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Abstract: Currently, the concept of Mobile Edge Computing (MEC) has been applied as a solution
against the plethora of demands for high-quality computing services. It comprises several essen-
tial processes, such as resource allocation, data transmission, and task processing. Furthermore,
researchers applied blockchain technology, aiming to enhance the robustness of the MEC system.
At present, resource allocation in the MEC system is a very hot field, but there are still some problems
in the resource allocation process under the traditional MEC architecture, such as privacy disclosure
and so on. Moreover, the resource allocation problem in a blockchain-enabled MEC system will be
more complicated, while the mining process may have an impact on resource allocation policy. To
address this issue, this paper investigates the resource allocation problem with blockchain-based MEC
system architecture. A brand new consensus mechanism: proof of learning (PoL), is applied to the
system, which does not waste the computing resources of edge computing servers. Based on this, we
modeled the system mathematically, focusing on server processing latency, mining latency, rewards
under the new consensus, and total cost. The asynchronous advantage Actor-Critic (A3C) algorithm
is used to optimize resource allocation policy. To better capture the long-time trend of the system,
the temporal convolutional network (TCN) is implemented to represent the policy function and
state-value function in the reinforcement learning model. The results show that the A3C algorithm
based on TCN not only converges faster but also is more stable.

Keywords: mobile edge computing; blockchain; proof of learning; resource allocation; asynchronous
advantage Actor-Critic; temporal convolutional network

1. Introduction

With the development of intelligent science and technology, more and more mobile de-
vices have access to the mobile network wirelessly. According to Cisco’s report in 2019 [1]:
there will be 29.3 billion mobile devices by 2023, up from 18.4 billion in 2018. The burst of
mobile devices would lead to a rapid increase in data service. Faced with the burden of
growing network traffic and the requirements of high-quality service, the traditional wire-
less communication network is under great pressure. The European Telecommunications
Standards Institute (ETSI) proposed the concept of Mobile Edge Computing (MEC) [2]
to cater the demands of massive connections and low latency services, which provides
computational processing and data storage capabilities for these mobile devices at the edge
of the network [3,4]. MEC mitigates the end-to-end latency of service delivery by moving
the cloud computing platform to the edge of the network. Furthermore, it can hold various
business scenarios such as smart device applications, health monitoring, connected vehi-
cles, 5G network data migration service [5–7], and even a satellite-terrestrial network [8].
Therefore, the MEC has attracted extensive attention from the industry since its birth. This
new mode can not only bring changes to traditional service providers, but also affect the
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interaction modes of many industries and networks. However, considering that MEC is
a distributed architecture, it will be very different from cloud computing in processing
uploading tasks. Hence, it is necessary to comprehensively consider the delay of various
tasks and whether the processing mode of tasks are economical enough. The design of a
reasonable resource allocation policy in MEC system has become the focus of research in
the industry.

At present, the research on resource allocation of MEC has made great progress. Allo-
cation policies can be categorized into many different types based on different classification
criteria. The policies can be classified into static and dynamic ones according to whether
they are adjusted according to the current system status. According to whether the task is
completely allocated to MEC system for processing, it can be divided into full allocation and
partial allocation. The complexity of different allocation policies are also different. For exam-
ple, partial allocation needs to consider processing the task locally, and the local processing
time needs to be compared with the processing time of uploading to the MEC server (the
delay of wireless transmission needs to be taken into account) when making decisions. This
allocation policy is more complicated and needs more consideration and [9]. Researchers
have proposed many solutions to the resource allocation problem. Some algorithms are
mentioned in the survey of optimization algorithms conducted by Faiza Cul et al. [10], such
as numerical methods including the Bisection method, Newton–Raphson, and bio-inspired
algorithms, which are often widely used to solve resource allocation problems. Huang
Dong et al. [11] applied Lyapunov Optimization for resource allocation, which is also a
traditional one. Some work applies reinforcement learning, a state-of-the-art methodology.
A deep Q-learning method [12] is used to optimize the real-time adaptive policy of com-
puting resource allocation for multi-user unloading tasks. To solve the problem of joint
subchannel allocation and power allocation in uplink, Wang X.M. et al. [13] proposed three
frameworks based on discrete DRL, continuous DRL and joint DRL to solve the above
non-convex optimization problem. Furthermore, Agostino Forestiero et al. [14] proposed
NLP-based multiagent algorithm for a distributed information system, which allows the
built of dynamic and organized overlay network. These policies can balance the delay of
task processing and the cost of server well, and thus provide theoretical support for the
application of MEC system.

Moreover, security is a problem that cannot be ignored in the MEC system [15].
The possible security risks of MEC are as follows: the distributed architecture tells that the
whole system will not be controlled by one single owner, such as the network infrastructure,
service infrastructure, and user devices. This can result to a situation that every aspect
is under potential attack [16]. Moreover, the deployed edge computing servers often call
some application programming interfaces (APIs) about physical and logical environments.
If those APIs are not well-protected, there might be a loss of privacy for clients [16].
These issues are critical for the reliability of MEC system. According to the problems
mentioned above, the researchers presented blockchain technology to enhance the security
level of MEC systems. Blockchain technology is a general combination of distributed data
storage, peer-to-peer transmission, consensus mechanism, encryption algorithms, and other
computer technologies [17]. Through consensus mechanism, the cost of being malicious
greatly aggrandizes, making the system more robust; through asymmetric encryption
algorithm and zero-knowledge proof, the blockchain efficiently protects clients’ privacy [18].
Besides security, the blockchain implements managing and deploying edge computing
nodes autonomously through the smart contract. Its programmability also enhances the
scalability of MEC [19]. At present, many solutions of blockchain-enabled MEC framework
have been proposed [19–21]. Researchers have validated some of the architectures in
real-world environments [22].

