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Abstract: Unmanned aerial vehicles (UAVs) do not collide with obstacles, generate a path in real-time,
and must fly to the target point. The sampling-based rapidly exploring random tree (RRT) algorithm
has the advantages of fast computation and low computational complexity. It is suitable for real-time
path generation, but the optimal path cannot be guaranteed. Further, the direction of the flight
and the minimum radius of rotation have not been taken into account for the characteristics of the
UAVs. This work proposes a Dubins path-oriented RRT* algorithm, which applies the Dubins path
to the RRT algorithm to consider the direction of flight and the minimum radius of rotation and
improves optimality and convergence. The proposed algorithm sets the sample node as the target
point, orients toward the Dubins path, and then generates a tree. To verify the performance of the
proposed algorithm, it is compared with existing RRT algorithms. As a result of performance analysis,
the proposed algorithm improved the path length by 14.87% and the calculation time by 82.36%.
Finally, the algorithm’s performance is verified by applying the proposed algorithm to a fixed-wing
UAV and performing a numerical analysis of the generated path.

Keywords: path planning; rapidly-exploring random tree; Dubins path; unmanned aerial vehicle

1. Introduction

With technological advancements, unmanned aerial vehicles (UAVs) are being used in
various industries and recreational fields, with notable applications in disaster assessment,
diagnosis, measurement, relief, etc. [1–3]. Ensuring safety and reliability should be priori-
tized to carry out smooth missions. That is, it is necessary to generate the shortest path to
the destination without colliding with obstacles [4,5]. Typical path generation algorithms
include grid-based, mathematical model-based, and sampling-based approaches [6].

Grid-based algorithms, such as Dijkstra, A*, and D*, are intuitive and search by di-
viding all sections evenly, reducing the probability of falling into the local maximum [7–9].
However, there is a disadvantage in that the calculation time increases exponentially de-
pending on the search section [10]. Mathematical model-based algorithms, such as linear
algorithms and optimal control, use constraints to achieve optimal solutions by modeling
given surroundings and dynamic systems [6,11]. Although an optimal path can be gener-
ated through these methods, it takes a lot of time to model environmental conditions and
calculate constraints. Sampling-based algorithms retrieve a node adjacent to a randomly
selected point in a feasible space and expand the node if possible. This is repeated until the
path to the destination is generated. The main advantages of sampling-based algorithms
are low computational costs and applicability to high-dimensional problems. Typical
sampling-based algorithms include probabilistic roadmaps (PRM) and rapidly exploring
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random tree (RRT). PRM is mainly used in fixed obstacle environments [12], while RRT
is suitable for generating paths through tree extensions and also for use in environmental
changes [10].

RRT has the advantage of quickly generating a path with a light computation burden
but has limitations in that the generated path is not smooth and cannot guarantee an
optimal path. RRT* holds the fundamentals of the RRT but guarantees gradual convergence
to the optimal path through additional steps [13]. However, RRT* is not suitable for UAVs
that operate in real-time due to expensive computational costs. An improved biased RRT is
developed to aim at the target point with a certain probability in RRT [14–16]. Convergence
increases by oriented toward a target point, but the convergence becomes poor when there
are many obstacles.

This work applies the Dubins path to the RRT* to improve the convergence of the RRT
for the path generation of fixed-wing UAVs and reduce the calculation time. The authors
considered the flight direction and the minimum turning radius, which have not been
considered in the RRT. Dubins path uses the Dubins curve proposed by Dubins to generate
the shortest path considering the rotation radius limited to the position and direction at the
given initial and final points [17]. As a result, the proposed algorithm reduces the cost of
path generation computation and avoids obstacles by limiting unnecessary tree extensions.
In addition, it aims at Dubins path to ensure optimality and considers the flight direction
and the minimum turning radius. The simulation study is performed with a fixed-wing
UAV model to confirm the characteristics of the algorithm. To verify the performance of the
proposed algorithm, the simulation results are compared to RRT, RRT*, and biased RRT.

2. Previous Research

RRT, one of the sampling-based algorithms, is a method of finding a path by randomly
generating several sample nodes without dividing a given space into a grid. It efficiently
identifies the barrier-free space by checking whether the sample node or the line connecting
the two-sample nodes collides with the obstacle. The sampling-based algorithm can be
used in a high-dimensional space and has the advantage of being able to quickly generate
a path due to a small amount of calculation. The basic idea is to build a tree that makes
up nodes and connections. In the tree structure, all nodes are connected to one other node
called a parent, and the starting point is the top parent of the tree. RRT calculates a tree
connecting the starting point and the target point in a given space.

2.1. RRT Algorithm

RRT was proposed by LaValle [18], and Algorithm 1 and Figure 1 depict the pseu-
docode and the path generation process of the RRT, respectively.

Algorithm 1 RRT

1: procedure RRT(qs, q f )
2: T← InitialSetting()
3: while norm(q f − qnew) ≥ Rthreshold do
4: qrand ← RandomSamling()
5: qnearest ← FindNearest(T,qrand)
6: qnew ← Extend(qnearest, qrand, ε)
7: if CollisionCheck(qnearest, qnew) then
8: T← qnew
9: end if

10: end while
11: Npath, tcal ← SelectPath(Tq f )
12: return Npath,tcal
13: end procedure
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Figure 1. Illustration of the RRT process.

RRT aims to extend the tree through an obstacle check between the tree T starting
from the start point qs and the randomly generated node qrand in a given space, generating
a path to reach the target point q f . A sample node qrand is generated, the distance between
qrand and all nodes constituting the tree is measured, and the nearest node qnearest is set.
Then, it creates qnew at a point ε distance away from qnearest in the qrand direction. When
qnew is created, an obstacle check is performed between qnew and qnearest. If there is no
obstacle between the two nodes, qnew is added to expand the tree. If there is an obstacle, the
process of creating qrand is repeated. It repeats until a certain number of nodes are satisfied,
such as generating qrand or qnew or until the tree reaches a certain radius of q f . When the
tree is expanded, it connects q f and the tree and starts with q f and performs the process of
finding the parent of the previously created node. This is repeated until qs is reached to
generate a path.

2.2. RRT* Algorithm

RRT* is an algorithm that improves optimality by adding a process of re-selecting
parent nodes and re-connecting trees to the RRT [19]. The pseudocode and the path
generation process of the RRT* are shown in Algorithm 2 and Figure 2, respectively.

Algorithm 2 RRT*

1: procedure RRT*(qs, q f )
2: T← InitialSetting()
3: while norm(q f − qnew) ≥ Rthreshold do
4: qrand ← RandomSamling()
5: qnearest ← FindNearest(T,qrand)
6: qnew ← Extend(qnearest, qrand, ε)
7: if CollisionCheck(qnearest, qnew) then
8: T← qnew
9: Qnear,qmin ← BestParent(T,qnew, R∗)

10: T← Rewiring(T, Qnear,qnew, qmin, R∗)
11: end if
12: end while
13: Npath, tcal ← SelectPath(T,q f )
14: return Npath, tcal
15: end procedure
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Figure 2. Illustration of the RRT* process: (a) Best parent algorithm. (b) Rewiring algorithm.

RRT* finds the node closest to qrand, sets it to qnearest, and creates qnew at points ε
distance away in the qrand direction. When qnew is created, as shown in Figure 2a, nodes
that are within a certain radius around qnew and do not get hit by obstacles are set as
qnear, and the node with the minimum path cost to qnew among qnear is found. If it finds
a qnear with a lower path cost than the previously connected qnearest, it disconnects from
qnearest, sets the node a with low path cost as the parent node qnear of qnew, and re-connects
the tree. The path cost is calculated by using qnew as a parent node for qnear within a
certain radius around qnew. If the path cost is lower when connected through qnew than the
existing path cost of qnear, the tree that was previously connected to qnear disconnects and
re-connects qnew and the tree, as shown in Figure 2b. RRT* complements optimality, which
is a disadvantage of the RRT, through the best parent process of re-connecting qnearest and
the re-wiring process of reducing the path cost of qnear.

