TAISAM: A Transistor Array-Based Test Method for Characterizing Heavy Ion-Induced Sensitive Areas in Semiconductor Materials
Abstract
:1. Introduction
2. TAISAM Test Structure
3. Test Chip Design and Experimental Setup
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TAISAM | Transistor Array-based Ion Sensitive Area Measurement |
LET | linear energy transfer |
SEU | single-event upset |
PBA | parasitic bipolar amplification |
FPGAs | field programmable gate arrays |
References
- Zhang, Z.; Arehart, A.; Cinkilic, E.; Chen, J.; Zhang, E.; Fleetwood, D.; Schrimpf, R.; McSkimming, B.; Speck, J.; Ringel, S. Impact of proton irradiation on deep level states in n-GaN. Appl. Phys. Lett. 2013, 103, 042102. [Google Scholar] [CrossRef]
- Fleetwood, D.; Shaneyfelt, M.; Schwank, J. Estimating oxide-trap, interface-trap, and border-trap charge densities in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 1994, 64, 1965–1967. [Google Scholar] [CrossRef]
- Jun, B.; White, Y.; Schrimpf, R.; Fleetwood, D.; Brunier, F.; Bresson, N.; Cristoloveanu, S.; Tolk, N. Characterization of multiple Si/SiO2 interfaces in silicon-on-insulator materials via second-harmonic generation. Appl. Phys. Lett. 2004, 85, 3095–3097. [Google Scholar] [CrossRef]
- Ferlet-Cavrois, V.; Massengill, L.W.; Gouker, P. Single event transients in digital CMOS—A review. IEEE Trans. Nucl. Sci. 2013, 60, 1767–1790. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Q.; Liang, B.; Chen, J.; Chi, Y.; Guo, Y. Bulk bias as an analog single-event transient mitigation technique with negligible penalty. Electronics 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Azimi, S.; De Sio, C.; Rizzieri, D.; Sterpone, L. Analysis of Single Event Effects on Embedded Processor. Electronics 2021, 10, 3160. [Google Scholar] [CrossRef]
- Tang, D.; He, C.; Li, Y.; Zang, H.; Xiong, C.; Zhang, J. Soft error reliability in advanced CMOS technologies-trends and challenges. Sci. China Technol. Sci. 2014, 57, 1846–1857. [Google Scholar] [CrossRef]
- Black, J.D.; Dodd, P.E.; Warren, K.M. Physics of multiple-node charge collection and impacts on single-event characterization and soft error rate prediction. IEEE Trans. Nucl. Sci. 2013, 60, 1836–1851. [Google Scholar] [CrossRef]
- Massengill, L.W.; Bhuva, B.L.; Holman, W.T.; Alles, M.L.; Loveless, T.D. Technology scaling and soft error reliability. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; p. 3C-1. [Google Scholar] [CrossRef]
- Song, R.; Shao, J.; Liang, B.; Chi, Y.; Chen, J. MSIFF: A Radiation-Hardened Flip-Flop via Interleaving Master-Slave Stage Layout Topology; The Institute of Electronics, Information and Communication Engineers: Tokyo, Japan, 2020; p. 17-20190708. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Liu, S.; Zheng, H.; Wang, L.; Li, T. Novel Radiation-Hardened High-Speed DFF Design Based on Redundant Filter and Typical Application Analysis. Electronics 2022, 11, 1302. [Google Scholar] [CrossRef]
- Chi, Y.; Cai, C.; He, Z.; Wu, Z.; Fang, Y.; Chen, J.; Liang, B. SEU Tolerance Efficiency of Multiple Layout-Hardened 28 nm DICE D Flip-Flops. Electronics 2022, 11, 972. [Google Scholar] [CrossRef]
- Huang, P.; Chen, S.; Chen, J.; Liang, B.; Chi, Y. Heavy-ion-induced charge sharing measurement with a novel uniform vertical inverter chains (UniVIC) SEMT test structure. IEEE Trans. Nucl. Sci. 2015, 62, 3330–3338. [Google Scholar] [CrossRef]
- Huang, P.; Chen, S.; Chen, J.; Liang, B.; Song, R. The Separation Measurement of P-Hit and N-Hit Charge Sharing With an “S-Like” Inverter Chains Test Structure. IEEE Trans. Nucl. Sci. 2017, 64, 1029–1036. [Google Scholar] [CrossRef]
- Casse, G.; Massari, N.; Franks, M.; Parmesan, L. A novel concept for a fully digital particle detector. J. Instrum. 2022, 17, P04010. [Google Scholar] [CrossRef]
- Zhang, K.; Yamamoto, R.; Furuta, J.; Kobayashi, K.; Onodera, H. Parasitic bipolar effects on soft errors to prevent simultaneous flips of redundant flip-flops. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; p. 5B–2. [Google Scholar] [CrossRef]
