running on an industrial-grade PC was used as the
interface to the Novatel differential GPS. This data was then transmitted to the MicroAuto-
Box via ethernet. Since the Mobileye 630 camera sensor provided the most robust object
detection and classification, it was used during the field tests.
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Figure 4. Ford Mondeo demonstrator vehicle with additionally installed sensors. For the implemen-
tation presented in this paper, only the Mobileye 630 was used.

3.2. State Estimation

As pointed out in Section 2, estimates of the followers position (x̂, ŷ) and orientation ψ̂
with respect to an inertial frame are required. This was accomplished by a dead-reckoning
approach using a kinematic vehicle model [30] (p. 26)

x̂(t) =
∫ t

0
v(ξ) cos(β̂(ξ) + ψ̂(ξ))dξ (15a)

ŷ(t) =
∫ t

0
v(ξ) sin(β̂(ξ) + ψ̂(ξ))dξ (15b)

ψ̂(t) =
∫ t

0
ψ̇(ξ)dξ (15c)

β̂(t) = atan2(lr tan(δ(t)), lf + lr). (15d)

In compliance with the requirements from Section 1.1, the implementation of (15) only
requires measurements from on-board sensors, namely the vehicle speed v, the front-wheel
steering angle δ, and the yaw rate ψ̇. Additionally, the front and rear axle offset from the
center of gravity, denoted by lf and lr, are required.

Over time, this approach causes the estimates to deviate from the true position (x, y)
and true orientation ψ. Assuming that the follower is tracking the leader vehicle with
a steady-state time gap th, the error between the actual and estimated values must be
sufficiently small. In other words, the estimation error that accumulated during the time
between obtaining a specific leader position until reaching this position is required to
be small, to ensure satisfactory path tracking. This also implies that an upper bound for
the time gap th exists, depending on the estimation accuracy of the follower’s position
and orientation.

3.3. Leader Selection

To simplify the development of the vehicle-following system, the task of identifying
the leader vehicle from a list of multiple objects was neglected in simulations. Instead, just
a single object was used as the leader vehicle. For the practical implementation during the
field tests, object sensors mounted to the test vehicle were used for object detection. These
sensors, like a camera, radar, or lidar, typically provide object lists containing not only the
leader vehicle but also stationary objects or ghost objects. Therefore, a measure to identify
the actual leader vehicle utilizing the spline path (5) was implemented.

From the path estimation and smoothing, an analytic formula of the leader path is
available, given by the spline (5). Taking advantage of its analytic form, the path can easily
be extrapolated by means of path parameter τ. For the actual implementation, the path
parameter τ, referring to the arc length and the breaks τ0 < τ1 < · · · < τn, was obtained
from the length of the polygonal path formed by the position measurements (2).
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For the field tests, the actual path extrapolation distance was obtained by overestimat-
ing the traveled distance ∆s of the leader vehicle, according to ∆s = vsetTs, where vset is
the estimated leader speed (10) and Ts is the sample time of the vehicle-following system.
Given the extrapolated leader path and a list of objects, the leader vehicle was chosen as the
closest object to the follower vehicle that intersects the extrapolated path. At initialization
of the vehicle-following system, the estimated path is not available and the leader vehicle
is selected according to the object type.

3.4. Experimental Results

The vehicle-following system was verified on a graveled land area at the campus of
the Technical University of Graz, Austria. The tests were performed using two of Virtual
Vehicle’s Automated Drive demonstrators; the automated follower vehicle is shown in
Figure 4 and a bird’s-eye view of the test setup is shown in Figure 5.

Figure 5. Bird’s-eye view of the leader (left) and follower (right) vehicle setup, taken during the field
tests. Video footage is available online at https://youtu.be/0EnHqTouIuc (Accessed on 1 May 2022).

Both the leader vehicle and the follower vehicle were equipped with DGPS to provide
ground truth data. The vehicle-following system was executed on real-time hardware,
as mentioned in Section 3.1, executing at a sample time of 20 ms. The complete list of
parameters is stated in Table 1.

Table 1. Parameter values used throughout the field trials.

Name Symbol Value

Sample time Ts 20 ms
Max. number points N 100

Area threshold A 1× 10−4 m2

Min. clearance smin 5 m
Time gap th 2 s

Look-ahead time – 300 ms
Samples per spline segment ν 12

Polynomial degree k 3
Geometric continuity l 2

The test procedure was as follows: both vehicles were at a standstill, with the leader
vehicle in front of the follower vehicle and within the object sensor’s field of view. After
confirming leader detection, both vehicles started driving manually, meaning the follower
vehicle needed to start idling before enabling the drive-by-wire mode.

Results of one exemplary trial are shown in Figure 6. Figure 6a shows a comparison of
the leader and follower paths, while Figure 6b shows qualitative lateral and longitudinal
control signals.

https://youtu.be/0EnHqTouIuc
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Figure 6. Results from an exemplary field trial run. (a) Leader and follower path obtained from differential
GPS. The close-up (right figure) also shows an outlier around coordinate (57, 27). Due to its minor character
and time constraints, we did not investigate the root cause. (b) Speed-dependent look-ahead distance,
related lateral-tracking error, and longitudinal control signals in terms of distance and speed.

It should be pointed out, that the closed-loop lateral error elat in Figure 6b is with respect
to the reference path obtained from the spline-approximation algorithm. Since this path is an
approximation of the estimated leader path, which is itself an estimate of the true leader path,
the lateral error elat does not reflect the follower’s offset from the true leader path. However,
it reflects the performance of the path-tracking controller. According to the follower’s speed,
the look-ahead distance varies during the trial. Although the related lateral-path tracking error
elat varies between roughly−0.5 m to 1 m, the lateral offset with respect to the follower’s center
of gravity stayed well between−0.4 m to 0.4 m (Figure 6a). Around 7 s to 8 s, the actual inter-
vehicle distance s shows noisy characteristics. At this point in time, the follower reached the
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leader’s initial position, which was starting from a standstill. Due to that, several similar position
measurements were added to the list (2), although the leader was not moving. This could have
been avoided by tuning the area threshold parameter A with respect to the noise characteristics
of the object sensor as well as the follower state estimation. Unfortunately, time constraints did
not allow further investigation of this topic, as these effects are not easily reproducible during
field trials. For future tests, recreating these effects in simulation to tune the related parameters
beforehand is planned.

4. Conclusions and Outlook

In this work we have presented the concept, architecture, and real-world implementa-
tion of a state-of-the-art vehicle following a system relying on on-board sensors only. For
detection of the leader vehicle, an optical sensor mounted to the follower vehicle was used.
To obtain an estimate of the leader path, a new algorithm was proposed that considers the
importance of new leader measurements with respect to the currently estimated path.

The smoothness of this estimated path was improved by a spline-approximation
algorithm, which closes the gap between simple polynomial-fitting approaches [9] and
computational-demanding ones, like presented in [10]. For the proof of concept of the
proposed algorithms, field trials were performed on a graveled area achieving path-tracking
errors between −0.4 m to 0.4 m. We assume that these values can be improved by either
tuning the existing path-tracking controller or implementing a more sophisticated one,
which would be easily possible with the presented architecture.

For the future, it is planned to perform more extensive field trials utilizing various
sensors for object detection. Another branch of investigation is regarding the path-tracking
controller. The generic interface between the planning and the path-tracking component
allows to benchmark various controllers from the literature and investigate the influence of
their specific error models.
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PI Proportional-Integral
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