Next Article in Journal
Research on an Optimized Overmodulation Strategy Based on Rectifier of Indirect Space Vector of Matrix Converter
Previous Article in Journal
Influence of Linewidth Enhancement Factor on the Nonlinear Dynamics and TDS Concealment of Semiconductor Ring Lasers
Previous Article in Special Issue
Testability Evaluation in Time-Variant Circuits: A New Graphical Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Diagnosis in Analog Electronic Circuits, Electrical Power Systems and Smart Grids

by
Maria Cristina Piccirilli
* and
Antonio Luchetta
*
Department of Information Engineering (DINFO), University of Florence, 50139 Firenze, Italy
*
Authors to whom correspondence should be addressed.
Electronics 2022, 11(13), 2008; https://doi.org/10.3390/electronics11132008
Submission received: 22 June 2022 / Accepted: 22 June 2022 / Published: 27 June 2022
Diagnosis, in its most general meaning, is the process aimed at identifying the causes that have produced a behavior, normally anomalous, in a system of either biological or artificial nature. In medicine, the term has long been commonly used and describes the aim of identifying a disease producing certain symptoms. The concept of diagnosis can easily be extended to a more generic biological context, and has eventually been applied also to technology. In fact, in terms of a machine, it is important tracing back to the causes that have produced an anomaly, typically a fault, or possibly a design error; in any case something that, once identified, must be corrected. For simple systems, a diagnosis can be achieved manually by an expert operator. However, as the system complexity increases, fault identification becomes more and more difficult and taking advantage of automatized tools becomes necessary. An additional advantage of an automated diagnosis system is its inherent rapidity, an extremely important feature when the consequences of a fault involve many users simultaneously, as, for example, in the case of electrical power distribution, or when they can create safety critical conditions. In such cases, an even more desirable feature is the ability to prevent the malfunctions by recognizing the symptoms that precede the fault, typically associated with gradual performance degradation or anomalous variations in some key parameters, produced by aging or alterations associated with chemical, mechanical and wear phenomena.
Electrical and electronic systems certainly belong to a category where the need for automated diagnosis is extremely important, due to their inherent complexity and ubiquitous presence. It is also important to keep in mind that, despite the fact that more than 80% of electronic circuits are digital, around 80% of faults occur mainly in the analog parts [1]. If automatic diagnosis tools are common in the digital world, in the analog field, dominated by more complex phenomena, the same level of automation has not yet been reached and the development of this kind of tools is still an open research subject, on which researchers and industrial engineers are intensively working [2].
In this Special Issue, we focus on five papers covering aspects of different kinds of systems.
Two papers, produced by long-term experts in the field [3,4], cover the problem of faults in circuits containing Distributed Parameter Multiconductor Transmission Lines (DPMTL) and lumped elements, which terminate the end of a circuit. The first paper [3] aims at developing a method for diagnosing short and open faults with an approach based on a measurement test performed in AC with the associated diagnostic equations belonging to the frequency domain. The obtained nonlinear complex equations are solved by a specifically developed numerical method. The procedure is applied to the possible soft shorts and is adapted to the detection and location of open faults in DPMTL. The second paper [4] proposes instead a parametric fault diagnosis of analog circuits operating at a very high frequency and consisting of a Distributed Parameter Transmission Line (DPTL), terminated at both ends by lumped one-ports. The method takes into account all aspects of parametric fault diagnosis: detection of the faulty area, location of the fault inside this area, and estimation of its value. It can be extended to a broader class of circuits containing several transmission lines. Several numerical examples are also presented.
