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Abstract: Deep Neural Networks (DNNs) used for image classification are vulnerable to adversarial
examples, which are images that are intentionally generated to predict an incorrect output for
a deep learning model. Various defense methods have been proposed to defend against such
adversarial attacks, among which, image-reconstruction-based defense methods, such as DIPDefend,
are known to be effective in getting rid of the adversarial perturbations injected in the image.
However, this image-reconstruction-based defense approach suffers from a long execution time
due to its iterative and time-consuming image reconstruction. The trade-off between the execution
time and the robustness/accuracy of the defense method should be carefully explored, which is
the main focus of this paper. In this work, we aim to improve the execution time of the existing
state-of-the-art image-reconstruction-based defense method, DIPDefend, against the Fast Gradient
Sign Method (FGSM). In doing so, we propose to take the input-specific properties into consideration
when deciding the stopping point of the image reconstruction of DIPDefend. For that, we first applied
a low-pass filter to the input image with various kernel sizes to make a prediction of the true label.
Then, based on that, the parameters of the image reconstruction procedure were adaptively chosen.
Experiments with 500 randomly chosen ImageNet validation set images show that we can obtain
an approximately 40% improvement in execution time while keeping the accuracy drop as small
as 0.4–3.9%.

Keywords: adversarial attack; adversarial example; image reconstruction; deep image prior;
neural network

1. Introduction

As research on deep learning has become active in recent years, DNNs [1] have been
used in various fields, such as image classification, object detection [2], detecting the edge
information of a high-resolution image [3,4] and Natural Language Processing (NLP) [5].
In particular, DNNs surpassed human performance in some tasks. However, these DNNs
are known to be vulnerable to adversarial attacks. An adversarial attack is an attack that
adds adversarial perturbation that causes the neural network to malfunction, while the
attacked image cannot be distinguished by human visual recognition. Such adversarial
attacks are hard to notice because the attacked image not only has robust features that
human can distinguish well, such as cat ears and tails, but also non-robust features that
are hardly noticeable by human vision. These can be fatal in cases where DNNs can cause
serious problems in safety-related applications, such as self-driving cars [6] and medical
devices [7–9].

In the past few years, as research on adversarial attacks has become active, several
defense methods against these attacks have been proposed. There are two types of adver-
sarial attacks, evasion and poisoning attacks, which are carried out in the test phase and
training phases, respectively [10]. Examples of evasion attack include the Fast Gradient
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Sign Method (FGSM) [11] and Projected Gradient Descent (PGD) [12], whereas BadNets [13]
is a poisoning attack. The most representative defense method against adversarial attacks
is adversarial training [11], in which, a retraining is performed with a new training dataset
that includes attacked adversarial examples with their true labels. There have also been
several defense methods proposed to enhance the robustness of DNNs [14–16].

Dai et al. [17] proposed a unique approach called DIPDefend that does not enhance the
DNN model but makes it reliable by reconstructing the input image. Such reconstruction-
based defense methods usually have a trade-off between the accuracy and execution time.
That is, it takes a longer time to reconstruct images in order to make it more reliable against
adversarial attacks. While images have different properties in practice, DIPDefend does
not considered these individual characteristics and simply assumes the same set of fitting
coefficients, as will be shown in Section 2. In this work, on the other hand, we considered
individual characteristics of the input image, based on which, the image reconstruction
time is significantly reduced while keeping the accuracy reduction minimal.

2. Related Work

In this section, we describe an evasion attack, which we consider in this paper as a
target adversarial attack, and image reconstruction, which we rely on as a defense against
evasion attacks.

2.1. Evasion Attack

An evasion attack is one of the most common attacks in deep learning. This attack
does not affect the training data but manipulates the test data during the testing phase
to cause the neural network to predict an incorrect output. The manipulated images are
referred to as adversarial examples. Table 1 [18] explains why evasion attacks are so
successful. An adversarial example is created by adding adversarial perturbation to the
original image, which consists of high-frequency (non-robust) features. That is, it can be
said that adversarial examples are created by mainly manipulating non-robust features that
are not easily distinguished by human vision. This is why it is not trivial to distinguish
whether an image is attacked or not only with human visual inspection. In this paper, we
used FGSM [11], which supports the fast generation of adversarial examples using the
linearity of a deep neural network model.