Nonetheless, when blockchain and MEC are integrated, the resource allocation prob-
lem should be revised. The resource allocation policy in traditional MEC mainly focuses on
the latency of communication and data processing. However, when blockchain and MEC
systems are combined, the time of mining and reward from mining can affect resource



Electronics 2022, 11, 1869 3 of 20

allocation policy: the former can affect total time delay, which is sensitive for clients, the
latter is associated with the allocated computing resource. Therefore, further research on
the resource allocation policy of blockchain enabled MEC is required. Meanwhile, some
researchers have carried out works related to the resource allocation problems within
blockchain-based MEC systems. Alia Asheralieva et al. [23] utilized Bayesian reinforcement
learning and deep learning to deal with mining tasks based on MEC. However, they did not
consider the resource allocation tasks raised by mobile devices. He Y. et al. [24] proposed a
comprehensive blockchain-based MEC system, using the reinforcement learning method
to optimize resource allocation policy. Nonetheless, the policy did not mention the time
of mining and the reward from mining. Qiu X.Y. et al. [25] took reward from mining into
consideration, but all the indicators in the reward function have the same weight coefficient,
which means the reward function is just added by all the indicators, and the proof of work
(PoW) consensus algorithm applied in the system would lower the computation resource
usage. To sum up, the previous works remain the following questions. First, the impact of
blockchain on edge computing resource allocation is not fully considered. Second, the con-
sensus mechanism in blockchain system needs to be improved to save computing resources
of edge computing server. Third, the impact of these indicators on resource allocation
policies is not explored. In this case, our research proposed corresponding solutions, which
are also one of the main contributions of this paper. The main contributions of our work
are listed below:

(1) As the blockchain system has something to do with the resource allocation policy
in MEC systems, the blockchain mining process is taken into account in resource
allocation model. There into, mining delay and mining reward are considered.

(2) To improve the utilization of edge computing resources, the new consensus algorithm:
proof of learning (PoL), is applied in the system based on previous studies [26,27].
PoL replaces the meaningless hash puzzle with the task of training neural networks,
which are common in MEC application scenarios. Furthermore, the mining delay and
mining reward are calculated according to this consensus.

(3) To learn the impact of these indicators on resource allocation policies, we set different
combinations of weight coefficients to adjust the resource allocation policies to different
tendencies. Furthermore, we explored the effect of varying task arrival rates on policies
with different preferences.

(4) To learn the long-term pattern of impending tasks, the structure of temporal convolu-
tional network (TCN) [28] is referred to as the policy function and state-value function
in asynchronous advantage Actor-Critic (A3C) algorithm. The convergence speed of
TCN enabled A3C algorithm and traditional A3C algorithm, which choose action only
depends on current state, is compared, and it is found that using TCN as the policy
and state-value functions can converge faster and more stable.

In keeping with the purpose of our research orientation, the rest of the article is
generalized as follows: In Section 2, the design of a blockchain-based MEC system is
proposed, illustrating its step-by-step procedure. In Section 3, we model the resource
allocation problem in the system above firstly, presenting the exact problems needed to
optimize. Then the combination of TCN and A3C algorithm is introduced. In Section 4, we
simulate, analyze the model, and investigate the results. In Section 5, a detailed discussion
is given, which consists of four parts: research results, comparison with other studies,
significance of research, and unanswered questions. In Section 6, a conclusion is presented,
figuring out the deficiencies and indicating the future work.

2. Overview of the System

In this part, a comprehensive MEC system based on blockchain is proposed. We will
give a fundamental description of the whole system and introduce the working procedure
of the system.
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2.1. Framework of the System

In this part, the detailed blockchain-based MEC system architecture is proposed.
As shown in Figure 1, the proposed model mainly consists of two parts: service layer and
client layer, and the service layer can be further separated into blockchain layer and edge
computing layer.

Figure 1. Blockchain-based MEC system architecture.

The client layer consists of many mobile devices, such as temperature and humidity
sensors, smart watches, and monitors, which are common in normal life and industry
application scenario currently. Each device connects to a blockchain wallet, as the wallet
contains a certain amount of crypto token which is a basic instrument in the blockchain
system. The connection between mobile devices and edge computing servers is achieved
wirelessly, for both the connection between wallet and blockchain system and data upload-
ing. The service layer consists of two parts, which are blockchain layer and edge computing
layer. Many edge computing service nodes, which provide the computing resources to take
charge of processing the clients’ data, make up the edge computing layer. Meanwhile, each
service node also plays the role of the miner in the blockchain system to maintain the
ongoing of the whole system, which means they generate blocks after finishing a neural
network training task released by the PoL consensus mechanism. Service node needs to
upload the results of the training task, for example: accuracy, neural network parameters,
so that other service nodes (miners) can verify the correctness and make sure it will not do
malicious things. To ensure that the computing resources will be allocated efficiently, the
smart contract, which consists of several functions that control the working flow, needs to
make optimal decisions on such limited computing resources.

The specific framework is designed for three reasons.

(1) While using the blockchain technology, the MEC system that could previously run
only on a trusted intermediary, can now operate safely without the need for a central
authority [29]. Furthermore, the heavy use of cryptography brings authoritativeness
and security [29]. For example, the zero-knowledge proof can protect the information
with anonymity [18], the consensus algorithms can avoid malicious attacks [30], and
the script validation used in transactions, namely Pay-to-Public-Key-Hash transaction
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(en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash, accessed on 4 February 2020) and
multi-signature transaction (en.bitcoin.it/wiki/Multi-signature, accessed on 20 July
2021), can improve the security [31].

