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Abstract: A low insertion loss, wideband 6-bit digital step attenuator is implemented in the 0.25-µm
GaAs pHEMT process. Modified π- or T-type attenuator structures are adopted to expand the
operation frequency bandwidth and reduce the insertion phase violation. Furthermore, the through-
wafer via (TWV) is analyzed to reduce the influence of the parasitic effect on the high-frequency
performance of the attenuator. The depletion mode single-gate switch transistors are used to control
the on-off state of the attenuator, which provides low insertion loss and high isolation. The step
of the attenuator is 0.5 dB, and the attenuation range is 31.5 dB. The measurement results show a
maximum root mean square (RMS) attenuation error of 0.51 dB and RMS phase error of 6.6 degrees
from DC-18 GHz. The chip area is 1.8 × 0.6 mm2.

Keywords: digital step attenuator; phase variation compensation; pHEMT; wideband; through-
wafer via

1. Introduction

The attenuator is one of the key devices in phased array systems, which is mainly
used for amplitude adjustment and damage protection [1]. The digital step attenuator
(DSA) using π- or T-type units has the advantages of a wideband, high precision, high
linearity, being bidirectional, and a small amplitude error [2,3]. In recent years, several
technologies have been used in wideband DSA aimed at reducing the phase error and
increasing the working bandwidth [4–9]. The internal switched π- or T-type attenuator
with passive compensation components is popular for compact chip sizes. The passive
components are added into the π- or T-type structure to form low-pass characteristics in
both the reference and attenuation states. Therefore, the phase–frequency curves of the
two states decrease similarly with the increase in the frequency, and the phase difference
is reduced.

However, the performance of the low-pass network adopted in the π- or T-type
attenuators is always influenced by the parasitic component of the passive devices. The low
Q factor inductance would induce additional insertion loss, and it would also be limited
by the operating frequency. A good solution to avoid using inductance is to assign the
capacitors in parallel with the shunt resistors of the π- or T-type attenuator [7]. The bypass
compensation capacitors play the role of low-pass components, and they also expand
the operation frequency. Unfortunately, when using relatively large transistors as series
switches, the bypass compensation capacitors would cause attenuation degradation at high
frequencies when needing a large value to reduce the phase error. In addition, a larger
capacitance in the shunt branches will also increase the insertion loss at high frequencies.

Compared with the CMOS process, attenuators based on the gallium arsenide (GaAs)
process have low insertion loss at high frequencies [10]. However, the performance at high
frequencies will also be affected by the parasitic components. It is still difficult to reduce
the attenuation and phase errors at the same time, even if compensation capacitances are
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adopted. The size of pHEMT is not as flexible as MOSFET, which leads to many difficulties
in balancing the attenuation and phase error.

In this paper, a wideband digital step attenuator is implemented in 0.25-µm GaAs
pHEMT technology. A modified π-type attenuator structure with additional compensation
capacitance is adopted. The middle capacitance between the shunt branch of the π-type
attenuator adds a new degree of freedom in optimizing the phase and attenuation error.
The parasitic effect of through-wafer via (TWV) is also analyzed and optimized to improve
the performance. The implementation of the circuit is introduced in Section 2. The fabri-
cation and measurement results are shown in Section 3. Finally, Section 4 concludes the
performance of the attenuator.

2. Implementation of the Attenuator Circuit

Figure 1 is the diagram of the proposed attenuator circuit, which combines six π- or
T-type attenuation units in cascade. To minimize the chip size and keep good matching and
attenuation performance, different types of attenuation units are used to implement various
values, and inter-stage inductances are added to the large value attenuator cells. The small
attenuation elements adopt a reduced T-type structure, while the medium elements adopt
a bridged T-type structure and the larger cells, such as those of 8 dB and 16 dB, adopt a
π-type structure.
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Figure 1. The diagram of the proposed attenuator circuit with the switches neglected.

T-type, bridged T-type, and π-type attenuators can achieve better matching and
attenuation performance. To avoid the use of an extreme resistance value, the bridged
T-type attenuator is used to achieve 2-dB and 4-dB attenuation units, while the π-type one
is used for 8 dB and 16 dB, of which 16 dB is achieved by 2 8-dB units in cascade.

In addition, to reduce the insertion phase shift between the reference and the atten-
uation states, bypass capacitors are paralleled with the resistors in the shunt branches of
the bridged T-type, π-type, and reduced T-type structures, which are shown in Figure 2a–c.
The bypass capacitors will change the attenuator into low-pass characteristics in both the
reference and attenuation states, which leads to similar phase curves. The phase error is
reduced, and the operating bandwidth is also expanded [7].
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Figure 2. (a) The modified π-type for the large value attenuator. (b) The modified bridged
T-type for the middle value attenuator. (c) The modified reduced T-type attenuator for the small
value attenuator.
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For large value attenuation units with a π-type structure, the phase difference is
relatively high, which requires a larger value capacitor for compensation. However, the
introduced bypass capacitor will increase the transmission loss at high frequencies, and
the attenuation curve thus deteriorates. To alleviate this problem and further increase the
working bandwidth of the attenuator, a compensation capacitor Cm in the middle of the
parallel branch is introduced. The capacitor Cm can adjust the transmission curve of the
attenuation state, and it hardly affects the reference state. By using the capacitor flexibly,
both the attenuation and phase error of the attenuator can be minimized. Aside from
the bypass capacitor, this can lead to gaining an extra degree of freedom in designing
the attenuator [9]. The capacitor Cm actually adjusts the locations of the zeros and
poles in the attenuation state. A larger Cm will decrease the phase difference and the
attenuation in the middle frequency of the attenuator. Compared with simply increasing
Cp, the phase difference is reduced at the cost of continuously increasing the high-
frequency attenuation. The additional Cm capacitance allows for more freedom in the
attenuator’s design.