2.3. Biased RRT Algorithm

The biased RRT is an improved algorithm that supplements the node generation
method in the RRT and improves the randomly sampled nodes to a target point with a
certain probability [14]. If the probability of aiming for the target point is high, convergence
is increased in the process of expanding the tree. However, the map cannot be searched as
a whole, so it takes more time to get out of the obstacle than before. There is a deviation in
the path generation time depending on the complexity and directionality probability of
the obstacle. Because the operating environment is not the same every time, it is generally
known that using a directivity probability of 10% is the most effective regardless of the
density of obstacles [9]. The pseudocode and the path generation process of the biased RRT
are shown in Algorithm 3 and Figure 3, respectively.

Algorithm 3 Biased RRT

1: procedure BRRT(qs, q f )
2: T← InitialSetting()
3: while norm(q f − qnew) ≥ Rthreshold do
4: qrand ← RandomSamling(k, q f )
5: qnearest ← FindNearest(T,qrand)
6: qnew ← Extend(qnearest, qrand, ε)
7: if CollisionCheck(qnearest, qnew) then
8: T← qnew
9: end if

10: end while
11: Npath, tcal ← SelectPath(T,q f )
12: return Npath, tcal
13: end procedure
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Figure 3. Illustration of the biased RRT process.

In the biased RRT, only the process of generating qrand from the RRT has been changed,
and the rest of the process is the same as in the RRT. In the RRT, it extends the tree toward q f
by replacing qrand, which is randomly sampled, with q f according to a certain probability.
The directivity probability that directs q f to a certain probability is called k, and the tree

expands toward q f for each k probability so that it has convergence. When q
′
new generated

by q f collides with an obstacle to solve these problems, qrand is used to generate qnew in the
direction without obstacles and extend the tree.

3. Dubins Path-Oriented RRT* Algorithm

The pseudocode of the Dubins path-oriented RRT* proposed is shown in Algorithm 4,
and the path generation process of the algorithm is shown in Figures 4 and 5. The Dubins
path-oriented RRT* complements the optimality and convergence of the RRT and utilizes
the Dubins path to consider the flight direction and minimum radius of rotation of the
UAV. The proposed algorithm has two methods for complementing optimality. The first
method generates the Dubins path in the position and direction of the initial and final
points. It is oriented toward the generated Dubins path and generates a path. The second
method, similar to the RRT*, performs the process of re-selecting the parent node and
re-constructing the tree. The method for compensating convergence has a 100% probability
of replacing qrand with q f , so convergence to the target is further obtained than in the
biased RRT. However, when the percentage of the obstacle space is increased, qnew is not
generated properly like the biased RRT, resulting in the result of being blocked by obstacles
and reduced convergence.

Figure 4. Optimization improvement method: (a) Closest point search algorithm. (b) Extend algorithm.
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Figure 5. Convergence improvement method.

Algorithm 4 DRRT*

1: procedure DRRT*(qs, q f ,dubins path)
2: T← InitialSetting()
3: while norm(q f − qnew) ≥ Rthreshold do
4: qrand ← RandomSamling()
5: q∗nearest ← FindNearest(T,q f )
6: q∗new ← Extend(q∗nearest, q f , ε)
7: q∗ ← ColsestPoint(q∗new, qs, q f ,dubins path)
8: q

′
nearest ← FindNearest(T,q∗)

9: q
′
new ← Extend(q∗nearest, q∗, ε)

10: if CollisionCheck(q
′
nearest, q

′
new) then

11: T← q
′
new

12: Qnear,qmin ← BestParent(T,q
′
new, R∗)

13: T← Rewiring(T, Qnear, q
′
new, qmin, R∗)

14: else
15: qnearest ← FindNearest(T,qrand)
16: qnew ← Extend(qnearest, qrand, ε)
17: if CollisionCheck(qnearest, qnew) then
18: T← qnew
19: Qnear, qmin ← BestParent(T,qnew, R∗)
20: T← Rewiring(T, Qnear, qnew, qmin, R∗)
21: end if
22: end if
23: end while
24: Npath, tcal ← SelectPath(T,q f )
25: return Npath, tcal
26: end procedure

3.1. Dubins Path Generation

Path generation is realized based on the Dubins path. A route is created by considering
constant altitude, cruising speed v, and the UAV with maximum rotational curvature cmax.
Given the initial point Ps and final point Pf , the shortest path includes a combination of
three path segments: a straight line segment (S) and an arc segment with a minimum radius
(R or L). The four cases, LSL, LSR, RSR, and RSL, of the Dubins path are composed of two
curved segments and a straight segment [20]. The shortest path is selected by comparing
the four generated paths. The geometry of the Dubins path is depicted in Figure 6.
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sq

fq

Figure 6. Geometry of the CSC path.

The positions and directions of the initial and final points in a 3D space are defined as

qs =
[
xsx xsy xsz

]T (1)

q f =
[

x f x x f y x f z

]T
(2)

vs =
[
vsx vsy vsz

]T (3)

v f =
[
v f x v f y v f z

]T
(4)

In the earth-fixed cartesian coordinate frame, the path is expressed as

dx(s)
ds

= cos γ(s) cos ψ(s) (5)

dy(s)
ds

= cos γ(s) sin ψ(s) (6)

dz(s)
ds

= sin γ(s) (7)

dψ(s)
ds

= η (8)

dγ(s)
ds

= µ (9)

where s represents the curvilinear abscissa on the path, ψ is the heading angle, and γ is
the flight path angle. As the vehicle is constrained by its minimum turn radius r, the path
should have a maximum curvature limit cmax. The curvature c(s) is given by

c(s) =
√

η2(s)cos2γ(s) + µ2(s) (10)

and the objective is to minimize the path length while satisfying the following constraint:

−cmax ≤ c(s) ≤ cmax (11)

Common to both planes of the initial and final curved paths of the minimum radius is
a myriad of different planes, as shown in Figure 7.
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Figure 7. Torus geometry.

The straight-line path segment between these two curves is the intersecting line
between the initial and final maneuver planes. Suppose X

(
Xx, Xy, Xz

)
is the vector common

to both planes as follows [17]:

X = p f − ps =
(

q f + rw f − ry f

)
− (qs + rws − rys) (12)

Adding the first and second rotation angles θ1 and θ2 yields the following equation:

X =
(

q f − qs

)
∓ r(x + vs) tan

θs

2
∓ r
(

x + v f

)
tan

θ f

2
(13)

where cos θs = vsv and cos θ f = v f x, and x are unit vectors of X. Through simplification,
one obtains the following equation:(

xsx − x f x

)
= Xx ± rxx

[
tan

θs

2
+ tan

θ f

2

]
± r
[

v f x tan
θ f

2
+ vsx tan

θs

2

]
(14)(

xsy − x f y

)
= Xy ± rxy

[
tan

θs

2
+ tan

θ f

2

]
± r
[

v f y tan
θ f

2
+ vsy tan

θs

2

]
(15)(

xsz − x f z

)
= Xz ± rxz

[
tan

θs

2
+ tan

θ f

2

]
± r
[

v f z tan
θ f

2
+ vsz tan

θs

2

]
(16)

In the case of a system of multivariable equations, the solution of the system of
equations can be determined through the Gauss–Newton method, among other methods.
In this manner, a common plane X is obtained.

3.2. Optimization Improvement Method

The proposed algorithm has two methods to complement optimality. The first method
considers the constraint condition of the minimum turning radius when the positions and
directions of the initial point and the final point are given and generates a path using the
Dubins path that generates the shortest path.

• As shown in Figure 4a, q∗nearest is selected by searching for the node closest to q f and
q∗new is created at a certain distance ε from q∗nearest in the q f direction (lines 4 and 5).

• q∗ means that q∗new is the closest point to the Dubins path. q∗ is the point where the
paths of q∗ new and the Dubins path are vertical (line 6).

• As shown in Figure 4b, one selects q
′
nearest by searching for the node closest to q∗ and

creates q
′
new at a position ε away from q

′
nearest by a certain distance ε in the q∗ direction

(lines 7 and 8).
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The second method re-selects the parent node and re-connects the tree, similar to
the RRT*.

• As shown in Figure 2a, q
′
new or qnew is re-elected as the parent node among qnear with

the lowest path cost (lines 11 and 18).
• If the path cost when connecting with q

′
new or qnew is lower than the existing path cost

of qnear within a certain radius, as shown in Figure 2b, the tree is re-constructed (lines
12 and 19).

3.3. Convergence Improvement Method

The proposed algorithm complemented the convergence by improving the biased RRT.
The biased RRT is stochastically oriented to q f , which causes unnecessary computation.
Therefore, one always sets q f to the sample node to improve convergence. However, if
there are obstacles, there is a risk of falling into the local minima. To reduce this risk, sample
nodes are selectively used.

• When selecting q∗nearest, one proceeds with the sample node using q f and generates
q∗new in the q f direction (lines 4 and 5).

• As shown in Figure 5, when q
′
new collides with an obstacle, qnearest is selected using

qrand and qnew is created (lines 3 and 13–15).

4. Path Tracking and Control
4.1. Path Tracking

A nonlinear UAV path tracking algorithm similar to the line-of-sight guidance al-
gorithm is adopted. Equations of motion that do not take into account the dynamic
characteristics of the UAV are expressed as

ẋ = v cos ψ cos γ (17)

ẏ = v sin ψ cos γ (18)

ż = v sin γ (19)

where v is assumed to be constant, and ψ and γ represent the control inputs. The path to
be tracked is represented by the following equations:

dxr(s)
ds

= cos ψr(s) cos γr(s) (20)

dyr(s)
ds

= sin ψr(s) cos γr(s) (21)

dzr(s)
ds

= sin γr(s) (22)

At each time instant, s∗ represents the path point closest to UAV in abscissa. This point
ensures that the vector in the direction of the path from the UAV and the vector tangent to
the path are perpendicular. Thus,

(xr(s∗)− x)
dxr(s)

ds

∣∣∣∣
s=s∗

+ (yr(s∗)− y)
dyr(s)

ds

∣∣∣∣
s=s∗

+ (zr(s∗)− z)
dzr(s)

ds

∣∣∣∣
s=s∗

= 0 (23)
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where

ex = xr(s∗)− x (24)

ey = yr(s∗)− y (25)

ez = zr(s∗)− z (26)

e =
√

e2
x + e2

y + e2
z (27)

ψ∗r = ψr(s∗) (28)

γ∗r = γr(s∗) (29)

This expression can be rewritten as

ex cos ψ∗r cos γ∗r + ey sin ψ∗r cos γ∗r + ez sin γ∗r = 0 (30)

Consider the following straight line Ω tangent to the path at (xr, yr, zr)

Ω =

xl(s)
yl(s)
zl(s)

 =

xr(s∗) + s cos ψ∗r cos γ∗r
yr(s∗) + s sin ψ∗r cos γ∗r

zr(s∗) + s sin γ∗r

 (31)

where Kp > 0 represents the prediction distance of the existing line-of-sight derivation
algorithm [21], and s = 1/Kp. If Kp → 0, it follows the direction of the tangent while
maintaining a constant cross-track error. If Kp → ∞, it moves toward the path point closest
to the UAV. At each time instant, ψ and γ are chosen so as to satisfy the following:

cos ψd =
ẽx√

ẽ2
x + ẽ2

y

(32)

sin ψd =
ẽy√

ẽ2
x + ẽ2

y

(33)

cos γd =

√
ẽ2

x + ẽ2
y

ẽ
(34)

sin γd =
ẽz

ẽ
(35)

where

ẽx = xl(s)|s=1/Kp
− xu = ex +

1
Kp

cos ψ∗r cos γ∗r (36)

ẽy = yl(s)|s=1/Kp
− yu = ey +

1
Kp

sin ψ∗r cos γ∗r (37)

ẽz = zl(s)|s=1/Kp
− zu = ez +

1
Kp

sin γ∗r (38)

ẽ =
√

ẽ2
x + ẽ2

y + ẽ2
z =

√
e2 +

1
K2

p
(39)

The bank angle command generation can be realized from the equation for the cen-
trifugal force as follows:

FL sin φ = ma (40)

FL cos φ = mg (41)
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where FL is the total lift force, m is the mass, g is the gravitational acceleration, and φ is the
bank angle. Accordingly,

tan φ =
a
g
→ tan φd =

acmd
g

(42)

where φd is the bank angle command, and acmd is the lateral acceleration [22], which is
defined as

acmd =
2V2

L
sin η (43)

where L is the look-ahead distance, and η is the angle between the velocity vector V and
line L.