(2) As the MEC system is in a quite decentralized environment, using just an online
platform may suffer from “a central point of failure” [32]. The decentralized trait
of blockchain technology can build mutual trust among participants by implement
specific consensus: PoW, proof of stake (PoS), and thus enhance the robustness of the
system [31]. The model proposed by Xu J.L. et al. [31] have proved its correctness.

(3) Smart contracts, which are scripts that reside on the blockchain that allow for the
automation of multi-step processes, translate contractual clauses into code and embed
them into property that can self-enforce them. They operate as autonomous actors,
whose behavior is based on the embedded logic [30]. When combined with MEC
system, the smart contract can provide flexible and scalable computing capability to ad-
dress the tradeoff between limited computing capacity and high latency [33]. The work
performed by Ye X.Y. et al. [34] has proved that the combination of blockchain and
MEC can have an improvement on optimal allocation policy compared with other
existing schemes.

2.2. Working Flow of the System

This section will go over the entire working flow, which is the procedure by which
mobile devices in daily and industrial application situations complete transactions based
on this system.

Taking air quality sensors as a vivid example, they collect air quality indicators, such
as the concentrations of carbon dioxide, the concentrations of PM 2.5 [35], etc. Then they
analyze the collected data above to estimate the situation of surroundings. However, the
sensors, cannot process the data themselves. They need to send it to edge computing
servers so that servers would help conduct it.

As shown in Figure 2, the complete procedure can be included as following:

(1) The air quality sensor, which is a mobile device, connects to the wallet to make sure
the device itself links to the blockchain-based mobile edge computing system.

(2) The wallet is used to send a request to the service node, along with a certain amount
of crypto token for the cost of edge computing services.

(3) The smart contract will detect this transaction and allocate computing resources to
the data, which is uploaded by the air quality sensor, based on the current state of the
system and the size of the uploaded data, and it is called the “edge task”.

(4) The allocated computing resources then start dealing with the “edge task”, and the
processed result is finally obtained. After that, the service node, or the miner, needs to
finish the training of a specific neural network under the PoL consensus, which is the
“mining task”, for the preparation of block generation.

(5) Once the “mining task” is finished, the service node is required to upload the training
results, such as the accuracy of the training model and the neural network parameters.
Furthermore, other miners can thus verify its correctness and make sure the service
node is not doing malicious things. After everything is completed, a block is generated
and stored in the blockchain system.

(6) Finally, the result of “edge task” will be sent back to the air quality sensor.

As the purpose of this article is to deal with the resource allocation problems, the
implementation of this system will not be discussed. In the next part, the inner mechanism
of allocating computing resources will be discussed in detail, which is also the main focus
of this study.

en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
en.bitcoin.it/wiki/Multi-signature
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Figure 2. System procedure.

3. Resource Allocation Problem

Typically, the purpose of resource allocation is to allocate computing resources, which
are used on data processing. A good allocation policy can optimize latency, for both
transmission and processing. However, when the blockchain technology is combined,
its impact on resource allocation policy can not be ignored. Based on the MEC system
model mentioned in Section 2, despite the processing latency and cost of servers, which
are the two main indicators in the traditional model, the mining process also needs to be
considered, as the mining reward is associated with the allocation of computing resource
and the mining delay is part of the latency for clients.

In this part, firstly, edge computing systems are taken into consideration, which
includes two indicators: latency and cost. Then, we introduce the details of mining process.
After that, the TCN enabled A3C is proposed, a state-of-the-art methodology used to solve
resource allocation problems.

3.1. Edge Computing System Model

Assuming that one service node (SN) has m servers, they are in charge of n mobile
devices (MD). In the model, two sets are used to present service node and mobile devices,
respectively: SN = {E1, E2, . . . , Em}, MD = {I1, I2, . . . , In}.

Each mobile device will send different tasks to the service node, as for the latency of a
specific task, two parameters are taken into consideration:

tprocess = tq + tp (1)

where tprocess denotes the latency of data processing, tq denotes the queuing latency, and tp
denotes the time for a server to process the data.

Assume that the CPU cycles required by the edge computing servers to process 1 bit
of data is M, the CPU dominant frequency is f GHz, and d represents the data size of the
task so Equation (1) can be changed as:

tprocess = tq + d
M
f

(2)

The service model is actually a queuing model [36], based on the queuing theory [37],
hereM/G/s model is chosen to simplify the service model. M shows that the arrival rate
of tasks is subject to Poisson distribution. G shows that the processing time is subject to
general distribution with certain mean and variance, s denotes that there are s servers.
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When the system is in steady state, according to the time approximation formula
raised by Boxma [38]:

E[Wq(M/G/s)] ' 1 + σ2

2JG(s)
E[Wq(M/M/s)] +

1−JG(s)
E[Wq(M/D/s)]

(3)

JG(s) =

{
1, s = 1
s+1
s−1

{
1+σ2

(s+1)µIG(s)

}
, s ≥ 2

(4)

IG(s) =
∫ +∞

0
{1− Ge(t)}sdt, t ≥ 0 (5)

Ge(s) = µ
∫ t

0
{1− G(u)}du, s ≥ 1 (6)

where Ge is the stationary-excess cdf associated with the service-time cdf G.
Because the reward would be determined using the latency of task in the resource

allocation algorithm later, the average latency of the queuing model in its steady state is
not chosen when calculating the waiting time of one single task. Specifically, the service
time of all the tasks in the target’s queue is mentioned, regarding it as the latency of the
target task. Relying on that, Equation (2) can be improved as:

tprocess =
∑i di ·Mi

f
+ d

M
f

=
b
f
+ d

M
f

(7)

where ∑i di ·Mi denotes the total amount of tasks in the buffer. b is used to represent how
much task has left in the buffer in the rest part of the paper.

