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Abstract: Traffic flow prediction is an important part of the intelligent transportation system. Accurate
traffic flow prediction is of great significance for strengthening urban management and facilitating
people’s travel. In this paper, we propose a model named LST-GCN to improve the accuracy of current
traffic flow predictions. We simulate the spatiotemporal correlations present in traffic flow prediction
by optimizing GCN (graph convolutional network) parameters using an LSTM (long short-term
memory) network. Specifically, we capture spatial correlations by learning topology through GCN
networks and temporal correlations by embedding LSTM networks into the training process of GCN
networks. This method improves the traditional method of combining the recurrent neural network
and graph neural network in the original spatiotemporal traffic flow prediction, so it can better
capture the spatiotemporal features existing in the traffic flow. Extensive experiments conducted
on the PEMS dataset illustrate the effectiveness and outperformance of our method compared with
other state-of-the-art methods.

Keywords: traffic flow forecasting; long short-term memory network; graph convolutional network

1. Introduction

In recent years, with the increase in the utilization rate of automobiles, the traffic flow
on the road is increasing day by day. When the road is insufficient to accommodate vehicles,
problems such as traffic congestion and traffic accidents will emerge. In this situation, traffic
flow prediction is of great significance [1,2]. Traffic flow prediction refers to an analysis
using traffic flow, speed and other information obtained by sensors in a certain road section
for future prediction. It provides effective assistance in planning driving routes, thereby
avoiding potential traffic jams.

Traffic flow prediction is inseparable from the temporal and spatial information in the
road network. Individually considering any aspect of the information in the prediction
will lead to a lack of information, and hence affect the accuracy of prediction. We need to
predict outcomes from both a temporal and spatial perspective. Traffic data are recorded
at fixed time points and fixed locations in space. Observations at adjacent locations and
adjacent timestamps are not independent of each other, but are dynamically related. The
key to such tasks is to explore dynamic correlations in data space and time to make
accurate predictions.

With the advancement of technology, it has become easier to obtain data about the
transportation networks, which also makes it more convenient for us to predict the traffic
flow. Using cameras, sensors and other equipment on the highway, people can collect
a large amount of time-series data, including traffic flow, speed, occupancy, and other
information, which provides a solid data foundation for traffic forecasting, thus giving
birth to a series of traffic forecast methods [3]. These include statistical methods and
machine-learning methods. These methods either rely on feature engineering or cannot
consider both the time and space information of the data and have certain limitations in the
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prediction of traffic flow. With the development of deep learning, some researchers tried to
use graph convolutional networks to predict traffic flow or combine graph convolutional
networks with recurrent neural networks to capture spatial and temporal features in traffic
flow. Although much progress has been made in the prediction of traffic flow, most studies
do not consider the periodicity of traffic flow, so the prediction of traffic flow still does not
achieve the desired accuracy. To improve the accuracy of model predictions, we take into
account the weekly and daily periodicity of traffic flow.

To make a more accurate traffic flow prediction, the LST-GCN model is proposed
in this paper, and the LSTM model [4] is embedded into the parameter training of the
GCN model [5], to capture the time and space information more synchronously. Further,
we explore the internal relation of time and space, and reduce the number of parameter
training, so as to make more accurate prediction.

The original combined model is relatively simple in processing data sets, such as the
combined model of LSTM model and GCN model. For traffic flow data, the GCN model is
used to update the node flow information at each moment separately to obtain data space
information, and then using the LSTM model further combines the node traffic information
at all times to obtain information about the time of the data. The disadvantage of this
method is that the number of model parameters and calculations are large. In response to
this problem, we propose a new LST-GCN embedded structure. Different from previous
models, we directly embed the LSTM model into the update process of GCN parameters,
which greatly reduces the number of parameters and the amount of computation. At
the same time, the model can make good use of the temporal and spatial information of
the data.

