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Abstract: Depth images are often accompanied by unavoidable and unpredictable noise. Depth image
denoising algorithms mainly attempt to fill hole data and optimise edges. In this paper, we study
in detail the problem of effectively filtering the data of depth images under noise interference. The
classical filtering algorithm tends to blur edge and texture information, whereas the fractional integral
operator can retain more edge and texture information. In this paper, the Grünwald–Letnikov-type
fractional integral denoising operator is introduced into the depth image denoising process, and the
convolution template of this operator is studied and improved upon to build a fractional integral
denoising model and algorithm for depth image denoising. Depth images from the Redwood dataset
were used to add noise, and the mask constructed by the fractional integral denoising operator
was used to denoise the images by convolution. The experimental results show that the fractional
integration order with the best denoising effect was−0.4≤ ν ≤ −0.3 and that the peak signal-to-noise
ratio was improved by +3 to +6 dB. Under the same environment, median filter denoising had −15
to −30 dB distortion. The filtered depth image was converted to a point cloud image, from which
the denoising effect was subjectively evaluated. Overall, the results prove that the fractional integral
denoising operator can effectively handle noise in depth images while preserving their edge and
texture information and thus has an excellent denoising effect.

Keywords: depth image; fractional integral; denoising; fractional integral operator; fractional integral
denoising operator

1. Introduction

The current, rapidly developing era of artificial intelligence, intelligent driving, and 3D
reconstruction research is founded on the availability of high-precision, high-quality depth
data. Depth data are represented in depth images, which are acquired through methods
such as stereo matching, lidar, and depth camera-based imaging. Although depth cameras
can acquire images in real time, most depth camera images are highly sensitive to envi-
ronmental factors that introduce noise, producing images with low resolution and quality.
Removing the noise in these images can greatly improve super-resolution reconstruction.
Research has imitated the degradation process of Kinect to generate depth images for
testing [1]. For prospective applications in depth image super-resolution reconstruction
and 3D reconstruction [2,3], depth image noise processing forms a crucial pre-link [4–11]
and has been the focus of research on effective depth image noise processing algorithms.

Currently, depth image denoising algorithms mainly have two modes: non-colour
image auxiliary filtering and colour image auxiliary filtering. References [4–7] proposed
the use of the ordinary image filter method to denoise depth images, an approach that
repairs the depth map image but with the loss of much edge information. References [8–12]
reported on a denoising method that uses the image median filter to filter the pixel values in
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the depth image and then superimposes the image enhancement. Reference [12] proposed
depth image denoising by combining the colour image auxiliary guide filter to smooth the
depth image; unfortunately, this restoration approach destroys part of the original depth
values. Reference [13] proposed a denoising method that uses deep learning to improve
the quality of depth images. However, in this approach, the denoising effect is evaluated
solely visually, as the focus is on filling in holes in the depth image to improve target
recognition and detection based on depth images. Detection and denoising algorithms can
also blur the texture information of depth images. In summary, no optimal depth image
processing method has yet been developed, as the numerous available methods are each
lacking in some aspect(s). In particular, in the depth image filtering algorithms guided by
achromatic images, the edge smoothing process destroys some valid and useful data. The
algorithms can remove noise to varying degrees, but they often also remove information
such as edge and texture details, which are critical components of depth images. The root
cause of this problem is that the denoising operator constructed using the integer-order
integral severely reduces the high-frequency information in the image, resulting in the loss
of much of this critical information in the denoised image. The application of fractional
calculus to image processing has been studied for several years [13–17]. For example,
reference [18] successfully applied fractional calculus to the shadow detection of depth
images, demonstrating how fractional calculus can be applied to depth images. Although
the integer-order filtering algorithm has limitations, it can be optimised by introducing a
fractional-order integral model, which is a significant development in the field of depth
image denoising algorithms.

Based on the characteristics of fractional calculus, Section 2 deduces the fractional-
order integral operator suitable for image processing and constructs a fractional-order
integral denoising operator.

