Kernel-Based Real-Time File Access Monitoring Structure for Detecting Malware Activity
Abstract
:1. Introduction
- It is possible to monitor all user access events for important files in real time.
- The normal operation of other user applications is guaranteed by minimizing the resources used for file/directory access monitoring.
- As event data are generated using the file access monitoring function, EDR accuracy can be increased.
- If the structure proposed in this study is loaded into a security service or OS, the potential threat to information services can be prevented.
2. Related Works
2.1. Security Event Monitoring Techniques
2.2. Current Malware Trends
2.2.1. Security Technique Application
2.2.2. Conducting the Malware Detection Avoid Test
2.3. EDR
3. Analyzing Current Security Environments
3.1. Analyzing Security Environment
3.2. OS File Protection Techniques
3.3. Requirement for Application Service Security
4. Kernel-Based Real-Time File Access Monitoring
4.1. File Access Monitoring Structure
4.2. File Access Monitoring Sequence
4.3. Mechanism of the File Access Monitoring Function
5. Implementation
5.1. Function Verification
5.1.1. Function Verification Items
5.1.2. Function Verification Result
- Func_VF_1
- Func_VF_2
- Func_VF_3
- Func_VF_4
5.2. Performance Verification
5.2.1. Performance Verification Items and Methodology
5.2.2. Performance Verification Results
- Perf_VF_1
- Perf_VF_2
- Perf_VF_3
5.3. Performance Verification Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dewan, P.; Kashyap, A.; Kumaraguru, P. Analyzing social and stylometric features to identify spear phishing emails. In Proceedings of the 2014 APWG Symposium on Electronic Crime Research (eCrime), Birmingham, AL, USA, 23–25 September 2014; Volume 11, pp. 1–13. [Google Scholar]
- Allodi, L.; Chotza, T.; Panina, E.; Zannone, N. The need for new antiphishing measures against spear-phishing attacks. IEEE Secur. Priv. 2019, 18, 23–34. [Google Scholar] [CrossRef]
- Huh, J.H. Implementation of lightweight intrusion detection model for security of smart green house and vertical farm. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718767630. [Google Scholar] [CrossRef] [Green Version]
- Sarıkaya, A. Anomaly-Based Cyber Intrusion Detection System with Ensemble Classifier. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2018. [Google Scholar]
- Mohaisen, A.; Alrawi, O. Av-meter: An evaluation of antivirus scans and labels. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Cham, Switzerland, 2014; pp. 112–131. [Google Scholar]
- Roseline, S.A.; Geetha, S. A comprehensive survey of tools and techniques mitigating computer and mobile malware attacks. Comput. Electr. Eng. 2021, 92, 107143. [Google Scholar] [CrossRef]
- Abraham, S.; Chengalur-Smith, I. An overview of social engineering malware: Trends, tactics, and implications. Technol. Soc. 2010, 32, 183–196. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Katzenbeisser, S.; Kinder, J.; Merzdovnik, G.; Weippl, E. Protecting software through obfuscation: Can it keep pace with progress in code analysis? ACM Comput. Surv. CSUR 2016, 49, 1–37. [Google Scholar] [CrossRef]
- Preda, M.D.; Maggi, F. Testing android malware detectors against code obfuscation: A systematization of knowledge and unified methodology. J. Comput. Virol. Hacking Tech. 2017, 13, 209–232. [Google Scholar] [CrossRef]
- Barabosch, T.; Gerhards-Padilla, E. Host-based code injection attacks: A popular technique used by malware. In Proceedings of the 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE), Fajardo, PR, USA, 28–30 October 2014; pp. 8–17. [Google Scholar]
- Najafi, P.; Koehler, D.; Cheng, F.; Meinel, C. NLP-based Entity Behavior Analytics for Malware Detection. In Proceedings of the IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 29–31 October 2021; pp. 1–5. [Google Scholar]
- Seo, K.K. Development of Certification Program for Application Service Provider: Application Certification. J. Korea Saf. Manag. Sci. 2005, 7, 97–108. [Google Scholar]
- Boniface, M.; Phillips, S.C.; Sanchez-Macian, A.; Surridge, M. Dynamic service provisioning using GRIA SLAs. In International Conference on Service-Oriented Computing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 56–67. [Google Scholar]
- Buyya, R. Parmon: A portable and scalable monitoring system for clusters. Softw. Pract. Exp. 2000, 30, 723–739. [Google Scholar] [CrossRef]
- Yamiun, M.M.; Katt, B.; Gkioulos, V. Detecting windows-based exploit chains by means of event correlation and process monitoring. In Future of Information and Communication Conference; Springer: Cham, Switzerland, 2019; pp. 1079–1094. [Google Scholar]