Assuming the data size d obeys general distribution with certain mean and variance:
d ∼ N (µ, σ2), and the arrival rate follows the Poisson distribution with parameter λ in
order to fitM/G/s model.

In real-world scenarios, the latency should also include the delay in wireless trans-
portation. However, considering that all the servers are deployed in a service node in one
certain place, which means that the delay in each server would be the same. Thus, it is left
out in the model.

Based on the kW·h concept in the electricity field, we propose a fresh new unit: GHz.h.
The cost of data processing is calculated in GHz.h that the server consumes. So the cost can
be presented as:

cost = h · u, h = f · d M
f

= d ·M (8)

where cost denotes the fee that the client needs to pay; u denotes the cost in GHz.h.

3.2. Blockchain Model

In this part, the mining process of PoL is introduced, along with the calculation of
mining delay and the mining reward.

Mining is the process by which blockchain transactions are validated digitally on
the blockchain network and added to the blockchain ledger. For example, the mining
process in Bitcoin system is the process of solving a hash problem, which means using
hashing operations to obtain a specified answer. However, the meaningless hash puzzle
will waste a lot of computing resources, which is quite insupportable in edge computing
systems. In order to fit the edge computing system, Qiu C. et al. [26] proposed a new
consensus algorithm: PoL. By just replacing the hash puzzles with the training task of
neural networks, each service node trains the model locally in a fixed time, and when a
training task is finished, the service node is required to encapsulate the learning results
into the transaction so that other nodes can check if the training result is correct based on
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neural network parameters, output sets and loss functions. In this way, PoL can deter abuse
attacks and save computing resources at the same time.

However, the previous PoL consensus mentioned above is not that perfect, because
by setting a fixed training time, the rate of block generation cannot adujust according to
congestion level of blockchain network. To tackle this issue, we improved the PoL that the
service node only needs to complete the given number of training sessions based on the
given data sets, where the given number represents the training difficulty level. The system
can adjust the difficulty level to change the rate of block generation.

Assume that the neural network architecture in the training task is multilayer percep-
tron (MLP). First, the floating point operations (FLOPs) [39] of the Forward propagation
and backward propagation is given.

(1) Forward Propagation

Let us consider the propagation process from layer i to layer j. The output matrix Sj of
layer j can be written in:

Sj = Wji ∗ Zi (9)

where Wji represents the weight coefficient matrix between layer j and layer i, and Zi
represents the output matrix of layer i after the calculation of activation function, such as
sigmoid or Relu functions. So, Zi can be given as:

Zi = f (Si) (10)

where f represents the activation function mentioned above.
Thus, the floating point operations of the forward propagation is (j× i + j)FLOPs.

Furthermore, if the MLP obtains N layers, and this process will run N − 1 times.

(2) Backward Propagation

The backward propagation proceeds as follows. The error matrix of layer j is first
calculated. If the layer j is the output layer of MLP, then it can be written as:

Ej = f ′(Sj)� (Zj −Oj) (11)

where � represents the element-wise multiplication. If layer j is the hidden layer, and
suppose layer k is the next layer of j, then Equation (11) can be transferred to:

Ej = f ′(Sj)� (WT
kj ∗ Ek) (12)

To update the weight coefficient matrix between layer i and layer j, the “delta” weight
matrix is calculated.

Dji = Ej ∗ ZT
i (13)

where ZT
i is the transpose of Zi.

Finally, the weight coefficient matrix is adjusted:

Wji = Wji − Dji (14)

The floating point operations of backward propagation is (j + j + j× i + j× i)FLOPs
for Equation (11), and (j× k + j + j× i + j× i)FLOPs for Equation (12).

Based on all the equations mentioned above, the total FLOPs of the forward and
backward propagation can be calculated by given a specific MLP model. Here, we use
ω to represent the FLOPs of one training session, and if the number of training example
is N, and the number of training sessions is D, which means the mining difficulty in the
improved PoL consensus, the FLOPs Ω of finishing the mining task can be shown as:

Ω = ω× N × D (15)
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Furthermore, the mining time is obtained:

tmining =
Ω
f

(16)

As for the mining reward (bonus), if the mining time of a service node is shorter than
the average mining time of the system, it will receive corresponding reward. Furthermore,
if it is longer than the average mining time, the service node will receive negative reward.
The formula of mining reward can be given as:

bonus =
taverage − tmining

taverage
(17)

3.3. Reinforcement Learning Model

In real-world cases, each service node runs in a specific situation. The A3C algorithm
is employed, aiming to enable the nodes adapting complex situations. The core of the
distributed algorithm is to increase the convergence rate towards the best policy. To obtain
that, the system manages to extend the receptive field of the global network through multi-
ple workers renewing parameters asynchronously. In the model, each worker corresponds
to one service node.

There are two important functions in the A3C algorithm, one is the policy function,
which is used to select the corresponding optimal action according to the current state, and
the other is the state-value function, which is used to calculate the expected reward after
taking a certain action. However, if the policy is only made by the current state, the chosen
action may not be the best one, since the algorithm just observed one single time point and
don’t make decision upon the past varying trends. Inspired by some state-of-the-art time
series forecasting model, TCN, which is the combination of causal convolution and residual
blocks, is applied as the policy function and state-value function in this paper, while the
causal convolution can extract features over time, and residual model can prevent A3C
from falling into gradient vanishing during parameter update [28].

In the next of this part, firstly, the four aspects of reinforcement learning model will
be described: state, action, the transition of state, and reward function. Secondly, the
architecture of TCN enabled A3C algorithm is introduced.