An approach based on machine learning is applied to the parametric fault diagnosis of analog circuits in [5]. The technique is based on three sequential steps: the first one is the calculation of testability and ambiguity groups of the circuit under test; the second one is the location of the failure and its correct fault class via multi-frequency measurements; the third step is the estimation of the value of the faulty component, taking into account the fabrication tolerances of the components. The study combines machine learning techniques, used for classification and approximation, with testability analysis procedures for analog circuits. Again carrying out the testability evaluation, the paper in [6] proposes a new graphical method specifically dedicated to the fault diagnosis of DC–DC converters, executed via Complex Valued Neural Networks (CVNNs), based on Multi-Layer Multi-Valued Neurons (MLMVN). In order to effectively design the network, the testability analysis is exploited in a special graphic environment proposed by the authors.
In paper [7], the diagnosis of particle-induced failures in harsh environments, such as space and high-energy physics experiments, is discussed. To address these effects, simulation-before-test and simulation-after-test are used by the authors as key points in choosing which Radiation Hardening By Design (RHBD) techniques can be implemented to mitigate or prevent failures. The effects that space and high-energy environments have on two different architectures for high-radiation and high-frequency data transmission are reported, and the efficiency of the mitigation techniques is exploited.
The papers presented in this Special Issue testify the heterogeneous and transversal aspects of studies and applications in the field of fault diagnosis. However, the topics of the Special Issue included other subjects, such as maintenance, fault prevention, fault resolution, fault-tolerant approaches and non-intrusive monitoring techniques of smart grids, not covered by the five papers. This is due to the relatively recent interest of the scientific community in smart grids. The absence of material on these topics must encourage scholars to continue research in the field of diagnosis.
We would like to take this opportunity to thank all authors for submitting papers to this Special Issue. We also hope that readers will find new and useful information on diagnosis in analog electronic and electrical circuits.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Binu, D.; Kariyappa, B.S. A survey on fault diagnosis of analog circuits: Taxonomy and state of the art. AEU-International. J. Electron. Commun. 2017, 73, 68–83. [Google Scholar] [CrossRef]
  2. Furse, C.M.; Kafal, M.; Razzaghi, R.; Shin, Y.-J. Fault Diagnosis for Electrical Systems and Power Networks: A Review. IEEE Sens. J. 2021, 21, 888–906. [Google Scholar] [CrossRef]
  3. Tadeusiewicz, M.; Hałgas, S. A Method for Diagnosing Soft Short and Open Faults in Distributed Parameter Multiconductor Transmission Lines. Electronics 2021, 10, 35. [Google Scholar] [CrossRef]
  4. Tadeusiewicz, M.; Hałgas, S. Parametric Fault Diagnosis of Very High-Frequency Circuits Containing Distributed Parameter Transmission Lines. Electronics 2021, 10, 550. [Google Scholar] [CrossRef]
  5. Aizenberg, I.; Belardi, R.; Bindi, M.; Grasso, F.; Manetti, S.; Luchetta, A.; Piccirilli, M.C. A Neural Network Classifier with Multi-Valued Neurons for Analog Circuit Fault Diagnosis. Electronics 2021, 10, 349. [Google Scholar] [CrossRef]
  6. Bindi, M.; Piccirilli, M.C.; Luchetta, A.; Grasso, F.; Manetti, S. Testability Evaluation in Time-Variant Circuits: A New Graphical Method. Electronics 2022, 11, 1589. [Google Scholar] [CrossRef]
  7. Monda, D.; Ciarpi, G.; Saponara, S. Diagnosis of Faults Induced by Radiation and Circuit-Level Design Mitigation Techniques: Experience from VCO and High-Speed Driver CMOS ICs Case Studies. Electronics 2021, 10, 2144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Piccirilli, M.C.; Luchetta, A. Diagnosis in Analog Electronic Circuits, Electrical Power Systems and Smart Grids. Electronics 2022, 11, 2008. https://doi.org/10.3390/electronics11132008

AMA Style

Piccirilli MC, Luchetta A. Diagnosis in Analog Electronic Circuits, Electrical Power Systems and Smart Grids. Electronics. 2022; 11(13):2008. https://doi.org/10.3390/electronics11132008

Chicago/Turabian Style

Piccirilli, Maria Cristina, and Antonio Luchetta. 2022. "Diagnosis in Analog Electronic Circuits, Electrical Power Systems and Smart Grids" Electronics 11, no. 13: 2008. https://doi.org/10.3390/electronics11132008

APA Style

Piccirilli, M. C., & Luchetta, A. (2022). Diagnosis in Analog Electronic Circuits, Electrical Power Systems and Smart Grids. Electronics, 11(13), 2008. https://doi.org/10.3390/electronics11132008

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop