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Abstract: An adaptive fixed-time dynamic surface tracking control scheme is developed in this
paper for a class of strict-feedback nonlinear systems, where the control input is subject to hysteresis
dynamics. To deal with the input hysteresis, a compensation filter is introduced, reducing the diffi-
culty of design and analysis. Based on the universal approximation theory, the radial basis function
neural networks are employed to approximate the unknown functions in the nonlinear dynamics. On
this basis, fixed-time adaptive laws are constructed to approximate the unknown parameters. The
dynamic surface technique is utilized to handle the complexity explosion problem, where fixed-time
performance is ensured. Moreover, the designed controller can avoid singularities and achieve fixed-
time convergence of error signals. Simulation results verify the efficacy of the method developed,
where a comparison between the scheme developed with existing results is provided.

Keywords: fixed-time control; novel dynamic surface control; input hysteresis; singularity avoidance;
strict-feedback nonlinear systems

1. Introduction

Adaptive control has been investigated in past decades due to its strong robustness and
high flexibility. Relevant theories, including finite-time adaptive control [1,2], backstepping
control [3], sliding mode control [4–6], and adaptive dynamic programming [7–9], have
been successfully applied to nonlinear systems with time-delay [10], circuit systems [11],
wind energy systems [12–14], strict-feedback nonlinear systems [15], and multiagent sys-
tems [16–18]. Among these theories, backstepping control is a useful tool since it can
simplify the design and analysis. Moreover, the development of adaptive backstepping
control tends to make control methods with fast responses, high tracking precision, and low
computation complexity [19]. However, during the process of adaptive backstepping con-
trol, an explosion of complexity is often encountered, which decreases tracking precision
and increases computation complexity. To improve tracking control performance, this
problem calls for solutions.

In the backstepping procedure, the controller often suffers from an explosion of
complexity. That is, with the increase in the system order, repeated differentiation leads
to a sharp increase in the computation complexity, which augments the difficulty of the
control task. To tackle this issue, dynamic surface control (DSC) was proposed in [20],
where first-order filters were introduced and filter states replaced the differentiation of
virtual control. With the DSC technique, the complexity explosion problem can be excluded.
For example, in [21], DSC was combined with fuzzy logic systems to deal with the control
design of nonlinear time-delay systems. Jian et al. proposed an adaptive neural DSC
scheme for uncertain stochastic nonstrict-feedback systems [22]. In [23], for pure-feedback
nonlinear systems, an adaptive neural DSC approach was developed.
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In the real world, fast responses are primary requirements for practical systems in
certain situations [24]. For example, when a missile is launched, it must hit the target in a
specific time interval. Nevertheless, traditional Lyapunov-theory-based methods can only
ensure error signals converge to zero in infinite time, which cannot satisfy this need. To
handle this issue, based on finite-time Lyapunov theorem, finite-time adaptive control was
proposed [25]. It can ensure the convergence of error signals in a finite time interval, which
exceeds traditional Lyapunov-theory-based adaptive control. However, there is a significant
drawback to finite-time adaptive control. Specifically, the convergence time depends on the
initial states of systems, which restricts the application of finite-time adaptive control. To
solve this, fixed-time adaptive control was presented [26]. It is based on finite-time adaptive
control to make improvements, where the convergence speed does not rely on the initial
conditions of systems. In [27], prescribed performance fixed-time control is combined with
neural networks to design controllers for uncertain nonlinear systems. Hu et al. developed
a fuzzy adaptive fixed-time tracking control scheme with an event-triggered design for
nonlinear systems [28]. In [29], measurement noise suppression and augmented sliding
mode observers for hypersonic vehicles are considered simultaneously, where the designed
controllers are fixed-time convergent.