Section 3 compares the processing effects of the fractional integral filtering algorithm
and median filtering. Simulations show that fractional integral filtering has a stronger
noise filtering effect and that it retains more texture information than does median filtering.
Comparisons of the proposed algorithm with the classical image denoising algorithms
(median filtering and Gaussian filtering) show that the classical algorithms have a relatively
high distortion degree. The algorithms are also compared with respect to the distortion
of the original noise image, focusing on the distortion of the data point cloud image after
Gaussian filtering; the results show that after Gaussian filtering, the degree of distortion is
larger by approximately 15–30 dB. Therefore, only the median filter is used as a reference
comparison.

2. Fractional Calculus Operator Denoising Theory and Method

Integer-order calculus can describe phenomena very well, whereas fractional-order
calculus can observe the world from another perspective and obtain information that
integer-order calculus cannot. Integer-order calculus has a clear physical meaning and
geometric interpretation, whereas attributing clear physical and geometric meanings to
fractional-order calculus has been difficult. Scientists have comprehensively examined this
problem from different perspectives and have obtained a diverse set of results. Most of these
results are from special cases of fractional calculus, which limits their wider applicability.
Podlubny [19] first proposed a physical explanation of fractional calculus in 2001. In
physics, personal time τ and cosmic time T are two distinct concepts. Universal time is
uniform and equally spaced elapsed time (absolute time), whereas personal time is non-
uniform time (relative time). Podlubny asserted that fractional differentiation corresponds
to the physical phenomenon of τ observed from the perspective of T.

Fractional calculus is suitable for describing some physical phenomena that cannot be
fully described by integer calculus. The description of fractional calculus covers a wide
range of physical fields—for example, anomalous diffusion, random walks, viscoelastic
dynamics, automatic control PID, signal processing, neural networks, chaotic systems, and
image processing.
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2.1. Effect of Fractional Integration on Signal and Model Construction

For the energy signal f (x) ∈ L2(R) of any square area, the Fourier transform is derived
from the basic theory of signal processing as

F(ω) =
∫

R
f (x)e−iωxdx. (1)

Assuming the fractional ν-th order derivative of the signal f v(x)(v ∈ R), according to
the Fourier transform, we get

Dv f (x) = Dv
(ω)·Fv

(ω), (2)

In
Dv

(ω) = (iω)v. (3)

In Figure 1, the fractional differential operator is an amplitude–frequency curve in
the range of [−2, 2]. Order v = 0 means that the signal does not change. When the order
is less than zero (−2 < v < 0), the signal represents an integral operation. The figure
shows that the signal can be nonlinearly attenuated, and the amplitude of this attenuation
is related to the differential order. When the order is greater than zero (0 < v < 2), the
signal represents a differential operation with enhanced nonlinearity: the greater the
differential order, the greater the enhancement amplitude. This feature of fractional-order
calculus is applied in the image field. To achieve more prominent image edges and retain
the texture information of the smooth area of the image, the fractional derivative can
be used to improve the high-frequency components while also nonlinearly retaining the
special characteristics of the low-frequency components of the signal. When it is instead
necessary to denoise the image while retaining much of the edge and texture information,
the opposing characteristics of fractional integration and differentiation can be used to
nonlinearly retain the highest frequency components while attenuating the low-frequency
component of the signal. Integral image denoising can thus achieve image denoising while
preserving as much image edge and texture information as possible, as shown in Figure 1.
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Figure 1. Amplitude−frequency characteristic curve of fractional calculus. (a) Fractional differential
amplitude−frequency characteristic curve and (b) fractional-order integral amplitude-frequency
characteristic curve.
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2.2. Construction Based on Fractional Integral Operator

The Grünwald–Letnikov (G-L) definition of fractional calculus is

G
a Dv

x = lim
h→0

1
hv

t−a
h

∑
n=0
−1j Γ(v + 1)

j!Γ(v− j + 1)
f (x− jh), v ∈ R+, (4)

where ν is the fractional order, h is the calculus step size, [t− a/h] is the integer part of the
variable (t− a)/h, a is the lower limit of the fractional calculus, t is the upper limit of the
fractional calculus, and Γ(n) =

∫ ∞
0 e−ttn−1dt = (n− 1)! is the Gamma function.

The duration interval of the unary signal f (t) is [a, t], divided equally according to the
unit h = 1, and m = [(t− a)/h]h=1 = [t− a]. Therefore, the expression of the first-order
calculus ν of the unary signal is

dνt
dtν
≈ f (t) + (ν) f (t− 1) +

(ν)(ν + 1)
2

f (t− 2) + · · ·+ Γ(ν + m)

Γ(m + 1)Γ(ν)
f (t−m). (5)

As the fractional calculus becomes larger, it uses the separability of the Fourier trans-
form to define the extension of the fractional calculus from one dimension to two. By
dividing the signal into equal parts I(x, y) according to the unit time h = 1, the fractional
differential formula of the x-axis and y-axis can be obtained. From Equation (5), the ap-
proximation of the partial fractional differential defined by Grünwald–Letnikov can be
obtained, so the numerical calculation expression of the fractional integral operator must
be solved along both the x- and y-directions. These are defined as

dν I(x, y)
dxν

= lim
N→∞

[
∑N−1

m=0
Γ(ν + m)

Γ(m + 1)Γ(ν)
I(x−m, y)

]
, (6)

dν I(x, y)
dyν

= lim
N→∞

[
∑N−1

m=0
Γ(ν + m)

Γ(m + 1)Γ(ν)
I(x, y−m)

]
. (7)

From Equations (6) and (7), the fractional integral mask coefficients Wν
m can be obtained

for ν, namely,

Wν
m =

Γ(ν + m)

Γ(m + 1)Γ(ν)
. (8)

Setting N = 3 means that the size of the convolution 3× 3 template is

dν I(x, y)
dxν

≈ I(x, y) + (ν)I(x− 1, y) +
(ν)(ν + 1)

2
I(x− 2, y), (9)

dν I(x, y)
dyν

≈ I(x, y) + (ν)I(x, y− 1) +
(ν)(ν + 1)

2
I(x, y− 2). (10)

To make the integral convolution template of the image have rotation invariance,
Equations (8) and (9) are extended to the remaining six directions, and the fractional-order
integral operator filter for eight directions can be obtained.

In Figure 2, the mask coefficients are

aν
0 = 1

aν
1 = ν

aν
2 = ν(ν+1)

2

. (11)



Electronics 2022, 11, 1910 5 of 15Electronics 2022, 11, x FOR PEER REVIEW 5 of 15 
 

 

𝑎ଶఔ 0 𝑎ଶఔ 0 𝑎ଶఔ 

0 𝑎ଵఔ 𝑎ଵఔ 𝑎ଵఔ 0 

𝑎ଶఔ 𝑎ଵఔ 8𝑎ఔ 𝑎ଵఔ 𝑎ଶఔ 

0 𝑎ଵఔ 𝑎ଵఔ 𝑎ଵఔ 0 

𝑎ଶఔ 0 𝑎ଶఔ 0 𝑎ଶఔ 

Figure 2. Fractional integral operator. 

Linear weighting can be obtained according to the proportion of the convolution 
sums 𝐼(𝑥, 𝑦)തതതതതതതത =  𝐼(𝑥, 𝑦)𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦) + 𝐼(𝑥, 𝑦)ସହ𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ସହ + 𝐼(𝑥, 𝑦)ଽ𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ଽ

+ 𝐼(𝑥, 𝑦)ଵଷହ𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ଵଷହ + 𝐼(𝑥, 𝑦)ଵ଼𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ଵ଼
+ 𝐼(𝑥, 𝑦)ଶଶହ𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ଶଶହ + 𝐼(𝑥, 𝑦)ଶ𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ଶ
+ 𝐼(𝑥, 𝑦)ଷଵହ𝑠𝑢𝑚(𝑥, 𝑦) × 𝐼(𝑥, 𝑦)ଷଵହ, 