3.3.1. State

The simulation includes the whole process in the system: from queuing to processing, the
server’s state needs to be recorded. In the model, S is used to represent the state of the server:

S = {I1, I2, . . . , In; b1, b2, . . . , bm; D} (18)

In Equation (18), bi indicates the remaining tasks in server i and D represent the
difficulty level of mining. Furthermore, Ij indicates some task-related information of device
No. j, including the data size d and the required M GPU cycles per bit, thus, we can use
another way to represent set S:

S = {d1, M1; d2, M2; . . . ; dn, Mn; b1, b2, . . . , bm; D} (19)

In the model, we assume that the buffer size is infinity, but that does not mean that
there could be infinite devices obtaining access to one server in the meantime. Assuming
the maximum number of simultaneously accessed to one server is n, in this way, both the
access and exit processes can be simulated.

As for the mining difficulty, service nodes choose appropriate policies according to the
difficulty level and balance the reward of mining and the consumption of computing resources.
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3.3.2. Action

The action is the response of a particular state, so actions are determined by arriving
tasks and buffer size in the server. Dividing the arriving data into m pieces is the first step
because there are m servers in one service node. Meanwhile, several servers are chosen to
deal with the mining task. Due to the limitation of simulation, only two of them are chosen
to do the mining task. The action can be defined as:

A = {a1, a2, . . . , an; e1, e2, . . . , em}, ai = {ci1, ci2, . . . cim},
m

∑
j=1

cij = di,
m

∑
k=1

ek = 2{ek=0 or 1}
(20)

where ai denotes the action of splitting the task towards device i, ek can only be 0 or 1. If
ek = 0, it means that server k is not chosen to mine. On the contrary, if ek = 1, server k is
chosen to mine. Specifically, data in each device is diversified by servers. For the task of
device i, cij denotes the part of which being distributed in sever j.

3.3.3. Transition of State

In the previous discussion, the arrival rate of each task is subject to Poisson distribution
with parameter λ, and the data size obeys general distribution: d ∼ N (µ, σ2). Knowing that
the Poisson stream is additive so that Poisson distribution can also fit the arrival of tasks
assigned by many other devices.

We assume the arrival rate of device Ij as λj so the total arrival rate for a service
node is λ = ∑n

j=1 λj . When the task arrives, the state S is updated. The interval between
the new state and old state is ∆t, and it is subject to a negative exponential distribution
with parameter λ because the arrival rate obeys Poisson distribution. The cumulative
distribution function is: F(∆t) = 1− e−λ∆t.

Then a function that integrates the system state with time is proposed. Firstly, to
simplify the transition of state, we assume that all the tasks arrives at the same time, the
current system state at time t is:

S(t) = {d1(t), M1(t); . . . ; dn(t), Mn(t); b1(t), b2(t), . . . , bm(t); D} (21)

After a time slot ∆t, another group of tasks arrive, the system state changes to:

S(t + ∆t) = {d1(t + ∆t), M1(t + ∆t); . . . ; dn(t + ∆t), Mn(t + ∆t);

b1(t + ∆t), . . . , bm(t + ∆t); D}
(22)

bi(t + ∆t) =

{
bi + ∑n

j=1 cji Mj − fi∆t, bi + ∑n
j=1 cji Mj − fi∆t > 0

0, bi + ∑n
j=1 cji Mj − fi∆t ≤ 0

(23)

In this way, system states will change through the arrival and action of the task. It is
noted that the system state still belongs to Discrete Markov Model though it depends on
both t and ∆t.

3.3.4. Reward Function

Reinforcement learning is a type of unsupervised learning, in which the reward
function is used to back-propagate to update the parameters of the policy function and the
state-value function, guaranteeing its policies would converge towards expectation.

As mentioned before, action A is chosen according to the current system state S.
Corresponding to each s ∈ S and a ∈ A, we obtain policy Π:

Π = {π : s→ a; s ∈ S, a ∈ A} (24)



Electronics 2022, 11, 1869 11 of 20

Then the reward is measured in four aspects: process delay of the task, mining delay,
cost, and the mining reward. Generally, it is a comprehensive measurement of the reward,
aiming to lower the latency, contain the cost, and guarantee the mining reward as expected.

The process delay is regarded as a combination of two components: tq, tp. Consider-
ing that each task has been split into several servers, parameter tki

p is introduced to indicate
processing delay of the task k in server i. Thus, tprocess can be described as:

tprocess =max
i

[tq +
n

∑
k=1

tki
p ]

=max
i

[
bi
fi
+

n

∑
k=1

cki
Mk
fi

]

(25)

The formula of mining delay is given in Equation (16).
Then the cost of task k is measured:

cost = ∑
i

hi · ui + tmining ·
m

∑
i=1

(ei fiui), hi =
n

∑
k=1

cki ·Mk (26)

where hi denotes the resource consumed in server i, ui denotes the unit price of server i.
Lastly, the mining reward is measured according to Equation (17).
From the analysis above, if time becomes longer, the cost could decrease, the mining

reward would decrease. We want to reduce latency, reduce cost, and obtain more mining
rewards, but these three targets cannot be obtained at the same time. Hence the reward
function is given as follows:

R = −αtprocess − ζtmining − βcost + γbonus (27)

where α, ζ, β, γ are weight coefficients of process delay, mining delay, cost, and mining
reward, respectively. We expect to find a reasonable set of those coefficients through which
the better policies could be obtained after training.

3.3.5. TCN Enabled A3C Model

A3C, short for Asynchronous Advanced Actor-Critic, is an improvement on the
traditional Actor-Critic algorithm. A3C algorithm converges faster, contains more stable
policies [40,41]. As its name shows, the A3C algorithm consists of two parts, the Actor-
Critic algorithm and asynchronous algorithm. The policy function and state-value function
in Actor-Critic are crucial, as they determine the available action to obtain higher reward.
As mentioned above, TCN is applied to these two functions to extract long-time trend
and void gradient-vanish. In the following article, firstly, the implementation of TCN in
Actor-Critic is introduced. Secondly, the asynchronous algorithm, that is how A3C updates
the parameters, is described.