The remainder of this paper is organized as follows. The related works on traffic flow
forecasting are discussed in Section 2. In Section 3, we propose some definitions about traffic
flow and introduce the structure of the GCN model and LSTM models. Section 4 proposes
the LST-GCN model to capture spatial correlations by learning topology through GCN
networks and temporal correlations by embedding LSTM networks into the training process
of GCN networks. In Section 5, a comprehensive assessment of the model performance is
conducted using real road-traffic datasets. At the same time, the experimental results are
discussed. Section 6 concludes the paper and provides an outlook on future work.

2. Related Work
2.1. Traffic Forecasting

There are two main types of methods for traffic flow forecasting: one is the statistical
method and the other is the machine-learning method. The statistical methods mainly
include ARIMA (autoregressive integrated moving average model) [6–8], HA (history aver-
age model) [3], ES (exponential smoothing model) [9] and KF (Kalman filter model) [10–13].
ARIMA models analyze time-series data and use them to make predictions about future
traffic flows. The ARIMA model [6–8] assumes that the change in traffic flow is linear. The
HA model [2] uses the least-squares method to evaluate the parameters of the model to
further predict the traffic flow. The ES model [9] and the KF model [10–13] are suitable for
making predictions on traffic flow with a smaller amount of data. The assumptions of these
models are relatively strict. Once random interference occurs, the accuracy of the models
will decrease. They rely on the assumption of stability. At the same time, these models
cannot reflect the nonlinearity of traffic conditions. Therefore, the use of these models has
certain limitations.

There are many machine-learning methods for traffic flow prediction, which are mainly
divided into two categories: the traditional machine-learning method and the deep-learning
method. The SVR (support vector regression) model [14], KNN (K-nearest neighbor)
model [15], Bayesian model [16], fuzzy logic model [17], neural-network model [18], etc.,
as traditional machine-learning methods, are often used to predict traffic flow. The SVR
model [14] introduces a supervised machine-learning method called regressive online
support vector machines, which can make short-term traffic flow predictions for both
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typical and atypical conditions. The KNN model [15] takes the k value and dm value of the
nearest neighbors as the input parameters of the model, and combines the prediction range
of multiple intervals to optimize the parameter values of the model, and then predict the
value of traffic flow. The Bayesian model [16] first searches the manifold neighborhood,
and then obtains a higher accuracy of the manifold neighborhood, and then proposes a
traffic-state prediction method based on the expansion strategy of adaptive neighborhood
selection. Fuzzy logic models [17] use fuzzy methods to classify input data into clusters,
which in turn specify input–output relationships. The neural-network model [18] is the
first attempt to build an artificial neural network based on historical traffic data, aiming to
predict traffic volume based on historical data at major urban intersections. This type of
model has strong nonlinear mapping ability, and the data requirements are not as strict as
statistical methods, so it can better adapt to the uncertainty of traffic flow and effectively
improve the prediction effect. However, the spatial structure of observation points is
unstructured, and the above methods do not use the spatial structure information of the
data, and only analyzing from the time dimension has certain limitations in improving the
prediction accuracy.

The deep-learning models originally used for traffic flow prediction mainly include
the GRU (gated recurrent unit) model [19] and LSTM model. The GRU model and LSTM
model are important recursive neural-network models that are used to integrate and
analyze temporal information to make predictions. Compared with the prediction models
based on statistical learning and machine-learning methods, deep learning can model
multidimensional features and realize the approximation of complex functions by learning
the deep nonlinear network structures, which can better learn the abundant changes
inherent in traffic flow. It can simulate its complex nonlinear relationship and greatly
improve the accuracy of traffic flow prediction. However, these models also did not
consider the influence of the spatial structure of the data on the prediction results, and did
not fully mine the spatiotemporal characteristics of the traffic data. There are also certain
limitations in predicting traffic flow.