- Mehnaz, S.; Mudgerikar, A.; Bertino, E. Rwguard: A real-time detection system against cryptographic ransomware. In International Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, 2018; pp. 114–136. [Google Scholar]
- Kazienko, P.; Kiewra, M. Rosa—Multi-agent system for web services personalization. In International Atlantic Web Intelligence Conference; Springer: Berlin/Heidelberg, Germany, 2003; pp. 297–306. [Google Scholar]
- Anagnostakis, K.G.; Ioannidis, S.; Miltchev, S.; Greenwald, M.; Smith, J.M.; Ioannidis, J. Efficient packet monitoring for network management. In Proceedings of the NOMS 2002. IEEE/IFIP Network Operations and Management Symposium. ‘Management Solutions for the New Communications World’ (Cat. No. 02CH37327), Florence, Italy, 19 April 2002; pp. 423–436. [Google Scholar]
- Saez, J.C.; Casas, J.; Serrano, A.; Rodríguez-Rodríguez, R.; Castro, F.; Chaver, D.; Prieto-Matías, M. An OS-oriented performance monitoring tool for multicore systems. In European Conference on Parallel Processing; Springer: Cham, Switzerland, 2015; pp. 697–709. [Google Scholar]
- Gu, G.; Porras, P.A.; Yegneswaran, V.; Fong, M.W.; Lee, W. Bothunter: Detecting malware infection through IDS-driven dialog correlation. In Proceedings of the USENIX Security Symposium, Vancouver, BC, Canada, 11–13 August 2007; pp. 1–16. [Google Scholar]
- Ikegami, Y.; Yamauchi, T. Attacker investigation system triggered by information leakage. In Proceedings of the IIAI 4th International Congress on Advanced Applied Informatics, Okayama, Japan, 12–16 July 2015; pp. 24–27. [Google Scholar]
- Hsu, F.; Chen, H.; Ristenpart, T.; Li, J.; Su, Z. Back to the future: A framework for automatic malware removal and system repair. In Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC’06), Miami Beach, FL, USA, 11–15 December 2006; pp. 257–268. [Google Scholar]
- Claffey, G.F.; Regan, H.J. InnovatEDU a collaboration to reduce higher ed security risk. In Proceedings of the 39th Annual ACM SIGUCCS Conference on User Services, San Diego, CA, USA, 6–9 November 2011; pp. 161–164. [Google Scholar]
- Hu, X.; Wang, T.; Stoecklin, M.P.; Schales, D.L.; Jang, J.; Sailer, R. Asset risk scoring in enterprise network with mutually reinforced reputation propagation. In Proceedings of the IEEE Security and Privacy Workshops, San Jose, CA, USA, 17–18 May 2014; pp. 61–64. [Google Scholar]
- Huh, J.H.; Hwang, S. Development of Java Capstone Design of Network Security Curriculum: Focusing on DDoS Intrusion Detection System. International Information Institute (Tokyo). Information 2017, 20, 8057–8066. [Google Scholar]
- Daryabar, F.; Dehghantanha, A.; Udzir, N.I. Investigation of bypassing malware defences and malware detections. In Proceedings of the 7th International Conference on Information Assurance and Security (IAS), Melacca, Malaysia, 5–8 December 2011; pp. 173–178. [Google Scholar]
- Tuscano, A.; Koshy, T.S. Types of Keyloggers Technologies–Survey. In ICCCE 2020; Springer: Singapore, 2021; pp. 11–22. [Google Scholar]
- Baysa, D.; Low, R.M.; Stamp, M. Structural entropy and metamorphic malware. J. Comput. Virol. Hacking Tech. 2013, 9, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Holt, T.J.; Dupont, B. Exploring the factors associated with rejection from a closed cybercrime community. Int. J. Offender Ther. Comp. Criminol. 2019, 63, 1127–1147. [Google Scholar] [CrossRef]
- Apvrille, A. Cryptography for mobile malware obfuscation. In Proceedings of the RSA Conference Europe, London, UK, 12–13 October 2011. [Google Scholar]
- Suk, J.H.; Lee, J.Y.; Jin, H.; Kim, I.S.; Lee, D.H. UnThemida: Commercial obfuscation technique analysis with a fully obfuscated program. Softw. Pract. Exp. 2018, 48, 2331–2349. [Google Scholar] [CrossRef]
- Vu, D.L.; Nguyen, T.K.; Nguyen, T.V.; Nguyen, T.N.; Massacci, F.; Phung, P.H. HIT4Mal: Hybrid image transformation for malware classification. Trans. Emerg. Telecommun. Technol. 2020, 31, e3789. [Google Scholar] [CrossRef]
- Trajanovski, T.; Zhang, N. An automated behaviour-based clustering of IoT botnets. Future Internet 2021, 14, 6. [Google Scholar] [CrossRef]
- Singh, J.; Singh, J. Challenge of malware analysis: Malware obfuscation techniques. Int. J. Inf. Secur. Sci. 2018, 7, 100–110. [Google Scholar]
- Pham, D.P.; Vu, D.L.; Massacci, F. Mac-A-Mal: MacOS malware analysis framework resistant to anti evasion techniques. J. Comput. Virol. Hacking Tech. 2019, 15, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Zhang, Z.; Ansari, N. Revealing packed malware. IEEE Secur. Priv. 2008, 6, 65–69. [Google Scholar] [CrossRef]
- Kang, B.; Yerima, S.Y.; Sezer, S.; McLaughlin, K. N-gram opcode analysis for android malware detection. arXiv 2016, arXiv:1612.01445. Available online: https://arxiv.org/abs/1612.01445 (accessed on 11 April 2022).