(1) TCN and Actor-Critic
The Actor-Critic algorithm contains two neural networks, one is the Critic, the other is

called Actor. The former one, or the Critic, judges the state-value function, which is the
estimation of the expectation of future rewards based on current state and the corresponding
policy. The latter one, or the Actor, estimates the probability of a set of output actions
according to the input state. Combining two models, Actor-Critic is obtained. Furthermore,
the advantage function is introduced to the model when updating parameters, it can tell
whether the output of the model is good or not.

As shown in Figure 3a, here, the combination of temporal convolutional network and
fully-connected network is deployed to approximate the state-value function V(s) and the
policy function π(s). Different from previous architecture that only relies on current state s,
the prediction of action a depends on both current state and previous states. Furthermore,
with the current and previous states and the taken action a, the neural network can thus tell
the state-action value. The state-value function and the policy function are given below, the
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left side of Equation (28) is the initial definition of the state-value function, and the right
side of Equation (28) is the state-value function based on neural network. The same as the
policy function shown in Equation (29):

V(s, a) ≈ V(sn−l+1, . . . , sn−1, sn|a; w) (28)

π(s, a) ≈ π(a|sn−l+1, . . . , sn−1, sn; θ) (29)

where w is the weight coefficient of the value network, θ is the weight coefficient of the
policy network, s is the state of the agent, a is the action of the agent, and l is the history size.

(a)

(b)

Figure 3. Network architecture: (a) TCN enabled A3C; (b) temporal convolutional network.

Let us further analyze the process and structure of the neural network. To calculate the
state-value function or the policy function, a state matrix needs to be put into the network,
that the column of the matrix is state vector given by Equation (21). Then, the matrix is
processed by TCN. As shown in Figure 3b, the TCN has two main characteristics, one is
that the output size is the same as input size, and the other is that there cannot be any
backsliding from the future to the present. To obtain the first characteristic, TCN uses a
one dimensional fully-convolutional network, where remain the size of hidden layer and
input layer the same. Furthermore, zero padding is added to keep the front and back layers
equal in length. Furthermore, to achieve the second characteristic, TCN applies causal
convolutions, the calculation of an output is only with elements from previous and now.
The implementation of dilated convolution enables a wider range of receptive field. As you
can see, if the dilatation factor d is set as 1, 2, and 4, the output layer can obtain nine units
of history size from the second hidden layer, and fifteen units of history size from the input
layer. Along with the dilated causal convolution, an 1× 1 convolution is added to avoid
gradient-vanishing when the neural network is quite deep.

After the process of TCN, we use a one-dimension convolution to reduce the length
in the time dimension. This is followed by the operation of flatten and finally the selec-
tion of available action and calculation of state-action value using the fully-connected
neural network.

With the state-action value, we can calculate the target value, or target reward, after
n steps. Here Target V is used to represent the final reward after n steps:
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Target V = rt + γrt+1 + . . . + γn−1rt+n−1 + max
a

γnV(st+n, a) (30)

where γ is the discount factor.
In this way, a certain reward can interfere with n states before that, enabling the model

to imitate the experience better and improving the validity of the model.
Then we introduce the advantage function. When updating policy-gradient, discount

reward Rt can inform the agent what actions are good, what are bad. We subtract the reward
function and state-value function to obtain the advantage function A(st − at). For example,
based on the same state, if A(st − at) > 0, then the chosen action is good, and vise versa.

A(st, at) = R(st, at)−V(st) (31)

To calculate the advantage function, we have:

A(st, at; θ, w) =
k−1

∑
i=0

γirt+i + γkV(st+k; w)−V(st, w) (32)

To avoid the algorithm trapped into local optimum, Mnih [40] added entropy
β∇θ H(π(st; θ)) in policy π. The gradient updating function is:

∇θE[Rt] =∇θ log π(at|st; θ)A(st, at; θ, w)

+ β∇θ H(π(st; θ))
(33)

Equation (33) means that the higher expectation of the reward, the more likely the
action will be chosen. π(at|st; θ) denotes the possibility to choose action at state st.

(2) Asynchronous algorithm
How does A3C exactly work? Simply, it is a process in which many Actor-Critic

workers work asynchronously and update the parameters of the one policy function, or
global network. To make the Actor-Critic workers work asynchronously, the asynchronous
algorithm is introduced. The asynchronous framework of the A3C algorithm is given in
Figure 4, and it mainly consists of environment, worker, and global network. Each worker
performs as an independent agent to interact with an independent environment, using the
result of interaction to update the parameters of the global network.

Figure 4. Update principle of A3C algorithm.

With each worker interacting with a certain environment, the model can obtain through
more situations, which speeds up the convergence and lessen the possibility of being
trapped in the local optimum.

The asynchronous algorithm works as following:

1. Global network parameter initialization.
2. Workers duplicate global network.
3. Workers interact with their environments.
4. Workers calculate the loss of value and policy.
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5. Workers calculate gradient through loss function.
6. Workers update the parameters of global network.

4. Simulation and Analysis

In this part, the reinforcement learning approach is simulated. Assuming a ser-
vice node has four different servers, each has a computing capability fi, respectively.
Those servers simultaneously serve five mobile devices. Each device has an arrival rate
λi, its data size obeys general distribution d ∼ N (µ, σ2). The rest parameters are given
in Table 1:

Table 1. Parameter values in simulation.