Recently, models that consider spatiotemporal information have sparked a lot of
research. Wu et al. [20] designed a feature fusion framework for short-term traffic flow
prediction by combining the CNN (convolutional neural network) model with the LSTM
model. This framework uses a one-dimensional CNN to describe the spatial features of
traffic flow data. For the time-varying periodicity and temporal variation of the traffic
flow, this framework utilizes two LSTM models. DCRNN, proposed by Li et al. [21], uses
a bidirectional random walk to capture spatial dependencies and an encoder-decoder
with predetermined sampling to capture temporal dependencies. Sun et al. [22] con-
structed a multibranch framework called TFPNet (traffic flow prediction network), a
deep-learning framework for short-term traffic flow prediction. TPFNet uses a multi-
layer fully convolutional network structure to extract the relationship from local to global
hierarchical space. Zhao et al. [23] proposed the T-GCN model, which combines gated
recurrent units with graph convolutional networks for short-term traffic flow prediction.
Geng et al. [24] designed a spatiotemporal multigraph convolutional network that first
encodes the non-Euclidean pairwise correlations between regions into multiple graphs, and
then uses multigraph convolution to explicitly map these correlations. Diao et al. [25] used
a dynamic Laplacian matrix estimator to discover changes in the Laplacian matrix, which
in turn made predictions about traffic flow. Huang et al. [26] proposed the cosAtt model,
a graph-attention network that integrates cosAtt and GCN into a spatial gating block.
Lv et al. [27] modeled various global features in road networks, including spatial, temporal,
and semantic correlations, and proposed a temporal multigraph convolutional network.
Guo et al. [28] used the attention mechanism for traffic flow prediction and proposed an
AST-GCN model. The attention mechanism has been applied in both time and space and
achieved better prediction results.
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2.2. Convolutions on Graphs

In order to solve the irregularity of the spatial neighborhood, Bruna et al. [29] made a
breakthrough from the spectral space and proposed a spectral network on the graph. Ac-
cording to the knowledge of graph theory, they decompose the Laplacian matrix spectrally
and use the obtained eigenvalues and eigenvectors to define the convolution operation in
the spectral space. To simplify the problem of complexity, Defferrard et al. [30] proposed
a Chebyshev network, which defined the convolution kernel as a polynomial form, and
used Chebyshev expansion to approximate the calculation of the convolution kernel, which
greatly improved the computational efficiency. After that, Kipf and Welling [5] simplified
the Chebyshev network, using only a first-order approximate convolution kernel, and
made a little sign change, resulting in the well-known graph-convolution network.

2.3. Long Short-Term Memory Network

Bengio et al. [31] proposed the RNN (recurrent neural network) model. Using the
RNN model can help people process sequence data more efficiently. In the RNN model,
people can reinput the output of a neuron at a certain time as the input to the neuron.
For the dependencies between time-series data, the network structure of the RNN model
can adequately maintain them. However, this model suffers from vanishing gradients
and exploding gradients. To solve the problems of gradient disappearance and gradient
explosion in the traditional RNN model, Hochreiter et al. [4] proposed the LSTM network.
The LSTM network is improved from the traditional RNN model. Compared with the RNN
model, the hidden unit of the LSTM model has more complexity. At the same time, the
LSTM model has a wider range of applications than RNN and is a more effective sequence
model. During the run of the model, the LSTM model can selectively add or subtract
information by adding linear interventions.

3. Preliminaries
3.1. Traffic Networks

Definition 1. Road network G. We use G = (V, E, A) to denote a spatial network, as shown
in Figure 1, where |V| = N is the set of vertices and N is the number of vertices. E is the
set of edges, which reflects the connections between road sections. A ∈ RN×N is the adjacency
matrix of the network G. The value of each element represents the connectivity between the
corresponding road segments. An element value of 1 indicates connectivity, and an element value of
0 indicates disconnection.

Figure 1. The spatial-temporal structure of traffic data, where the data at each time slice form a graph.
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Definition 2. The graph feature matrix X(t)
G ∈ RN×C, where C is the number of attribute features

and t represents the time step. The graph signal matrix represents the observations of the spatial
network G at the time step t.

The problem of traffic flow data prediction can be described as learning a mapping
function, f, which maps the historical spatiotemporal network sequence(

X(t−T+1)
G , X(t−T+2)

G , . . . , X(t)
G

)
into future observations of this spatiotemporal network(

X(t+1)
G , X(t+2)

G , . . . , X(t+T′)
G

)
, where T represents the length of the historical spatiotem-

poral network sequence and T′ denotes the length of the target spatiotemporal network
sequence to be predicted.

3.2. GCN Model

Based on the Chebyshev network, Kipf and Welling proposed the GCN model. The
updated convolution formula of each layer of the GCN model node is as follows:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
, (1)

Ã = A + IN (2)

and D̃ = D + IN (3)

Among them, H(l+1) represents the node representation of the l + 1-th layer, H(l)

represents the node representation of the l + 1-th layer, and W(l) represents the learnable
parameters of the l-th layer. A represents the adjacency matrix, IN represents the identity
matrix, and D represents the degree matrix.

By determining the topological relationship between the central node and the sur-
rounding nodes, the GCN model can simultaneously encode the topological structure of the
road network and the attributes of the nodes, so that spatial dependencies can be captured
on this basis.

3.3. LSTM Model

The LSTM model is a typical RNN (recurrent neural network) model, which is pro-
posed to solve the problems of gradient disappearance and gradient explosion existing in
the traditional RNN model. The structure diagram of LSTM is shown in Figure 2, and the
Equations are shown in (4)~(9).

Figure 2. LSTM model diagram.
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it = σ(Wixt + Uiht−1 + bi), (4)

ft = σ
(

W f xt + U f ht−1 + b f

)
, (5)

ot = σ(Woxt + Uoht−1 + bo), (6)

c̃t = tanh(Wcxt + Ucht−1 + bc), (7)

ct = it ∗ c̃t + ft ∗ ct−1 (8)

and ht = ot ∗ tanh(ct). (9)

where it controls the input of the input gate to c̃t, ft controls the memory level of the
forget gate for ct−1, and ot controls the output of tanh(ct). Since the activation function is a
sigmoid function, the values of it, ft, and ot are in between 0 and 1.

The LSTM model uses the hidden state of the previous moment and the parameter
information of the current moment as input to determine the parameter state of the current
moment. Due to the gating mechanism, the LSTM model retains the changing trend of
historical parameter information when capturing the parameter information at the current
moment. Therefore, the model can capture the time-varying features of traffic dynamics
from parametric data. In this paper, we apply the LSTM model to learn the temporal-
varying trend of traffic states.

4. Method

Figure 3 shows the general framework of the LST-GCN model. The model consists of
three parts with the same structure, and the model is established by representing data from
three perspectives: adjacent time, daily cycle, and weekly cycle. As shown in Figure 3, this
paper takes χh, χd, and χw as input, respectively. We consider each sensor as a node, and the
sensor information about the three dimensions of traffic flow, vehicle speed, and occupancy
rate is regarded as the vector representation of the node. χh, χd, and χw represent the
node representation of all nodes at the adjacent time, the daily cycle, and the weekly
cycle, respectively.

Figure 3. LST-GCN model frame diagram.
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Xh ∈ RN×F×T , N represents the number of nodes; the value of F is 3, which represents
the three dimensions of traffic flow, vehicle speed, and occupancy; and T represents the
length of the adjacent time slice.

We update the node representation through the LSTM-GCN block, and then use a
fully connected layer to make predictions, and the results are denoted by Yh, Yd, and Yw,
respectively. Afterwards, the prediction results of the three series of proximity correlation,
daily correlation, and weekly correlation are weighted and combined to obtain the final
result, which is represented by Y.

Figure 4 shows the general framework of the LSTM-GCN block. Taking χh as an
example, we take Xt0−h+1, Xt0−h+2, . . . , Xt0 as input. Xh ∈ RN×F×T , N represents the
number of nodes; the value of F is 3, which represents the three dimensions of traffic
flow, vehicle speed, and occupancy; and T represents the length of the adjacent time
slice. Xt0−h+1, Xt0−h+2, . . . , Xt0 represents the representation of each moment of χh.
Through the LSTM-GCN block, we can update the node representation to obtain X1

t0−h+1,
X1

t0−h+2, . . . , X1
t0

. Through the connection between the parameters, all GCN models are
combined together and the representation of each vector is updated in time and space.

Figure 4. LSTM-GCN block diagram.

To explore the distribution of data from the perspective of space and time simultane-
ously, we introduce the LSTM model into the parameter update process of the GCN model.
For the parameter W(l), we connect the W(l) at each moment through the LSTM model, as
shown in Equation (10).

W(l)
t = LSTM

(
W(l)

t−1

)
(10)

Meanwhile, at time t, the convolution operation from the lth layer to the l + 1-th layer
is the same as that of the GCN model, as shown in Equation (11).

H(l+1)
t = GCONV

(
D̃−

1
2 ÃD̃−

1
2 , H(l)

t , W(l)
t

)
(11)
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Combining Equations (10) and (11), we can obtain the update rule of node representa-
tion at l + 1-th layer, as shown in Equation (12).[

H(l+1)
t , W(l)

t

]
= LST−GCN

(
D̃−

1
2 ÃD̃−

1
2 , H(l)

t , W(l)
t−1

)
(12)

Figure 5 illustrates the update of the node. At time t, the representation of the node
at l + 1-th layer is determined by the node and the parameters at l-th layer through
convolution. Similarly, we can calculate the node representation of any layer. The node
at the zeroth layer at time t is represented Xt corresponding to time t, that is, the vector
representation of each sensor in the three dimensions of traffic flow, vehicle speed, and
occupancy at time t. For the parameter W of each layer, we can update it through the
LSTM model.

Figure 5. Node update.

5. Experiment
5.1. Data Set and Processing

To verify the effectiveness of our model, we used the California highway dataset.
PEMS uses sensors to acquire real-world traffic data from more than 8100 locations on Cali-
fornia highways and highway systems, which are integrated into multiple time intervals.
We selected the PEMS04 dataset and the PEMS08 dataset. The PEMS04 dataset contains
the traffic data of San Francisco Bay from 1 January 2018 to 28 February 2018 collected by
3848 sensors, including three aspects of traffic, speed, and occupancy, where we selected
data from 307 of these sensors for verification. The PEMS08 dataset contains the traffic data
of San Bernardino from 1 July 2016 to 31 August 2016 collected by 1979 sensors, including
three aspects of traffic, speed, and occupancy, where we selected data from 170 of these
sensors for verification.

We first removed redundant sensors with distances of less than 3.5 miles; some
data were missing from the original traffic speed dataset due to equipment failures, etc.
Considering the spatiotemporal characteristics of traffic data, we used linear interpolation
for missing values.

The traffic information in both datasets was updated every 5 min. In chronological
order, we selected the first 60% of the data as the training set, the middle 20% of the data as
the validation set, and the last 20% of the data as the test set.

Since the distance between each sensor was different, we chose the inverse of the
distance as the element value of the adjacency matrix, thereby constructing the adjacency
matrix. Because of the different dimensions, we normalized all the data, as shown in
Equation (13).

Xnorm =
X− Xmin

Xmax − Xmin
. (13)
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5.2. Experimental Setup

Considering the influence of periodicity on the experimental results, we divided the
experimental data into adjacent time series, daily period series, and weekly period series.
They are represented by χh, χd, and χw, respectively. We fed χh, χd, and χw as inputs to
the three LSTM-GCN subnetworks for training, respectively, and combined the outputs
of the three subnetworks into the final output. We conducted experiments on a server
configured with a Xeon Platinum 8163 processor clocked at 2.7 GHz and an NVIDIA Tesla
P100 graphics card with 16 GB of VRAM. When training on the PMES04 dataset, the
number of iterations was 100, the batch size was 16, and the Adam optimizer was used to
update the parameters with a learning rate of 0.01. When training on the PMES08 dataset,
the number of iterations was 200, the batch size was 32, the Adam optimizer was used for
parameter update, and the learning rate was 0.01.

5.3. Evaluation Indicators

The experiment tests the model performance through RMSE (root-mean-square error),
MAE ((mean absolute error) and MAPE (mean absolute percentage error); the formulas are
defined as follows:

MAE =
1
n ∑n

i=1|ŷi − yi|, (14)

MAPE = 100%× 1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (15)

and RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (16)

where n is the number of predicted values, ŷi is the predicted value, and yi is the true value.

5.4. Results

As shown in Table 1, our model outperforms other models on both datasets. Since the
HA model and the ARIMA model are linear models and only consider the information
of the time dimension, the prediction effect of the models is relatively poor. The SVR
model and the GRU model use machine-learning methods to analyze data, and have better
nonlinear mapping capabilities than the HA model and the ARIMA model. However,
the SVR model and the GRU model also only analyze the data from the time dimension,
without considering the spatial dimension, so the prediction effect of the model is only
better than the HA model and the ARIMA model. The ASTGCN model uses an attention
mechanism from the temporal and spatial dimensions, respectively. Compared with the
ARIMA model, the LSTM model, and the GRU model, the model considers the information
of the spatial dimension, thereby significantly improving the prediction effect of the data.
The LST-GCN model uses the LSTM model to update the parameters of the GCN model,
which avoids the problem of too many parameters caused by separating the two models. It
also considers the information of the time dimension and the space dimension. At the same
time, the model also combines adjacent sequences and daily sequences. Three sequences of
weekly sequence are used to predict the traffic flow. Considering the influence of periodicity
on the prediction results, the data information is greatly utilized. Therefore, the model
in this paper has achieved better prediction results than other models. For example, for
the PEMS04 dataset, using RMSE, MAE, and MAPE as evaluation metrics, respectively,
LST-GCN has an average improvement of 0.9%, 2.2%, and 1.3% compared with ASTGCN.
For the PEMS08 dataset, using RMSE, MAE, and MAPE as evaluation metrics, respectively,
LST-GCN achieves an average improvement of 2.5%, 3.7%, and 1.8% compared to ASTGCN.
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Table 1. Average performance comparison of different approaches on PEMS04 and PEMS08.

Model
PMES04 PMES08

RMSE MAE MAPE(%) RMSE MAE MAPE(%)

HA 54.16 36.68 19.69 44.06 29.46 15.25
ARIMA 68.16 32.01 19.17 43.31 24.05 14.34

SVR 45.75 29.45 17.09 36.98 23.13 13.81
GRU 45.16 28.64 16.27 35.96 22.25 13.03

ASTGCN 35.23 22.93 16.58 28.16 18.61 13.05
LST-GCN 34.93 22.43 16.37 27.47 17.93 12.81

To confirm the spatiotemporal prediction ability of the LST-GCN model, we respec-
tively compared the LST-GCN model with the LSTM model and the GCN model. As shown
in Figure 6, our LST-GCN model has a strong spatiotemporal prediction ability. Since the
LSTM model only considers the impact of time factors on traffic flow, while the GCN model
only considers the impact of spatial factors on traffic flow, these two models cannot fully
consider the information of the data. Therefore, the prediction accuracy of the LSTM model
and GCN model is relatively poor. For example, using RMSE as the evaluation metric, on
the PEMS04 dataset, LST-GCN has an average improvement of 9.2% compared with GCN,
and an improvement of 3.4% compared to LSTM. On the PEMS08 dataset, LST-GCN has an
average improvement of 13.9% compared to GCN and 3.5% compared to LSTM.

Figure 6. Average performance comparison of LST-GCN and GCN and LSTM on PEMS04 and
PEMS08. (a) RMSE comparison of LST-GCN and GCN and LSTM on PEMS04 and PEMS08. (b) MAE
comparison of LST-GCN and GCN and LSTM on PEMS04 and PEMS08. (c) MAPE comparison of
LST-GCN and GCN and LSTM on PEMS04 and PEMS08.

Figure 7 shows how the prediction performance of the model varies with the range of
prediction. With the increase in the prediction interval, the prediction error of the model will
gradually increase, and the prediction effect will inevitably deteriorate. The RMSE, MAE,
and MAPE values of the four models, HA, ARIMA, SVR, and GRU, increase continuously
with the increase in prediction time, and the variation range is large. Compared with these
four models, the ASTGCN model and the LST-GCN model continue to increase with the
prediction time, but the variation range is relatively small. This is because the first four
models only consider the impact of variation of time on the prediction results. With the
increase in prediction interval, the time dimension information between roads on future
traffic will have less and less impact, resulting in a lower and lower prediction accuracy of
the model. In the long-term prediction, the spatiotemporal correlation is a more important
predictor, so ASTGCN model and LST-GCN model are far superior to the other four models
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in the longer-term prediction. It can also be seen from the figure that the overall prediction
effect of our LST-GCN model is better than that of ASTGCN model, which indicates that
our LST-GCN model can better mine the spatiotemporal correlation of traffic data, to make
more accurate predictions.

To better understand the LST-GCN model, we selected a road segment on the PEMS04
dataset and PEMS08 dataset, respectively, and visualized the prediction results on the
test set. Figure 8a,b show the visualization results on two datasets, PEMS04 and PEMS08,
respectively. It can be seen that the simulation effect of the model is better. It can be
seen from the results that the prediction results of the LST-GCN model are relatively
smooth. We speculate that it may be because the GCN model adds a smoothing filter to the
Fourier domain and moves the filter to capture spatial features. This results in smoother
experimental results.

Figure 7. Performance changes of different methods as the forecasting interval increases. (a) Changes
on PEMS04 dataset, based on RMSE. (b) Changes on PEMS08 dataset, based on RMSE. (c) Changes
on PEMS04 dataset, based on MAE. (d) Changes on PEMS08 dataset, based on MAE. (e) Changes on
PEMS04 dataset, based on MAPE. (f) Changes on PEMS08 dataset, based on MAPE.
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Figure 8. The visualization results for prediction. (a) Results on PEMS04 dataset. (b) Results on
PEMS08 dataset.

6. Discussion

Accurate and rapid traffic flow prediction is an important issue affecting the develop-
ment of intelligent transportation. The original traffic prediction model basically has the
problem of large-parameter data or an inability to make full use of the data information.
The reason why our model results are better than other models is mainly because of the
following advantages: (1) We propose a new LST-GCN structure, which directly embeds
the LSTM model into the updating process of GCN parameters, reducing the number
of parameters; (2) compared with the model with a single model structure, our model
considers both time and space factors, and makes full use of data information.

Our model improves the performance of short-term traffic flow, but there are still
some issues to consider. Considering the “memory” capability introduced by the LSTM
model may have a negative impact on the time complexity. [32–34] This effect exists in
many cyclic structures. This needs further research in future work.

7. Conclusions

According to the traffic flow prediction problem, this paper proposes a method to
update the model parameters of the graph convolutional network model using the long
short-term memory neural-network model. By embedding the long short-term memory
neural network into the graph convolutional network and modeling from the perspective
of time and space at the same time, we further explore the internal connection of time
and space. At the same time, three sequences of adjacent sequence, daily sequence, and
weekly sequence are combined to predict traffic flow, and the influence of periodicity on the
prediction result is considered. Finally, the method in this paper is compared with several
common methods for predicting traffic flow through three evaluation indicators—RMSE,
MAE, and MAPE—and it is concluded that the model proposed in this paper is better than
other models on the PEMS dataset.

In the future, the main directions that need to be studied are: (1) applying the LST-
GCN model to more road segments and increasing the prediction period of the model;
(2) considering more complex road conditions, and improving our model by taking into
account other factors such as weather and traffic accidents; (2) applying the LST-GCN
model to other scenarios such as air quality prediction, energy prediction, etc.
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Abbreviations

GCN Graph convolutional network
LSTM Long short-term memory network
ARIMA Autoregressive integrated moving average model
HA History average model
ES Exponential smoothing model
KF Kalman filter model
SVR Support vector regression model
KNN K-nearest neighbor model
GRU Gated recurrent unit model
CNN Convolutional neural network
RNN Recurrent neural network
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