Table 1. Image components.

Image Components Feature

Robust Features
Characteristics that can be distinguished by human
Low-Frequency
E.g., tails of animals, ears of animals, etc.

Non-Robust Features
Characteristics that human cannot be distinguished well
High-Frequency
E.g., hair whorl of animals, etc.

2.2. Deep Image Prior (DIP)

Deep Image Prior (DIP) [19] is an image reconstruction method that starts with random
noise and reconstructs an image in an iterative way, gradually making it closer to the target
image. In addition, DIP utilizes features of Convolutional Neural Networks (ConvNets)
architecture to capture low-level features from images without training. Figure 1 shows the
results of various image reconstruction methods for a noise-added image in comparison. It
can be seen, even with human vision, that DIP could reconstruct the details (high-frequency
features) of the image well compared to others.
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Figure 1. Comparison of reconstructed images: (a) original image with noise, (b) low-pass filtered
image, (c) reconstructed image using VDSR [20], and (d) reconstructed image using DIP.

Figure 2 illustrates the iterative procedure of DIP. It starts from a randomly initialized
ConvNet (θ0) that reconstructs an image from a randomly generated noise (z). DIP itera-
tively updates the ConvNet weights θ in a way so that the generated image is as close as
possible to the target image xt.

Figure 2. Overall procedure of DIP.

Figure 3 shows the example reconstructed images for different numbers of iterations
in DIP. Comparing the reconstructed image after 700 iterations, Figure 3e, with the target
image, Figure 3h, it can be seen that the image under reconstruction has much fewer
high-frequency features (noise). This means that DIP can also be used to remove high-
frequency features (noise). Thus, if one can decide on the number of iterations where only
the robust features are reconstructed, DIP can successfully be used to filter out the injected
perturbation in adversarial examples.



Electronics 2022, 11, 2372 4 of 12

Figure 3. Image reconstruction by the number of DIP iterations.

Figure 4 shows how DIP can be used to defend against adversarial attacks. The image
to be reconstructed in Figure 4 is an adversarial example xadv generated by an adversarial
attack. The iterations of DIP can be divided into three stages. First, the image (between t0
and t1) is reconstructed, starting from random noise, independent of both the adversarial
example xadv and the original image xgt. In the second stage (between t1 and t2), the
reconstructed image is similar to xgt, with only robust features reconstructed out of xadv.
Lastly, the image generated later than t2 contains abundant non-robust features in which
adversarial perturbation is hidden. Therefore, it is important to determine the second stage
(t1 and t2), during which, only robust features are reconstructed, in order to successfully
filter out perturbation from an adversarial example.

Figure 4. DIP image reconstruction of an adversarial example.

DIPDefend [17] uses Second-order Exponential Smoothing (SES)-PSNR, a method of
measuring PSNR trends in reconstructed images to determine the second stage (t1 and t2).
This is a method that utilizes the fact that PSNR increases rapidly when reconstructing the
robust features because most of the energy in the image is contained at a low frequency.
Therefore, the point until which PSNR has risen rapidly and stopped increasing suddenly
is most likely between t1 and t2, and this is the point where DIP needs to stop its iterations.
Figure 5 shows how SES-PSNR and PSNR change as the number of iterations of DIP
increases. In Figure 5, PSNR increases as it reconstructs the robust features in the early
stages of DIP iteration, which tends to converge after t2. Based on this, when the peak of
SES-PSNR is found (between t1 and t2), DIPDefend stops reconstructing the image. SES-
PSNR, denoted as st, can be obtained using Equation (1). Since there is no ground-truth
image (i.e., original unattacked image) available, PSNR, denoted as pt, is calculated using
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an adversarial example. bt used in Equation (1) represents a change in the tendency of the
previous cycle and can be obtained using Equation (2).