- He, Y.; Chen, S. Comparison of heavy-ion induced SEU for D-and TMR-flip-flop designs in 65-nm bulk CMOS technology. Sci. China Inf. Sci. 2014, 57, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Loveless, T.; Jagannathan, S.; Reece, T.; Chetia, J.; Bhuva, B.; McCurdy, M.; Massengill, L.; Wen, S.J.; Wong, R.; Rennie, D. Neutron-and proton-induced single event upsets for D-and DICE-flip/flop designs at a 40 nm technology node. IEEE Trans. Nucl. Sci. 2011, 58, 1008–1014. [Google Scholar] [CrossRef]
- Warren, K.M.; Sternberg, A.L.; Black, J.D.; Weller, R.A.; Reed, R.A.; Mendenhall, M.H.; Schrimpf, R.D.; Massengill, L.W. Heavy ion testing and single event upset rate prediction considerations for a DICE flip-flop. IEEE Trans. Nucl. Sci. 2009, 56, 3130–3137. [Google Scholar] [CrossRef]
- Song, R.; Shao, J.; Liang, B.; Chi, Y.; Chen, J. A Single-Event Upset Evaluation Approach Using Ion-Induced Sensitive Area. In Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Jagannathan, S.; Gadlage, M.J.; Bhuva, B.L.; Schrimpf, R.D.; Narasimham, B.; Chetia, J.; Ahlbin, J.R.; Massengill, L.W. Independent measurement of SET pulse widths from N-hits and P-hits in 65-nm CMOS. IEEE Trans. Nucl. Sci. 2010, 57, 3386–3391. [Google Scholar] [CrossRef]
- Ruiqiang, S.; Shuming, C.; Yankang, D.; Pengcheng, H.; Jianjun, C.; Yaqing, C. PABAM: A physics-based analytical model to estimate bipolar amplification effect induced collected charge at circuit level. IEEE Trans. Device Mater. Reliab. 2015, 15, 595–603. [Google Scholar] [CrossRef]
- He, Y.B.; Chen, S.M. Experimental verification of the parasitic bipolar amplification effect in PMOS single event transients. Chin. Phys. B 2014, 23, 079401. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; He, Y.; Chi, Y.; Qin, J.; Liang, B.; Liu, B. Novel layout technique for N-hit single-event transient mitigation via source-extension. IEEE Trans. Nucl. Sci. 2012, 59, 2859–2866. [Google Scholar] [CrossRef]
- Du, Y.; Chen, S.; Liu, B.; Liang, B. Effect of p-well contact on n-well potential modulation in a 90 nm bulk technology. Sci. China Technol. Sci. 2012, 55, 1001–1006. [Google Scholar] [CrossRef]
- Reed, R.; Weller, R.; Mendenhall, M.; Lauenstein, J.M.; Warren, K.; Pellish, J.; Schrimpf, R.; Sierawski, B.; Massengill, L.; Dodd, P.; et al. Impact of ion energy and species on single event effects analysis. IEEE Trans. Nucl. Sci. 2007, 54, 2312–2321. [Google Scholar] [CrossRef]
No. | Transistor Array Description |
---|---|
A | Normal PMOS array |
B | Normal NMOS array |
C | PMOS array (Source float) |
D | NMOS array (Source float) |
E | PMOS array (Well contact) |
F | NMOS array (Well contact) |
Ion | Energy at the Silicon Surface (MeV) | Effective LET (MeV·cm/mg) | Range (um) |
---|---|---|---|
Cl | 165 | 15.2 | 51.8 |
Ge | 205 | 37.6 | 35.5 |
Kr | 835.5 | 39.8 | 41.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Song, R.; Chi, Y.; Liang, B.; Wu, Z. TAISAM: A Transistor Array-Based Test Method for Characterizing Heavy Ion-Induced Sensitive Areas in Semiconductor Materials. Electronics 2022, 11, 2043. https://doi.org/10.3390/electronics11132043
Shao J, Song R, Chi Y, Liang B, Wu Z. TAISAM: A Transistor Array-Based Test Method for Characterizing Heavy Ion-Induced Sensitive Areas in Semiconductor Materials. Electronics. 2022; 11(13):2043. https://doi.org/10.3390/electronics11132043
Chicago/Turabian StyleShao, Jinjin, Ruiqiang Song, Yaqing Chi, Bin Liang, and Zhenyu Wu. 2022. "TAISAM: A Transistor Array-Based Test Method for Characterizing Heavy Ion-Induced Sensitive Areas in Semiconductor Materials" Electronics 11, no. 13: 2043. https://doi.org/10.3390/electronics11132043
APA StyleShao, J., Song, R., Chi, Y., Liang, B., & Wu, Z. (2022). TAISAM: A Transistor Array-Based Test Method for Characterizing Heavy Ion-Induced Sensitive Areas in Semiconductor Materials. Electronics, 11(13), 2043. https://doi.org/10.3390/electronics11132043