(13)

where 𝑠𝑢𝑚(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝐼(𝑥, 𝑦)ସହ + 𝐼(𝑥, 𝑦)ଽ + 𝐼(𝑥, 𝑦)ଵଷହ + 𝐼(𝑥, 𝑦)ଵ଼ + 𝐼(𝑥, 𝑦)ଶଶହ + 𝐼(𝑥, 𝑦)ଶ + 𝐼(𝑥, 𝑦)ଷଵହ. (14) 

In the iterative process of the denoising algorithm, the 𝐼(𝑥, 𝑦) initial condition with 
noise is used, and the maximum peak signal-to-noise ratio (PSNR) of the image after iter-
ative calculation is used as the termination condition for the iteration. 

2.3. Fractional Integral Denoising Operator and Convolution Template for Constructing Depth 
Images 

In the process of collecting depth images, the physical attributes of the equipment 
and the adaptability of algorithms can make depth images noisy. Depth images typically 
contain single-point noise, and the data values represent the depth of field data; therefore, 
the noise data cannot be directly observed in the depth image and need to be converted 
into a point cloud image for observation. 

After noise is added to the acquired depth image, the image signal can be expressed 
as 𝑦(𝑖, 𝑗)  =  ൜𝑢(𝑖, 𝑗)𝑥(𝑖, 𝑗), (15)

where 𝑦(𝑖, 𝑗) is the signal value of the noisy image, 𝑥(𝑖, 𝑗) is the original image signal 
value, and 𝑢(𝑖, 𝑗) is the image signal value with added noise. 

The Gaussian algorithm is used to randomly add noise, allowing the image with 
noise to be compared against point cloud images, as shown in Figure 3. 

Figure 2. Fractional integral operator.

Define the positive and negative directions of the x-axis to have a90 and a180 , respec-
tively, and the positive and negative directions of the y-axis to have a0 and a180, respectively.
In the anti-clockwise direction, there exist a45, a135, a225, and a315. Then, use the 3× 3 masks
Aν in eight directions for the non-linear filtering of image points I(x, y) of size 5× 5 for
convolution with computation.

I(x, y)θ = I(x, y) ∗ Aν, (12)

Linear weighting can be obtained according to the proportion of the convolution sums

(I(x, y)) = I(x,y)0

sum(x,y) × I(x, y)0 + I(x,y)45

sum(x,y) × I(x, y)45

+ I(x,y)90

sum(x,y) × I(x, y)90 + I(x,y)135

sum(x,y) × I(x, y)135

+ I(x,y)180

sum(x,y) × I(x, y)180 + I(x,y)225

sum(x,y) × I(x, y)225

+ I(x,y)270

sum(x,y) × I(x, y)270 + I(x,y)315

sum(x,y) × I(x, y)315,

(13)

where

sum(x, y) = I(x, y)0 + I(x, y)45 + I(x, y)90 + I(x, y)135 + I(x, y)180 + I(x, y)225 + I(x, y)270 + I(x, y)315. (14)

In the iterative process of the denoising algorithm, the I(x, y) initial condition with
noise is used, and the maximum peak signal-to-noise ratio (PSNR) of the image after
iterative calculation is used as the termination condition for the iteration.

2.3. Fractional Integral Denoising Operator and Convolution Template for Constructing
Depth Images

In the process of collecting depth images, the physical attributes of the equipment
and the adaptability of algorithms can make depth images noisy. Depth images typically
contain single-point noise, and the data values represent the depth of field data; therefore,
the noise data cannot be directly observed in the depth image and need to be converted
into a point cloud image for observation.

After noise is added to the acquired depth image, the image signal can be expressed as

y(i, j) =
{

u(i, j)
x(i, j)

, (15)

where y(i, j) is the signal value of the noisy image, x(i, j) is the original image signal value,
and u(i, j) is the image signal value with added noise.