Figure 5. SES-PSNR and PSNR by DIP iterations.

st = α · pt + (1− α) · (st−1 + bt−1) (1)

bt = β · (st − st−1) + (1− β) · bt−1 (2)

There are fitting coefficients α and β in the above equations. Note that the most
appropriate values for α and β may differ from one adversarial example to another. In
DIPDefend, these values are empirically determined and have been used for all images.

3. Proposed Method

This section describes the proposed technique that enhances the DIP-based defense
against adversarial attacks. In particular, it presents how to shorten the average execu-
tion time taken for image reconstruction by choosing the stopping point individually for
each image.

3.1. Searching for Ground-Truth Label Using Low-Pass Filter (LPF)

As stated earlier, each input image may have different property itself. Moreover, the
degree of adversarial attack may also be different. In the proposed technique, we accounted
for such individual properties by applying Low-Pass Filter (LPF) [21] to the input image
before entering into the reconstruction stage. Typically, by applying LPF, an image is
smoothed. That is, each pixel value is replaced with a weighted sum of neighboring
pixels and the square grid that defines the weights of neighboring pixels is called kernel.
For example, an LPF with a kernel size of 3 smoothens each pixel considering its 3× 3
surrounding pixels.

In order to illustrate how LPF could be used to defend against adversarial attacks, we
observed how low-pass filtered adversarial images affect the accuracy of classification. For
that, we used ResNet50 [22] and 500 randomly chosen images from ImageNet [1] validation
set. Tables 2–4 report the accuracy of image classifications from adversarial examples
generated with ε of 2, 8, and 16 using FGSM, respectively. Note that ε in FGSM can be seen
as the degree of attack, i.e., a bigger ε indicates a stronger attack. In each case, we varied
the kernel size of LPF. These results show that LPF can slightly remove the adversarial
perturbations hidden in features that are non-robust.
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Table 2. Accuracy when applying an LPF to adversarial example of ε = 2.

Kernel Size No LPF 3 5 7 9 11 13

Accuracy (%) 17.4 55.2 57.8 55.2 47.8 38.8 33.0

Table 3. Accuracy when applying an LPF to adversarial example of ε = 8.

Kernel Size No LPF 3 5 7 9 11 13

Accuracy (%) 3.0 34.4 47.4 48.2 42.4 35.4 32.2

Table 4. Accuracy when applying an LPF to adversarial example of ε = 16.

Kernel Size No LPF 3 5 7 9 11 13

Accuracy (%) 2.4 20.6 35.6 38.6 36.2 32 27.8

As shown in the above results, the accuracy of the low-pass filtered adversarial
examples depends on the kernel size. In addition, the size of the kernel with the highest
accuracy depends on the ε. That is, the optimal kernel size was different for the three ε
values. This observation supports that it is important to take individual properties into
consideration in the defense against adversarial attacks. Due to this difficulty, applying
LPF cannot solely be a defense method by itself. Rather, in the proposed method, we
used LPF to obtain a predicted label, which was used to optimize the execution time of
image-reconstruction-based defense method later on (as is shown in Section 3.3).

Generally speaking, it tends to remove high frequency features of the image more
aggressively as the kernel size of LPF gets bigger. Thus, we performed inferences iteratively
on the low-pass filtered images while gradually increasing the kernel size from the smallest
one. Then, we examined how the inference result changes over the varying kernel sizes.
Firstly, we observed how many images result in no changes while varying the kernel size.
As reported in Table 5, it has been observed that the lower the degree of attack, i.e., ε, the
more proportions of images did not result in changes in the inference. To be more specific,
approximately a third of the randomly chosen images did not show any changes in the
inference results while varying the kernel size of LPF. For the other cases, we empirically
observed that the probability that the first changed label we obtain by varying the kernel
size of LPF happens to be the true label is approximately 5–6 times higher than that of the
second (or later) changed label.

Table 5. Portion of images whose inference results do not change over the LPF kernel size changes.