4.2. Constraint Sliding Mode Controller

A sliding mode controller involving a robust control scheme that can ensure control
performance and stability even in the presence of uncertainty is used [23,24]. The designed
controller imposes a constraint on the angular velocity by adding a saturation function to
the existing sliding mode controller.

The proposed controller is named the constraint sliding mode controller (CSMC), with
the sliding surface defined as

s = ω + A sat
ξ
(qe) (44)

where ω represents the angular velocities of the body frame, qe is the error quaternion, and
A = diag(a1, a2, a3). Here, ai > 0, and ξ = cmax/ai.

Since the sliding surface designed in Equation (44) is s = 0, the state variable converges
to the target point in the same way as the operating characteristics of the existing sliding
mode. Note that there is a point where the equilibrium point changes in the sliding phase.
The conditions for the saturation function are defined as

sat(qi) =


ξ, if ξ < qi

qi, if − ξ ≤ qi ≤ ξ

−ξ, if − ξ > qi

(45)

which represents a saturation function that allows a smaller value to be selected through
a variable between the values of each component qi of the posture error vector and the
threshold variable ξ.

The reaching law for satisfying Equation (44) is defined as [25]

ṡ = −csgn(s)|s|β (46)

While deriving the control input, the three-axis control input for the UAV posture
considering the angular velocity limitation can be obtained by differentiating the equation
with respect to time and arranging the resulting equations and equations of motion of the
UAV as follows:

u = l−1
[
− f − Csgn(s)|s|β + ω× Jω− aJ

d
dt

{
sat

ξ
(qe)

}]
(47)

To validate the stability of the designed controller, the Lyapunov candidate function is
defined as

V =
1
2

sT Js (48)
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and the equation is differentiated with respect to time to ensure stability as follows:

V̇ = sT Js = sT J
(

ω̇ + a
d
dt
(sat(qe))

)
= sT

(
−ω× Jω + τ + aJ

d
dt
(sat(qe))

)
= sT

(
−cJsgn(s)|s|β

)
< 0

This expression is negative definite, and thus, it can be concluded that the control
system is Lyapunov stable.

5. Simulation Study

The simulation is compared with the RRT, RRT*, and biased RRT to verify the perfor-
mance of the proposed algorithm. Each algorithm ends the simulation when it creates a
tree within a certain radius of q f or ends when the number of trees is 1000. Note that the
proposed algorithm applies the Dubins path to generate a path that takes into account the
direction of flight and the minimum turning radius. To compare algorithms under the same
conditions as the proposed algorithm, torus structures are set as obstacles at the initial and
final points, as shown in Figure 7, and paths are generated considering flight direction and
minimum radius of rotation. For the reasonable analysis, it was simulated 100 times. For
each algorithm, ε is 30 m, and the simulation termination condition Rthreshold is 50 m. The
R∗ of the RRT* and the proposed algorithm is ε× 8 m, and k of the biased RRT is set to
10%. Since short and fast path generation is important, the simulation analysis is made
with respect to the number of tree generations, path length, and calculation time. In this
work, the concept of average precision is used to quantitatively compare the performance
of two different algorithms for performance analysis [13].

In the 3D space, one proceeded with the simulation in three cases, as shown in Figure 8.
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Figure 8. Simulation environment: (a) No obstacles. (b) Centered obstacle. (c) Scattered obstacles.

The states of the position and direction of each obstacle case are shown in Table 1.
The performance of the proposed algorithm is verified using the fixed-wing UAV with a
minimum turning radius r of 100 m as a sliding mode controller considering the guidance
algorithm and angular velocity limit [26].

Table 1. Way-points for simulation.

No Obs Center Obs/Scattered Obs
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5.1. Simulation Analysis (100 Times)

Figures 9–11 show each algorithm’s result performed 100 times for the three cases.
Here, (a,e,i,m) is the path generation result, (b,f,j,n) is the total number of nodes, (c,g,k,o) is
the path length, and (d,h,l,p) is the calculation time.

The existing algorithms encountered a local minima with about 51% no obstacles,
about 53% for center obstacles, and about 49% for scattered obstacles. Further, the minimum
radius of rotation has not been taken into account. On the other hand, the proposed
algorithm considered the flight direction and the minimum rotation radius yielding a local
minima-free path. However, there is a risk of falling into the local minima in the case of
a space where it is unable to turn correctly because the path suggested is generated by
considering the minimum dynamic turning radius of UAVs.

Figure 9. Results of no obstacles: (a–d) RRT. (e–h) RRT*. (i–l) Biased RRT. (m–p) Dubins RRT*.
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Figure 10. Results of center obstacle: (a–d) RRT. (e–h) RRT*. (i–l) Biased RRT. (m–p) Dubins RRT*.

Figure 12 represents the summary of the results. In all the cases, the proposed al-
gorithms generated the overwhelmingly fewest nodes and generated paths. Further, the
proposed algorithm for all obstacle cases showed the least computational burden. The
proposed algorithm reduced the calculation time with respect to other algorithms in the no
obstacles case by about 99.6%. In the case of the center obstacle, the calculation time of the
proposed algorithm with respect to the RRT, RRT*, and biased RRT were reduced by 75.2%,
97.2%, and 72.6%, respectively. In the case of the scattered obstacles, the calculation time of
the proposed algorithm with respect to the RRT, RRT*, and biased RRT were reduced by
27.6%, 91.8%, and 26.1%, respectively.

It is important to note that the proposed algorithm produced the shortest path in all
obstacle cases. In the case of no obstacle, the path length using the proposed algorithm
with respect to the RRT, RRT*, and biased RRT were reduced by 23.8%, 5%, and 21.7%,
respectively. In the case of the center obstacle, the path length using the proposed algorithm
with respect to the RRT, RRT*, and biased RRT were reduced by 19.6%, 0.5%, and 15.9%,
respectively. In the case of the scattered obstacles, the path length using the proposed
algorithm with respect to the RRT, RRT*, and biased RRT were reduced by 21.4%, 2%, and
18%, respectively.
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It was confirmed that the proposed algorithm improved the performance effectively
in both path length and calculation time compared to the three widely used algorithms,
and the path was generated in consideration of the flight direction and minimum radius
of rotation.

Figure 11. Results of scattered obstacles: (a–d) RRT. (e–h) RRT*. (i–l) Biased RRT. (m–p) Dubins RRT*.
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Figure 12. Results of 100 simulations: (a) Total number of nodes. (b) Path length. (c) Calculation time.

5.2. Simulation of UAV Path Tracking

Figure 13 shows the case of no obstacles. In the absence of obstacles, the path with
the fastest computational time out of 100 simulations is generated in Figure 13a, and the
generated path was tracked using a fixed-wing UAV. In the case of a position error, as
shown in Figure 13b, the tracking performance is satisfactory, except in the beginning. An
error occurs when the path is initiated in a circle; this error is likely a natural error caused by
a sudden change in the attitude command due to the change in maneuvering. Nevertheless,
the maximum position error is less than 5 m, and the straight line segment corresponds to
an error of approximately 10−2. Figure 13c shows the attitude command value generated
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through the guidance algorithm and the actual attitude value of the UAV. As shown in
Figure 13d, an error occurs during the circular maneuver, similar to the position error.
This error is also likely a natural error due to the sudden change in the posture command
due to the change in maneuvering, and an error of approximately 10−7 is observed in the
straight line segment. Figure 13e shows the angular velocity of the UAV while satisfying the
maximum angular velocity value range set by the CSMC, in accordance with the angular
velocity limitation.
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Figure 13. Path tracking results of no obstacles: (a) Path tracked in 3D. (b) Position error. (c) Attitude.
(d) Attitude error. (e) Constrained angular velocity.

Figure 14 shows the case of the center obstacle. In the case of a center obstacle, the path
with the fastest computational time out of 100 simulations was generated in Figure 14a,
and the generated path was tracked using a fixed-wing UAV.
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Figure 15 shows the case of scattered obstacles. In the case of scattered obstacles, the
path with the fastest computational time out of 100 simulations was generated in Figure 15a,
and the generated path was tracked using a fixed-wing UAV.

(a) (b)

(c) (d)

(e)

0
50

100

1000

z
 (

m
)

150

800

800600

y (m)
x (m)

600
400

400
200 200

Reference trajectory

Actual trajectory

Obstacles

0 10 20 30 40 50 60 70

Time (sec)

−50

0

50

d
e

g

Reference on 

Actual 

0 10 20 30 40 50 60 70

Time (sec)

−6

−4

−2

0

2

d
e

g

Reference on 

Actual 

0 10 20 30 40 50 60 70

Time (sec)

0

50

100

d
e

g

Reference on 

Actual 

0 10 20 30 40 50 60 70

Time (sec)

−4

−2

0

2

4

x 
e

rr
o

r 
(m

)

0 10 20 30 40 50 60 70

Time (sec)

−5

0

5

y
 e

rr
o

r 
(m

)

0 10 20 30 40 50 60 70

Time (sec)

−2

−1

0

z 
e

rr
o

r 
(m

)

0 10 20 30 40 50 60 70

Time (sec)

−20

0

20

p
h

i e
rr

o
r 

(d
e

g
)

0 10 20 30 40 50 60 70

Time (sec)

0

2

4

6

th
e

ta
 e

rr
o

r 
(d

e
g

)

0 10 20 30 40 50 60 70

Time (sec)

−10

0

10

p
si

 e
rr

o
r 

(d
e

g
)

0 10 20 30 40 50 60 70

Time (sec)

−0.2

0

0.2

p
 (

d
e

g
/s

)

0 10 20 30 40 50 60 70

Time (sec)

−0.2

0

0.2

q
 (

d
e

g
/s

)

0 10 20 30 40 50 60 70

Time (sec)

−0.2

0

0.2

r 
(d

e
g

/s
)

Figure 14. Path tracking results of center obstacle: (a) Path tracked in 3D. (b) Position error. (c) Atti-
tude. (d) Attitude error. (e) Constrained angular velocity.
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Figure 15. Path tracking results of scattered obstacle: (a) Path tracked in 3D. (b) Position error.
(c) Attitude. (d) Attitude error. (e) Constrained angular velocity.

It is found that the result where obstacles exist is similar to the case where there is no
obstacle. The maximum position error is within 5 m, and it showed an error of 10−2 when
in a straight line segment. The maximum attitude error is within 23◦, and it showed an
error of 10−7 when in a straight line segment.

6. Conclusions

In this study, the authors solved the problem of generating a path to avoid obstacles
to the target point without collision. This work proposes the Dubins path-oriented RRT*
algorithm, which has improved optimality and convergence over the conventional RRT
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algorithm and considers the flight direction and minimum turning radius according to
the characteristics of the fixed-wing UAV. In order to improve optimality, the Dubins
path was oriented, and the RRT* algorithm concept was added. In order to improve
convergence, the target point was set as a sample node, and when there were obstacles, the
randomly generated sample node was selectively set to solve the problem of convergence
degradation. The performance of the proposed algorithm was verified by comparing 100
simulations of each algorithm under the same conditions. In the three obstacle cases, the
proposed algorithm has improved path length and calculation time compared to the existing
algorithm. Finally, using the guidance algorithm and the controller, one validated whether
the path generated by the proposed algorithm followed the fixed-wing UAV. Consequently,
the technology proposed in this paper is considered suitable for smooth missions with the
safety and reliability of unmanned aerial vehicles and is suitable for actual applications.
Future works will include experimental validation of the proposed algorithm.
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