- Bukac, V. IDS System Evasion Techniques. Master’s Thesis, Masarykova Univerzita, Brno, Czech Republic, 2010. [Google Scholar]
- Webster, M.P. Formal Models of Reproduction: From Computer Viruses to Artificial Life. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2008. [Google Scholar]
- Payer, U.; Teufl, P.; Lamberger, M. Hybrid engine for polymorphic shellcode detection. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany, 2005; pp. 19–31. [Google Scholar]
- Yadav, T.; Rao, A.M. Technical aspects of cyber kill chain. In International Symposium on Security in Computing and Communication; Springer: Cham, Switzerland, 2015; pp. 438–452. [Google Scholar]
- Zhong, M.; Zhou, Y.; Chen, G. Sequential model-based intrusion detection system for IoT servers using deep learning methods. Sensors 2021, 21, 1113. [Google Scholar] [CrossRef]
- Lee, S.; Huh, J.H. An effective security measures for nuclear power plant using big data analysis approach. J. Supercomput. 2019, 75, 4267–4294. [Google Scholar] [CrossRef]
- Park, S.H.; Yun, S.W.; Jeon, S.E.; Park, N.E.; Shim, H.Y.; Lee, Y.R.; Lee, S.J.; Park, T.R.; Shin, N.Y.; Kang, M.J.; et al. Performance evaluation of open-source endpoint detection and response combining google rapid response and osquery for threat detection. IEEE Access 2022, 11, 1523. [Google Scholar] [CrossRef]
- Möller, D.P. Threat Intelligence. In Cybersecurity in Digital Transformation; Springer: Cham, Switzerland, 2020; pp. 29–45. [Google Scholar]
- Tselios, C.; Tsolis, G.; Athanatos, M. A comprehensive technical survey of contemporary cybersecurity products and solutions. In Computer Security; Springer: Cham, Switzerland, 2019; pp. 3–18. [Google Scholar]
- Chandel, S.; Yu, S.; Yitian, T.; Zhili, Z.; Yusheng, H. Endpoint protection: Measuring the effectiveness of remediation technologies and methodologies for insider threat. In Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Guilin, China, 17–19 October 2019; pp. 81–89. [Google Scholar]
- Argaw, S.T.; Troncoso-Pastoriza, J.R.; Lacey, D.; Florin, M.V.; Calcavecchia, F.; Anderson, D.; Burleson, W.; Vogel, J.M.; O’Leary, C.; Eshaya-Chauvin, B.; et al. Cybersecurity of Hospitals: Discussing the challenges and working towards mitigating the risks. BMC Med. Inform. Decis. Mak. 2020, 20, 146. [Google Scholar] [CrossRef]
- WWeissman, D.; Jayasumana, A. Integrating IoT monitoring for security operation center. In Proceedings of the Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3–5 June 2020; pp. 1–6. [Google Scholar]
- Mao, R.; Xu, H.; Wu, W.; Li, J.; Li, Y.; Lu, M. Overcoming the challenge of variety: Big data abstraction, the next evolution of data management for AAL communication systems. IEEE Commun. Mag. 2015, 53, 42–47. [Google Scholar] [CrossRef]
- Kuorilehto, M.; Hännikäinen, M.; Hämäläinen, T.D. A survey of application distribution in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2005, 5, 859712. [Google Scholar] [CrossRef] [Green Version]
- Blaze, M. A cryptographic file system for UNIX. In Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, VA, USA, 3–5 November 1993; pp. 9–16. [Google Scholar]
- Pasquier, T.; Han, X.; Goldstein, M.; Moyer, T.; Eyers, D.; Seltzer, M.; Bacon, J. Practical whole-system provenance capture. In Proceedings of the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, 24–27 September 2017; pp. 405–418. [Google Scholar]
- McDonald, G.; Papadopoulos, P.; Pitropakis, N.; Ahmad, J.; Buchanan, W.J. Ransomware: Analysing the impact on Windows active directory domain services. Sensors 2022, 22, 953. [Google Scholar] [CrossRef]
- Lugo, P.C.; Garcia, J.M.G.; Flores, J.J. A system for distributed SELinux policy management. In Proceedings of the Third International Conference on Network and System Security, Queensland, Australia, 19–21 October 2009; pp. 254–261. [Google Scholar]
- Cowan, C. Securing Linux Systems with AppArmor. DEF CON 2007, 15, 15–26. [Google Scholar]
- Wang, J.; Li, D.; Yang, L.; Tan, L.; Wang, H. Security strategy and research of power protection equipment based on SELinux. In Proceedings of Sixth International Congress on Information and Communication Technology; Springer: Singapore, 2022; pp. 37–47. [Google Scholar]
- Zhu, H.; Gehrmann, C. Lic-Sec: An enhanced AppArmor Docker security profile generator. J. Inf. Secur. Appl. 2021, 61, 102924. [Google Scholar] [CrossRef]
- Reti, D.; Fraunholz, D.; Zemitis, J.; Schneider, D.; Schotten, H.D. Deep down the rabbit hole: On references in networks of decoy elements. In Proceedings of the International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June 2020; pp. 1–11. [Google Scholar]
- Kindervag, J.; Balaouras, S. No more chewy centers: Introducing the zero trust model of information security. Forrester Res. 2010, 3, 7545. [Google Scholar]
- Zhao, X.; Borders, K.; Prakash, A. Using a virtual machine to protect sensitive Grid resources. Concurr. Comput. Pract. Exp. 2007, 19, 1917–1935. [Google Scholar] [CrossRef] [Green Version]
- Isohara, T.; Takemori, K.; Miyake, Y.; Qu, N.; Perrig, A. Lsm-based secure system monitoring using kernel protection schemes. In Proceedings of the International Conference on Availability, Reliability and Security, Krakow, Poland, 31 August–2 September 2010; pp. 591–596. [Google Scholar]
- Win, T.Y.; Tianfield, H.; Mair, Q. Virtualization security combining mandatory access control and virtual machine introspection. In Proceedings of the IEEE/ACM 7th International Conference on Utility and Cloud Computing, London, UK, 8–11 December 2014; pp. 1004–1009. [Google Scholar]
Layer | Monitoring Function | Description |
---|---|---|
System | Process monitoring |
|
Resource monitoring |
| |
Network | Packet monitoring |
|
TTY Session monitoring |
|
Difference | SELinux/AppArmor | Proposed Structure |
---|---|---|
Key Function |
|
|
Protect mechanism |
|
|
Policy managing method |
|
|
Security managing subject |
|
|
Function ID | Verification Object |
---|---|
Func_VF_1 |
|
Func_VF_2 |
|
Func_VF_3 |
|
Func_VF_4 |
|
Performance ID | Verification Object |
---|---|
Perf_VF_1 |
|
Perf_VF_2 |
|
Perf_VF_3 |
|
Component | CPU Usage (%) File Access Event Count | |||||
---|---|---|---|---|---|---|
File Access Event Monitor | Policy Count | |||||
100 | 250 | 500 | 1000 | 2500 | 5000 | |
CPU usage (%) | ||||||
0.24 | 0.31 | 0.46 | 0.85 | 1.43 | 1.94 | |
Policy Enforcement Server (SELinux) | Policy Count | |||||
100 | 250 | 500 | 1000 | 2500 | 5000 | |
CPU usage (%) | ||||||
0.29 | 0.42 | 0.71 | 1.14 | 1.88 | 4.13 |
Time | File Access Event Occurrence Count by Script | File Access Monitoring Count by the Proposed Structure |
---|---|---|
1 | 310,308 | 310,308 |
2 | 307,293 | 307,293 |
3 | 302,187 | 302,187 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.-H.; Lee, D. Kernel-Based Real-Time File Access Monitoring Structure for Detecting Malware Activity. Electronics 2022, 11, 1871. https://doi.org/10.3390/electronics11121871
Han S-H, Lee D. Kernel-Based Real-Time File Access Monitoring Structure for Detecting Malware Activity. Electronics. 2022; 11(12):1871. https://doi.org/10.3390/electronics11121871
Chicago/Turabian StyleHan, Sung-Hwa, and Daesung Lee. 2022. "Kernel-Based Real-Time File Access Monitoring Structure for Detecting Malware Activity" Electronics 11, no. 12: 1871. https://doi.org/10.3390/electronics11121871
APA StyleHan, S. -H., & Lee, D. (2022). Kernel-Based Real-Time File Access Monitoring Structure for Detecting Malware Activity. Electronics, 11(12), 1871. https://doi.org/10.3390/electronics11121871