Attack No Attack ε = 2 ε = 8 ε = 16

Ratio (%) 32 32.4 25.6 18.2

3.2. Different Parameters for DIPDepend

DIPDefend [17] uses constant α and β values for all examples to determine when to stop
the DIP iteration. In order to illustrate the necessity of individual choice of coefficient in
DIPDefend, we observed how different values of α and β affect the accuracy of classification
for adversarial examples. Again, we used ResNet50 [22] and 500 randomly chosen images
from ImageNet [1] validation set for this experiment. Tables 6–8 show the average accuracy
for the 500 randomly chosen images when ε is 2, 8, and 16, respectively. To be more specific,
we tested the following for coefficient choices:

• Mode 1: α = 0.01, β = 0.01;
• Mode 2: α = 0.01, β = 0.001;
• Mode 3: α = 0.001, β = 0.01;
• Mode 4: α = 0.001, β = 0.001.
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As can be seen in the tables, the smaller the values of α and β, the higher the accuracy
that could be obtained.

Table 6. Accuracy when applying DIPDefend to adversarial examples of ε = 2.

(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Accuracy (%) 13.0 38.6 49.2 65.4

Table 7. Accuracy when applying DIPDefend to adversarial examples of ε = 8.

(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Accuracy (%) 13.4 38.0 48.2 61.8

Table 8. Accuracy when applying DIPDefend to adversarial examples of ε = 16.

(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Accuracy (%) 13.4 34.4 45.8 52.2

The improved accuracy, however, comes at the cost of increased image reconstruction
time. Table 9 reports that smaller α and β values result in bigger number of DIP iterations
until stopping; thus, larger reconstruction time in DIPDefend. In other words, one has to
explore a trade-off between reliability (accuracy) and execution time (taken for defense)
when applying DIPDefend as a measure against adversarial attacks. Optimal choice of α
and β must be dependent upon the individual characteristics of the input image and the
degree of attack, i.e., ε in FGSM.

Table 9. Average number of DIP iterations taken for reconstruction for different α and β.

(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Number of
DIP iterations

250 583 923 2514

In order to show the effectiveness of individually chosen coefficients of DIPDefend,
we conducted the following experiment. For each input image, we tried all four combina-
tions of α and β listed above and considered them to be accurate if any of them inferred
a correct label. In other words, we assumed that there is a method to choose ideal coeffi-
cient among the four and examine the highest achievable accuracy from this ideal choice.
Table 10 reports the average accuracy of such ideal α and β for 500 randomly chosen
adversarial examples.

Note that the accuracy of Table 10 (ideal choice of α and β) is higher than the cases
with constant α = 0.001 and β = 0.001 of Tables 6–8. This indicates that the smallest α
and β do not always result in the optimal defense. In what follows, we propose a method
for reducing the image reconstruction time in DIPDefend while keeping the accuracy
degradation minimal by choosing appropriate α and β individually for each image.

Table 10. Accuracy when applying ideal α and β.

ε 2 8 16

Accuracy(%) 69.2 66.4 61.8

3.3. Algorithm of Proposed Method

The proposed method consists of two different stages. First, we predicted the original
(unattacked) label of the input image by applying LPF (Algorithm 1). Then, based on that,
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we tried to apply a suitable α and β adaptively to reduce the image reconstruction time in
Algorithm 2.

As stated in Section 3.1, some adversarial perturbations can be mitigated by applying
LPF. As we do not know the degree of attack, we started from a small kernel size, 3, and
gradually increased it to 13, applying LPF to the input example iteratively. Recall that
our observation in Section 3.1 is that either the inferred label never changes or the first
changed label is much likely to be the correct label as we increase the kernel size of LPF
that is applied to the input image. In line with this, Algorithm 1 initializes its prediction to
be the inference result made from the low-pass filtered image with kernel size of 3 (line 5).
Then, we performed the inferences repeatedly as the kernel size of LPF gradually increased
(lines 6–7). Whenever the inference result deviates from the initial prediction for the first
time (line 8), we considered this as a predicted label. Otherwise, we just kept the initial
prediction (line 13).

Algorithm 1 Prediction of the original label.