The Gaussian algorithm is used to randomly add noise, allowing the image with noise
to be compared against point cloud images, as shown in Figure 3.
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From the characteristics of the depth image, the noise image (x, y) is represented
by u(x, y), where u(x, y) = 0. In the depth images, adjacent pixels share a certain level
of similarity. For processing the noise, the feature information of u(x, y) in the local
neighbourhood of the target pixel can be used such that the reasonable depth value of the
noise can be recovered using (x, y) and the depth value of the surrounding pixels. From
Table 1 and Equation (11), the fractional-order mask of the order can be obtained (see ν in
Figure 4).

Table 1. Fractional integral filter denoising results.

Dataset
Number

V(Best) PSNR(Best) PSNR PSNR

Fractional Integral Denoising (dB) Noise (dB) Median Filter
Denoising (dB)

05989 −0.3 52.992 47.307 37.480
03236 −0.3 52.070 47.599 36.107
03528 −0.4 53.847 50.094 37.855
02350 −0.3 57.391 54.611 36.309
09860 −0.4 51.289 43.457 37.326
08343 −0.3 50.870 46.934 32.112
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To reduce unnecessary space and time complexity, the feature information of the local
neighbourhood of the target pixel should be fully utilised, as pixels closer to the central
target have a higher level of similarity with the target. Therefore, the surrounding depth
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image values y(i, j) can be used for filtering, and the fractional integral normalisation factor
q can be constructed from Figure 5 as

q = ∑360
θ=0 I(x, y)θ (θ = 0, 45, 90, 135, 180, 215, 270, 315). (16)
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By importing q into Equation (9), a new I(x, y) after ν-order fractional integral filtering
with a 3× 3 mask is obtained as

I(x, y)ν = ∑360
θ=0

I(x, y)θ

q
∗ I(x, y)θ(θ = 0, 45, 90, 135, 180, 215, 270, 315). (17)

2.4. Fractional Integral Operator Denoising Algorithm Flow for Depth Images

Depth images are ordered data; hence, parallel computing can be used for compu-
tational convolution, thus ensuring efficient computation. The depth image has data
orderliness and surrounding correlation, so the noise data can be processed using the
surrounding valid data. The fractional integral de-noising algorithm is verified as follows
(see Figure 5 for the flow chart):

First, the depth image is obtained from the Redwood dataset [20].
Second, random Gaussian noise is added to the depth image for iterative denoising

processing.
Finally, the maximum PSNR of each denoising iteration is determined after the iterative

algorithm has been run and terminated.

3. Experimental Results and Analysis
3.1. Evaluation Method of Depth Image Denoising Effect

The proposed depth map filtering algorithm is tested using images from an open-
source dataset. Specifically, random noise is added to a depth image, and the results of the
denoising algorithm are then evaluated using the PSNR. Considering the characteristics of
the depth image and its point distance information, an objective evaluation standard can
be used as an intuitive scheme for evaluating the denoising performance of the algorithm;
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however, in many cases, this approach cannot reflect the actual denoising effect. Therefore,
PSNR values are used as the objective evaluation criteria for evaluating the depth image
denoising effect.

Assuming that the original depth image without noise f (i, j) is the ground truth, the
depth image to be evaluated is f (i, j), where (0 < x < M, 0 < y < N)

PSNR = 10log10

 ∑M
i=1 ∑N

j=1( f (i, j))2

∑M
i=1 ∑N

j=1

(
f (i, j)− f (i, j)

)2

. (18)

Here, the M and N sub-tables are both the same width and height as the image.

3.2. Simulated Experiment and Analysis of Depth Image

Depth images obtained from the Redwood dataset [20] were used to verify the denois-
ing effect of the proposed algorithm, following the process in Figure 5. The denoising effect
of the proposed algorithm was also compared with that of the median filter algorithm. The
simulated experimental results show that although the median filter algorithm performed
well in terms of edge problems and the denoising ability, it resulted in the loss of key
image information. The PSNR results also show that key information was lost, with the
PSNR distorted by approximately −15 to −30 dB. These experimental results verify the
effectiveness of the algorithm. In addition, we conclude that the effect of depth image
denoising can be evaluated via two approaches: (1) visually aided subjective evaluation
through 3D point cloud images, and (2) uploading data for objective PSNR evaluation, as
shown in Figure 6.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 15 
 

 

algorithm; however, in many cases, this approach cannot reflect the actual denoising ef-
fect. Therefore, PSNR values are used as the objective evaluation criteria for evaluating 
the depth image denoising effect. 

Assuming that the original depth image without noise 𝑓(𝑖, 𝑗) is the ground truth, the 
depth image to be evaluated is 𝑓(𝑖, 𝑗), where (0 < x < M, 0 < y < N) 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔ଵ  ∑ ∑ ((,))మೕಿసభಾసభ∑ ∑ ((,)ି(,))మೕಿసభಾసభ ൨. (18)

Here, the M and N sub-tables are both the same width and height as the image. 

3.2. Simulated Experiment and Analysis of Depth Image 
Depth images obtained from the Redwood dataset [20] were used to verify the de-

noising effect of the proposed algorithm, following the process in Figure 5. The denoising 
effect of the proposed algorithm was also compared with that of the median filter algo-
rithm. The simulated experimental results show that although the median filter algorithm 
performed well in terms of edge problems and the denoising ability, it resulted in the loss 
of key image information. The PSNR results also show that key information was lost, with 
the PSNR distorted by approximately −15 to −30 dB. These experimental results verify the 
effectiveness of the algorithm. In addition, we conclude that the effect of depth image 
denoising can be evaluated via two approaches: (1) visually aided subjective evaluation 
through 3D point cloud images, and (2) uploading data for objective PSNR evaluation, as 
shown in Figure 6. 

Figure 5 presents the algorithm verification process using data from the Redwood 
dataset [20] (dataset number 00033) with Gaussian noise added to the depth image, before 
using either the median filtering or fractional denoising algorithms. The fractional integral 
operator denoising algorithm also used different orders to verify the optimal order, and 
it used the PSNR to evaluate the optimal fractional denoising order, as shown in Figures 
7 and 8; the simulated experiments yielded the best results when ν = −0.3. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Denoising effect of fractional integral denoising and median filtering. (a) RGB image (da-
taset number 00033); (b) deep pseudo-colour map (dataset number 00033); (c) noise-free point cloud 
image; (d) point cloud image with added noise, PSNR = 46.58 dB; (e) point cloud image filtered by 
fractional integral denoising (ν = −0.3, PSNR = 52.509 dB); and (f) point cloud of the depth image 
after median filtering and denoising (PSNR = 39.141 dB). 

Figure 6. Denoising effect of fractional integral denoising and median filtering. (a) RGB image
(dataset number 00033); (b) deep pseudo-colour map (dataset number 00033); (c) noise-free point
cloud image; (d) point cloud image with added noise, PSNR = 46.58 dB; (e) point cloud image filtered
by fractional integral denoising (ν = −0.3, PSNR = 52.509 dB); and (f) point cloud of the depth image
after median filtering and denoising (PSNR = 39.141 dB).
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Figure 5 presents the algorithm verification process using data from the Redwood
dataset [20] (dataset number 00033) with Gaussian noise added to the depth image, before
using either the median filtering or fractional denoising algorithms. The fractional inte-
gral operator denoising algorithm also used different orders to verify the optimal order,
and it used the PSNR to evaluate the optimal fractional denoising order, as shown in
Figures 7 and 8; the simulated experiments yielded the best results when ν = −0.3.
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Figure 8. Optimal fractional integral filter denoising order.

The algorithm was further verified using more images and the optimal fractional
integration order obtained from the experimental data. The six graph datasets of the
Redwood dataset [20] were each used for fractional filter denoising. The filter order range
was −1.0 ≤ ν ≤ −0.1, as shown in Figure 9; the best denoising effect of the fractional order
was achieved when −0.4 ≤ ν ≤ −0.3.
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cloud image added; (d) point cloud image with added noise, PSNR = 47.599 dB; (e) point cloud 
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Figure 9. Denoising effects of fractional integral denoising and median filtering. (a) RGB image
(dataset number 05959); (b) deep pseudo-colour map (dataset number 05989); (c) noise-free point
cloud image; (d) point cloud image with added noise, PSNR = 47.307 dB; (e) point cloud image
filtered by fractional integral denoising (ν = −0.3, PSNR = 52.992 dB); and (f) point cloud of the depth
image after median filtering and denoising (PSNR = 37.480 dB).