All the circuits are grounded to the bottom metal plane of the chip by a through
wafer via (TWV). The TWV also has a great influence on the high-frequency response
of the attenuator. It can be modeled as shown by the equivalent circuit in Figure 3. The
inductor Lp and resistor Rp are used to model the reactive and inactive behavior of the
main body of the TWV. The resistor Rsub and capacitor Csub are implemented to account
for the parasitic effect of the substrate. Small inductors Ls act as the inductive part of the
top metal pad. The TWV is simulated by electromagnetic (EM) simulation tool, and the
S-parameter file is extracted. All the parameters are optimized to make the model closed to
the simulation results.
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Figure 3. The equivalent circuit of the TWV.

The shunt branches of the attenuators are grounded by TWVs, so the attenuators are
not grounded ideally. Additional parasitic components would worsen the performance
at high frequencies, especially in large attenuation units. To reduce the influence of the
TWV on the attenuator, multiple TWVs are connected in parallel by the underlying metal
layer. The number of the paralleled TWVs is optimized to satisfy the performance and
chip size. It can be seen in Figure 4 that the attenuation curve of the 8-dB attenuator
with two TWVs in parallel decreases first and then increases, being much flatter than that
with just one TWV. At the same time, the phase difference is adjusted to a small value at
high frequencies. Similarly, the 16-dB attenuator cells consist of two 8-dB cells, and all
four TWVs are connected in parallel.
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3. Fabrication and Measurement Results

The proposed attenuator circuit was fabricated by a GaAs 0.25-µm pHEMT process.
The chip photo is shown in Figure 5, and the size was 1.8 × 0.6 mm2 including the pads.
The 6-bit attenuator was controlled by voltages of 0 or −5 V. The switch pHEMTs had gates
with a 0.5-µm gate length in this work, and the widths were in different series and parallel
branches. Except for the reduced T-structure attenuator, the control voltages of the series
and parallel transistors were logically opposite, with 0 V for on and −5 V for off. The input
and output ports were ground-signal-ground (GSG) pads, and both ground pads were
grounded by TWVs. The chip was fixed to the ground plane of the PCB using conductive
silver glue, and all the control pads were bonded to the PCB by gold wire. The DC to
DC chip provides −5V negative voltage, and multiple switches control the corresponding
logical voltage in the control PCB. The diagram of the measurement setup is shown in
Figure 6, including network analyzer, DC power, RF probe station, measurement PCB,
device under test (DUT) and control PCB.
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The chip was measured on-chip with a microwave probe station and Keysight N5247B
network analyzer. The measured transmission curves of all attenuation states are shown
in Figure 7, and the insertion loss of the reference state was 2.6~3.6 dB. The attenuation
and relative phase differences of the main states are shown in Figure 8. The reflection
coefficients of both the input and output ports were less than −11 dB, as shown in Figure 9.
The root mean square (RMS) errors of the attenuation and insertion phase shift are shown
in Figure 10, where the RMS error of attenuation was less than 0.51 dB and the RMS error of
the insertion phase shift was less than 6.6 degrees. A comparison between the attenuators of
different technologies and topologies is shown in Table 1. The work had good insertion loss
performance compared with the CMOS process and relatively low phase and attenuation
errors in such a frequency bandwidth.
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Figure 8. (a) Measurement results of the S21 in the main states. (b) The relative phase difference
curve of the main states.
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Figure 9. (a) Measurement results of the S11 and (b) S22.
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Figure 10. (a) Measurement and simulation results of the attenuation RMS error. (b) RMS error of the
insertion phase shift.

Table 1. Performance comparison of the attenuator circuits.

Ref [7] [6] [10] This Work

Technology 0.13 µm SiGe BiCMOS 0.18 µm CMOS 0.5 µm GaAs 0.25 µm GaAs
Frequency (GHz) DC-20 19–21 2–18 DC-18

Topology Switched T-type with
capacitive compensation

Switched π- or T-type with
tail cap. compensation

Switched π- or T-type and
path selection

Switched π- or T-type with
capacitive compensation

Attenuation Range (dB) 31.5 (6 bits) 31.5 (6 bits) 31.5 (6 bits) 31.5 (6 bits)
Insertion Loss (dB) 1.7–7.2 7.2–8 <5.71 2.6–3.6
Return Loss (dB) >12 >12 >10 >11

Amplitude Error (dB) <0.37 <0.6 <2.3 1 <0.51
RMS Phase Variation (deg.) <4 <3.8 <3.51 1 <6.6

Chip Size (mm2) 0.14 0.45 3.5 2 1.08 2

1 Main state accuracy. 2 Including pads.

4. Conclusions

This paper proposed a wideband, low phase variation 6-bit step attenuator. Modified
reduced T-type, bridged T-type, and π-type attenuators were used to implement attenuators
of the corresponding values. The pHEMTs act as switches and offer low insertion loss
and good isolation. By adding different compensation capacitances properly, the phase
difference between states was lower, and the bandwidth was expanded. The parasitic
effect of the TWV was alleviated by having several in parallel. The attenuator had a low
insertion loss of 2.6~3.7 dB, and the attenuation range was 31.5 dB with a step of 0.5 dB.
The attenuation RMS error was less than 0.51 dB, and the phase RMS error was less than
6.6 degrees. Considering the inaccuracy of the process model, there was a certain deviation
between the simulation results and the test results, but this paper still provides some
attempts to improve the working bandwidth and phase error of the attenuator.
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