1: xadv: Input image
2: M(xadv, N): A new image obtained by applying LPF with kernel size N to xadv
3: YN : Inferred label of M(xadv, N)
4:
5: Y3 ← Inference result of M(xadv, 3)
6: for N in 5 to 13 do
7: YN ← Inference result of M(xadv, N)
8: if if Y3 6= YN then
9: return YN

10: end if
11: N ← N + 2
12: end for
13: return Y3

Based on the prediction made by Algorithm 1, we determined a suitable set of param-
eters (α and β) that can reduce the execution time of the defense method while maintaining
robustness. While we consider the following four modes in this work, it is worthwhile
to mention that the proposed method can be applied to more parameters without loss
of generality:

• mode 1: α = 0.01, β = 0.01,
• mode 2: α = 0.01, β = 0.001,
• mode 3: α = 0.001, β = 0.01, and
• mode 4: α = 0.001, β = 0.001.

The main idea is that we first try the defense from the biggest α and β values (in this
case mode 1) in favor of reduced execution time. Then, we check if the result obtained from
this value is good enough by comparing the inference result with the predicted label. If this is
good, we make an early termination; otherwise, we move on to the next values, which are
smaller than the current parameters. This is how we propose to explore the trade-off between
execution time and robustness (accuracy) in the image-reconstruction-based defense.

Algorithm 2 delineates this procedure. It starts by making a prediction of the label by
invoking Algorithm 1 (line 8). Then, starting from mode 1 (the biggest α and β (line 9)),
it applies DIPDefend (lines 10–16). Whenever a SES-PSNR peak is found as the iteration
continues (line 17), it examines whether the current reconstructed image results in the same
inference result as the predicted one (line 18). If the current inference is the same as the
predicted one, we terminate the DIP procedure early (line 19). If not, the α and β values are
updated with the next ones, with which, we start over a new DIPDefend procedure (line 21;
by terminating the inner for loop, the next iteration of the outer for loop continues). When
the peak is found in the last mode (mode 4 in this case), the entire procedure stops (line 18).
As can be seen in the pseudocode, the algorithm has two nested for loops; thus, its time
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complexity is O(N · T), where N and T denote the number of considered modes and the
maximum number of image reconstruction steps, respectively.

Algorithm 2 Inference with adaptive α and β.

1: z: Random noise
2: xt: Reconstructed image at iterations t
3: pt: PSNR calculated from xt against xadv
4: st: SES-PSNR calculated for xt
5: ft: DIP neural network at iteration t
6: Yp: Predicted label by applying LPF
7:
8: Yp ← Algorithm 1 . Label prediction
9: for n← 1 to 4 do . From mode 1 to mode 4

10: x0 ← z, pt ← 0, st ← 0, x0 ← ft(x0) . DIP initialization
11: for t← 0 to ∞ do . DIP iterations
12: Yt ← Inference result of xt
13: xt+1 ← ft(xt)
14: pt+1 ← PSNR
15: st+1 ← α · pt+1 + (1− α) · (st + bt) . Calculate SES-PSNR
16: bt+1 ← β · (st+1 − st) + (1− β) · bt
17: if st+1 < st then . If a peak in SES-PSNR found
18: if Yp = Yt or n = 4 then . coincides with the predicted label or mode 4
19: return Yt
20: else
21: break . To the next mode
22: end if
23: end if
24: end for
25: end for

4. Evaluation

In this section, we present the experimental results that evaluate the proposed method
in terms of the accuracy and execution time.

4.1. Experimental Settings

The neural network used to evaluate the proposed defense method was ResNet50 [22],
which used a randomly selected 500 ImageNet [1] dataset. Figure 6 shows how the inference
accuracy drops as the degree of FGSM attack ε increases. The ε values that we use in the
following evaluations and their corresponding accuracies are summarized in Table 11.

Figure 6. Accuracy drop with various ε values.
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Table 11. Various ε values used in the experiments and the average classification accuracy of attacked
images in each ε.