For these six datasets, either fractional integral operator denoising or median filter
denoising were performed. The filtering effects are shown in Table 1.

The filtering effects for the best filtering order for all six datasets are shown in
Figures 9–14, on the basis of which the effectiveness of the denoising algorithms can be
evaluated.
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Figure 10. Denoising effects of fractional integral denoising and median filtering. (a) RGB image
(dataset number 03236); (b) deep pseudo-colour map (dataset number 03236); (c) no noise point cloud
image added; (d) point cloud image with added noise, PSNR = 47.599 dB; (e) point cloud image
filtered by the fractional integral denoising (ν = −0.3, PSNR = 52.070 dB); (f) point cloud of the depth
image after median filtering and denoising (PSNR = 36.107 dB).
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Figure 10. Denoising effects of fractional integral denoising and median filtering. (a) RGB image 
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Figure 11. Denoising effects of fractional integral denoising and median filtering. (a) RGB image
(dataset number 03528); (b) deep pseudo-colour map (dataset number 03528); (c) noise-free point
cloud image; (d) point cloud image with added noise, PSNR = 50.094 dB; (e) point cloud image
filtered by fractional integral denoising (ν = −0.4, PSNR = 53.847 dB); and (f) point cloud of the depth
image after median filtering and denoising (PSNR = 37.855 dB).
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Figure 13. Denoising effects of fractional integral denoising and median filtering. (a) RGB image 
(dataset number 09860); (b) deep pseudo-colour map (dataset number 09860); (c) noise-free point 
cloud image; (d) point cloud image with added noise, PSNR = 43.457 dB; (e) point cloud image 
filtered by fractional integral denoising (ν = −0.4, PSNR = 51.289 dB); and (f) point cloud of the depth 
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Figure 12. Denoising effects of fractional integral denoising and median filtering. (a) RGB image
(dataset number 02350); (b) deep pseudo-colour map (dataset number 02350); (c) noise-free point
cloud image; (d) point cloud image with added noise, PSNR = 54.611 dB; (e) point cloud image
filtered by fractional integral denoising (ν = −0.3, PSNR = 57.391 dB); and (f) point cloud of the depth
image after median filtering and denoising (PSNR = 36.309 dB).
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Figure 13. Denoising effects of fractional integral denoising and median filtering. (a) RGB image
(dataset number 09860); (b) deep pseudo-colour map (dataset number 09860); (c) noise-free point
cloud image; (d) point cloud image with added noise, PSNR = 43.457 dB; (e) point cloud image
filtered by fractional integral denoising (ν = −0.4, PSNR = 51.289 dB); and (f) point cloud of the depth
image after median filtering and denoising (PSNR = 37.326 dB).
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obtain depth images for verification. The operating system environment was Windows 
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ness of the proposed fractional-order denoising algorithm. In the experiment, 𝜈 was set to −0.3 for the fractional-order integral denoising operator to filter the acquired depth im-
age, and five iterations were performed, as shown in Figure 15. 
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Figure 14. Denoising effects of the fractional integral denoising and median filtering. (a) RGB image
(dataset number 08343); (b) deep pseudo-colour map (dataset number 08343); (c) noise-free point
cloud image; (d) point cloud image with added noise, PSNR = 46.934 dB; (e) point cloud image
filtered by fractional integral denoising (ν = −0.3, PSNR = 50.870 dB); and (f) point cloud of the depth
image after median filtering and denoising (PSNR = 32.112 dB).
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These six experiments show that fractional integral denoising achieved a 3–6 dB im-
provement in the PSNR, with each experiment demonstrating a significant denoising effect.
The denoised depth images were then converted into point cloud images for comparative
analysis. The analysis revealed that a large amount of noise was effectively removed and
that the remaining noise could be removed as invalid points. Overall, the results show
that the fractional integral denoising operator performs well in filtering noise from depth
images and can find significant applications in future research.

4. Laboratory Field Depth Image Denoising Effect

Our experiments were performed in a Python environment, with the Pyrealsense2
and OpenCV2 plugins, using a depth camera (Intel Realsense2 Depth Camera D435) to
obtain depth images for verification. The operating system environment was Windows 10,
and the CPU was AMD Ryzen 7 4800H. The experimental results prove the effectiveness of
the proposed fractional-order denoising algorithm. In the experiment, ν was set to −0.3 for
the fractional-order integral denoising operator to filter the acquired depth image, and five
iterations were performed, as shown in Figure 15.
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Figure 15. Denoising effects of fractional integral denoising and median filtering. (a) RGB image;
(b) deep pseudo-colour map; (c) noise-free point cloud image; (d) point cloud image of the depth
image filtered by the fractional integral denoising (ν = −0.3, PSNR = 53.764 dB); and (e) point cloud
of the depth image after median filtering and denoising (PSNR = 34.708 dB).

The denoising experiment results are shown in Table 2. The results show that the use
of fractional integral denoising resulted in lower effective information loss and that the
PSNR (55.734 dB) after fractional integral denoising was higher than that after median
filtering. The PSNR (34.708 dB) of the classical filtering algorithm shows that the texture
information and edges were well preserved. Table 2 shows that the proposed approach
yielded more valid data than median filtering. Thus, the experimental results verify that
the denoising effect of the fractional-order integral denoising algorithm is better than that
of the integer-order classical filtering algorithm.
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Table 2. Fractional integral denoising operator filtering results.

Data Set PSNR
(dB)

Valid Point
(Normal)

Valid Point
(After Statistical
Outlier Removal)

Original depth image 100.00 854,500 831,126
Median filter

denoising 34.708 855,799 831,126

Fractional integral
denoising (v = −0.3 ) 53.764 854,575 841,309

5. Conclusions

In this paper, fractional calculus is introduced into the field of depth image processing,
and a fractional integral denoising operator mask suitable for depth image processing is
derived and constructed. The proposed depth image denoising algorithm implemented
using fractional integral denoising was validated via simulation experiments on the Red-
wood dataset [20]. The experimental results show that the algorithm fully exploited the
characteristics of the fractional integral denoising algorithm to preserve texture information
and edges and that it performed successively minor adjustments to noisy images through
multiple iterations. Regarding the denoising effect, the fractional integral denoising opera-
tor clearly outperformed the integral denoising operator. However, a subjective evaluation
of the denoising effect of the proposed approach after converting the denoised depth image
into a point cloud revealed that some noises, especially noises with small amplitude, were
not effectively removed and were preserved as texture information. Much remains to be
explored and achieved in depth image denoising by fractional integral denoising. Further
improving the proposed fractional order-based denoising algorithm is a future research
direction, as is introducing the fractional integral to point cloud denoising. Moreover, to
realise self-adaptive order fractional integral denoising, it is necessary to further study the
relationship between different orders of the fractional integral and the surface texture.

Depth image processing is also a research hotspot in computer vision and image
processing, where such processing not only has theoretical significance but also major
practical applications. For example, in computer gaming, to capture a player’s gestures
and actions and realise human–computer interaction through somatosensory peripheral
devices, the acquired depth images must be processed to enhance the quality of the depth
data. Similarly, in 3D reconstruction, depth camera-derived depth images can be enhanced
by the algorithm proposed in this paper. Furthermore, super-resolution reconstruction of
depth images has applications in visual fields such as interactive gaming, biomedicine, and
augmented reality, and these applications can benefit from highly accurate depth image
data. For instance, high-accuracy super-resolution reconstruction can yield highly realistic
3D object surface models. In addition, both artificial intelligence and autonomous driving
require highly accurate depth image data. The foregoing applications are all expected to
make the exploration of highly effective processing algorithms a research hotspot.
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