Parameters Explanation Value

µ the mean of data size 7 (Mb)
σ2 the variance of data size 2
c minimum data size split 1 (Mb)
ω floating point operations 106

M CPU cycles required for 1 bit [2, 5, 7] (bit/Hz)
N number of training task 104

f domain frequency of server [15, 16, 17, 18] (GHz)
λ arrival rate [14, 16, 18, 20, 22, 24]
u server cost [1, 1.1, 1.2, 1.3]
D mining difficulty [5, 6]
α coefficient of process delay [100, 25, 50, 100, 100, 5, 5, 1]
ζ coefficient of mining delay [2, 0.5, 1, 2, 2, 0.1, 0.1, 1]
β coefficient of cost [1, 1, 1, 1, 1, 100, 200, 1]
γ coefficient of bonus [20, 5, 10, 5, 1, 1, 1, 10]

In Table 1, λ = ∑ λi is the total arrival rate of all the tasks. In order to simplify the
simulation, λi is set equally, which means λi = λ/5. The dominant frequencies of the
servers are 15, 16, 17, 18 GHz, respectively. The fee of each server is 1, 1.1, 1.2, and 1.3.

For ease of calculation, the task size is limited in set {5, 6, 7, 8, 9} (Mb). Furthermore,
we set E[d] = 7, Var[d] = 2.

A series of parameters are tested to find better policies in simulation. After training
the model, its robustness is tested by changing the arrival rate of tasks.

4.1. Impacts of Weight Coefficients

Specifically, the impact to the reinforcement learning model by changing the ratio of
α, ζ, β, and γ is measured. In the experiment, eight groups of parameters are tested to
determine the exact impact of the ratio mentioned above on the convergence, latency, cost
and bonus of the model. Other parameters remain the same. We set the training epoch as
2000. There are 100 steps of interaction in each epoch. We set learning rate as 10−4, discount
factor as 0.99 and the arrival rate 14 s−1.

Especially, data presented in Figures 5 and 6 has been through the Gaussian Smoothing
process to appear the trend better. Meanwhile, to compare the variation trend of rewards
more precisely, the reward values are normalized.

Obviously, the drift is related with the ratio of weight coefficients. In all eight groups, two
distinct trends emerged. One of the trends is group 1, 2, 3, 4, 5, and 8 and the other is group 6
and 7.

Considering that the bonus, tprocess and tmining are correlative, firstly, the coefficients of
these three indicators are set in equal proportions, and we change the ratio of α and β. Initially
there are five groups tested, that are group 1, 2, 3, 6, and 7. Two distinct convergence trends
emerge as the ratio changes. The process delay of group 1, 2, and 3 eventually converge at
around 0.028 s. However, the process delay of group 6 and 7 only converge at 0.11 s and 0.12 s,
respectively. The convergence results of mining delay and process delay are similar. As for
the cost, group 6 and 7 lower than group 1, 2, and 3. It is not hard to find that the situation
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is closely related to the ratio of α and β. When α/β > baseline, the policy tends to lower the
latency, when α/β < baseline, it tends to lower the cost. Furthermore, from the comparison of
group 6 and 7, it can tell that if α/β is becoming smaller and smaller, it can help the algorithm
to converge faster. This is because when the agent is observing the environment, it gonna has a
certain random magnitude, if the increase in reward brought by choosing a different policy is
small compared to the change brought by random search, then the algorithm will not continue
to converge.

Figure 5. Average reward per epoch.

(a) (b)

(c) (d)

Figure 6. The convergence of reinforcement learning; (a) Average process delay per epoch; (b) average
mining delay per epoch; (c) average cost per epoch; (d) average bonus per epoch.

Then some possible impacts that γ may have toward the policy of reinforcement
learning model are measured. γ controls bonus, when bonus increases, the tmining decreases.
That means as long as the policy tends to lower tmining a bit more than cost, when γ× ζ > 0,
the change of γ would not have a great impact on the policy. For example, in group 1:
[α, ζ, β, γ] = [100, 2, 1, 20], the policy is more inclined to reduce tmining. In this case, no
matter how the value of γ changes, there will be no difference to the policy. In order to
testify that assumption, a comparative experiment is made: group 1, 4, and 5. In these
three groups, the rewards have the same growth pattern. Moreover, relying on the cost
and tmining, we can figure out that the changing of γ has a little impact on the policy of
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the reinforcement learning model. Their cost and tmining converge at the same results.
That presents group 1, 4, and 5, which choose nearly the same policy. In group 1, especially,
we set γ as 20, the result remains almost unaffected.

Here a further analysis is given towards the experiment results above.
The emergence of baseline is within the prediction. It is obvious that tprocess, tmining

and cost is correlative, we set the correlation f (tprocess, tmining, cost) = 0. It can extend to
f (tprocess − ∆t1, tmining − ∆t2, cost + ∆cost) = 0 (Servers with lower computing capabilities
are usually cheaper. Servers with higher computing capabilities can lower the latency. That is
to say the cost usually increases when the latency is lower). Thus, in a minimum neighborhood,
∆t1, ∆t2 and ∆cost have a positive correlation as ∆cost ≈ k∆t1 + p∆t2, k, p is positive. Hence,
the change of reward can be described in this neighborhood as: ∆R = −α · (−∆t1) − ζ ·
(−∆t2)− β · (∆cost) = (α− βk)∆t1 + (ζ − βp)∆t2. When β is relatively large, ∆R < 0 is
minus, which means the policy would lower the cost. When α is relatively larger, ∆R > 0 is
positive, which means the policy would tend to lower the latency.

Moreover, from Figure 6a,b, we can tell that the order of magnitude of process delay
and mining delay is different. As mentioned above, if the increase in reward from choosing
a different policy is small in comparison to the change introduced by random search, the
algorithm will not converge. To avoid this phenomenon, the ratio of α and ζ remain the
same from group 1 to 7. However, in group 8, the order of magnitude of process delay is
much smaller than that of mining delay in reward function, which means that the reduction
in the process can be smoothed out by the variance of mining, thus preventing the algorithm
from continuing to converge. The process delay only converges at 0.04 s in the end.

4.2. Impacts of Arrival Rate

The pattern of latency is measured by changing the arrival rate with the ratio of weight
coefficients stable.

As shown in Figure 7, it can be seen that the increase of λ affects group 6 and 7
greatly. When it reaches 24 s−1, the tprocess of group 6 and group 7 reaches 0.18 s and
0.26 s, respectively. However, other groups manage to resist the increase, maintaining
the amplification within 70%. Furthermore, it can be concluded that the results obey the
latency rule of M/G/s model raised by Boxma [38]. Within the results, we fit the equivalent
removing rate of edge computing service system under this circumstance as µ ≈ 40 s−1.
In the experiment, the average data size is 7 × 5 Mb. If the policy is to lower the latency,
the average data size distributed to each server is 35/4 Mb. Each bit needs a CPU Cycle
of (2 + 5 + 7)/3 ≈ 4.7 Hz. The average capability of each server is 16.5 GHz. Thus, the
average processing rate of each server can be worked out: µ = 16.5×109

8.75×10242×8×4.7 = 47.83 s−1.
The estimation result and fitting result have the same order of magnitude.

Figure 7. The relationship between tprocess and arrival rate λ.
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4.3. Appropriate Choice of Weight Coefficients

General conclusions about the impact of changing weight coefficients have been made
before. Based on that, different policies can be applied to different circumstances.

For example, when the client has no strict requirement for the latency, and its arrival rate is
stable and relatively small, a parameter set [5, 0.1, 100, 1] can be applied to lower the cost. If the
arrival rate fluctuates greatly, parameter sets with a larger ratio of α to β such as [100, 2, 1, 20]
can be applied instead in order to guarantee the steady performance of the system steady.

4.4. Comparison between TCN Enabled A3C and Fully-Connected A3C

When using TCN to enable A3C algorithm, the policy depends on both current and
previous states. In order to prove that the new architecture has a better convergence
performance and stability than traditional A3C, which make decision only by current
state. In the experiment, fully-connected neural network is used to approximate the policy
function and state-value function.

As shown in Figure 8, the convergence of TCN enabled A3C is faster and more stable.
By learning previous states, TCN is able to capture the changing trend of task arrivals and
make better policy choices. TCN enabled A3C is more like a global optimization, and the
A3C algorithm based on a fully-connected neural network is a manifestation of greedy
decision-making.

Figure 8. The comparison between TCN enabled A3C and fully-connected A3C.

5. Discussion

In this paper, we studied the resource allocation problem of a blockchain-based MEC
system. It is considered that the mining process combined with blockchain had an impact on
resource allocation policies. Meanwhile, to explore the influence of different indicators on
the final decision, we set up different weight parameter combinations and conducted several
experiments. This is the difference between what have conducted in this paper and previous
studies, or other words, we made further on the ideas of previous studies. Because of this,
we can finally obtain almost optimal results under a certain decision tendency.

As suspected, delay and cost are opposite, and the allocation policy would only favor
one of them. During the simulation, we applied a new A3C algorithm which uses TCN to
learn the history trend, and it is proved that the new algorithm can converge faster and
more stably. We also simulated the change of packet arrival rate, and the results showed
that different resource allocation policies have different abilities against data congestion.
When the policy is inclined to reduce the cost, the system is very likely to be congested
when the arrival rate of packets is relatively large.

Of course, this is not to say that the policy of favoritism towards lower cost is undesirable.
Different policies can be applied in different daily or industrial scenarios. When the data traffic
is not very high, such as for some sensors that only collect parameters, the policy can be slightly
biased to reduce the cost, to reduce the cost of users, and reduce the pressure on the server.
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However, there are still many shortcomings and room for improvement in our work.
We only studied the feasibility of using a reinforcement learning algorithm to deal with the
resource unloading problem of a blockchain-based MEC system and did not build a real
system for verification. In addition, due to the limitation of simulation equipment, there is
a certain gap between the simulation scale and the real scene, so the feasibility of policy
transplantation to large-scale scenes cannot be verified at present. Further, the ability to
adjust the allocation policy is not enough. The environment of the real world may always
change, which is shown in the model as the change of arrival rate and the change of mean
packet size. However, currently, our model cannot adaptively adjust the weight parameters
of indicators, and its policy can only be applied to a specific application scenario.

6. Conclusions

In this article, we thoroughly analyzed the resource allocation policy in blockchain-
based MEC system. A new consensus mechanism: PoL, is applied in the system to maintain
the stability of blockchain and improve the efficiency of edge computing servers. The opti-
mization target of resource allocation consists of four parts, that is the process delay and
cost of servers, which are common in traditional MEC models, and the mining delay and
mining reward based on aforementioned PoL consensus. Different weight coefficients are
set for these indicators in the reward function to explore what the impact of each indicator
on the policy. Furthermore, to better capture the long-time trend of incoming tasks, TCN
enabled A3C algorithm is used to solve the resource allocation policy, which can make the
policy convergence faster and more stable. However, our work also has some deficiencies.
The policy can not adjust according to the arrival rate of tasks. Furthermore, due to the
limitation of computing resources, the simulation environment is quite different from
real-world environment, which contains more servers and clients. Furthermore, it is only a
theoretical research, but the actual software system will be more complicated. In the future,
we first hope to improve the algorithm so that it can adjust the allocation policy more
flexibly. Secondly, we hope to extend the algorithm in large-scale application scenarios
to verify its generality. Furthermore, finally, we hope to complete the implementation
of blockchain-based mobile edge computing system in the laboratory and continuously
optimize and adjust it.
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