ε 0 (No Attack) 2 8 16

Accuracy (%) 72.2 17.4 3.0 2.4

4.2. Results on the Accuracy and Performance

Table 12 compares the accuracy and execution time between DIPDefend and the pro-
posed method of ε = 2. DIPDefend achieves a maximum accuracy of 65.4% in mode 4
(α = 0.001, β = 0.001), whereas the proposed method achieves an accuracy of 62.6%; the
accuracy drop by the proposed method is 2.8%. However, the execution time taken for
reconstruction could be significantly reduced from 224 s to 143.2 s by the proposed method
(the execution time improvement is 41.3%).

Table 12. Execution time and accuracy of DIPDefend and the proposed method when ε = 2.

DIPDefend Proposed
Method(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Accuracy (%) 13.0 38.6 49.2 65.4 62.6

Execution Time (s) 24.30 56.52 89.49 244.0 143.2

We repeated the same experiment for ε = 8 and ε = 16, whose results are presented in
Tables 13 and 14, respectively. The same tendency was observed for both cases.

Table 13. Execution time and accuracy of DIPDefend and the proposed method when ε = 8.

DIPDefend Proposed
Method(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Accuracy (%) 13.4 38 48.2 61.8 60

Execution Time (s) 24.26 56.40 89.41 243.6 135.1

Table 14. Execution time and accuracy of DIPDefend and the proposed method when ε = 16.

DIPDefend Proposed
Method(α, β) (0.01, 0.01) (0.01, 0.001) (0.001, 0.01) (0.001, 0.001)

Accuracy (%) 13.4 34.4 45.8 52.2 51.8

Execution Time (s) 24.15 56.33 89.13 242.0 145.6

Table 15 summarizes the peformance of DIPDefend and the proposed method in
comparison. It could be observed that the proposed method results in a smaller accuracy
drop as the degree of attack (ε) increases while preserving the performance improvement
as significant as approximately 40%.

Table 15. Comparison between DIPDefend and the proposed method with adversarial examples.

ε 2 8 16

Defense
Method DIPDefend Proposed

Method DIPDefend Proposed
Method DIPDefend Proposed

Method

Accuracy (%) 65.4 62.6 61.8 60 52.2 51.8

Accuracy drop (%) 2.8 1.8 0.4

Execution time (s) 244.0 143.2 243.6 135.1 242.0 145.6

Exec. improvement (%) 41.3 44.5 39.8
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Lastly, we verified that the proposed method still remains effective in the case where
the input image has not been attacked. We repeated the same experiment with the same set
of images, but, this time, no adversarial attacks were applied to them. Table 16 compares
the accuracy and execution time of the proposed method with those of DIPDefend to the
original image without an adversarial attack.

Table 16. Comparison between DIPDefend and the proposed method with original (unattacked)
images.

Defense Method DIPDefend Proposed Method

Accuracy (%) 66.0 62.1

Accuracy drop (%) 3.9

Execution time (s) 243.8 158.8

Exec. improvement (%) 34.9

5. Conclusions

In this paper, we proposed an improved image-reconstruction-based defense method
against adversarial attacks The existing image-reconstruction-based defense methods, such
as DIPDefend, need to determine the number of iterations taken to reconstruct images
before inference. In doing so, they have considered neither individual characteristics of
input images nor the degree of attack. Thus, they needed to have constant and conservative
parameters (α and β) for determining the stop point of image reconstruction, for which, the
execution time for defense was significant. On the contrary, the proposed method takes
an adaptive approach to determine the stopping point of image reconstruction. Firstly,
we propose applying low-pass filters with various kernel sizes to roughly predict the true
label. Then, based on this, we tried to run DIPDefend with more efficient parameters that
allow for faster image reconstruction. If the intermediate result was good enough, i.e.,
identical to the predicted label, we stopped the image reconstruction early in favor of a
reduced defense execution time. With 500 randomly chosen images from the validation
set of ImageNet, it has been shown that the proposed method could obtain up to a 44.5%
improvement in execution time against the basic DIPDefend while keeping the accuracy
drop as small as 0.4–3.9%.
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