In engineering applications, input nonlinearity widely exists in many situations. Com-
mon input nonlinearity mainly includes input saturation, input dead-zone, and input
hysteresis. Input saturation and input dead-zone nonlinearity have been widely investi-
gated. For instance, in [30], nonlinear systems with input saturation are considered. In [31],
the small-gain approach was utilized to tackle systems with input saturation. Min et al.
introduced a composite observer for nonlinear systems with input saturation [32]. For
unmodeled nonstrict-feedback nonlinear systems, input dead-zone was also taken into
consideration via the adaptive fuzzy control method in [33]. Moreover, the input hysteresis
nonlinearity needs to be paid enough attention. Zhang et al. combined adaptive prescribed
performance control and fuzzy logic systems to handle the input hysteresis [34]. In [35],
the effect of the input hysteresis on time-varying delay was considered.

In the above-mentioned results, the DSC method presented in [20–23] fails to achieve
fixed-time convergence, and the fixed-time control scheme utilized in [26–29] does not con-
sider the explosion of complexity. Furthermore, the compensation filters are not introduced
when handling input hysteresis in [30–35]. To resolve these problems, for strict-feedback
nonlinear systems with input hysteresis, fixed-time dynamic surface control has not been
investigated, which motivates this paper. The contributions are summarized as follows.

1.1. Contribution

1. In this paper, fixed-time dynamic surface control is presented, where extra nonlinear
terms are introduced in the first-order filters to improve the filter error convergence
speed. Meanwhile, the adaptive laws can also ensure the fixed-time property of param-
eter approximation errors, and the singularity problem of the controller is avoided.

2. The input hysteresis is considered in this paper and dealt with by introducing a
compensation filter, which can compensate for the loss from the input hysteresis.

1.2. Structure

The rest of this paper is organized as follows. Section 2 provides the background
knowledge. In Section 3, the problem is formulated. Section 4 presents the control scheme
of this paper, where stability analysis for the strict-feedback nonlinear system with the
proposed design is given. Section 5 shows the simulation results, where the effectiveness of
the developed approach is verified. In Section 6, a conclusion is drawn.
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2. Preliminary Knowledge

Consider a class of strict-feedback nonlinear systems with the following dynamics

Ẋi = Xi+1 + Fi(X̄i), i = 1, . . . , n− 1,

Ẋn = H(U) + Fn(X),

Y = X1, (1)

where X = [X1 · · · Xn]
T ∈ Rn, U ∈ R, Y ∈ R, Fi(·) : Ri → R, X̄i = [X1 · · · Xi]

T ∈ Rn.
Moreover, H(U) denotes the input hysteresis nonlinearity, satisfying the following form

H(U) = Λ1U + Λ2ς,

ς̇ = U̇G
(
ς, U̇

)
, ς(0) = 0,

G
(
ς, U̇

)
= 1− sign

(
U̇
)

β|ς|N−1ς− χ|ς|N , (2)

where Λ1 > 0, Λ2 > 0, β > χ, and χ > 0 are constants, and N > 1 is a positive integer. The
input hysteresis nonlinearity (2) is illustrated in Figure 1.
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Figure 1. The input hysteresis nonlinearity.

In addition, the reference signal is Xd(t).
Consider radial basis function neural networks (RBFNNs) as

RRBF(Υ) = GTφ(Υ), (3)

where G ∈ Rm and Υ ∈ ΩΥ ⊂ Rl are the vectors of weight and input, respectively.
Moreover, the basis function is φ(Υ) = [φ1(Υ), . . . , φm(Υ)]

T ∈ Rm and

φi(Υ) = exp

(
− [Υ− µi]

T[Υ− µi]

2σ2

)
, (4)

where µi ∈ Rl and σ > 0 correspond to the mean value and variance.
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Lemma 1 ([36]). Given arbitrary parameter ψ > 0, sufficiently large node number m, a compact
set ΩΥ ⊆ Rl , and a continuous function R(Υ) : ΩΥ → R, there is a RBFNN satisfying (3)
such that

sup
Υ∈ΩΥ

∣∣∣R(Υ)− GTφ(Υ)
∣∣∣ ≤ ψ.

On account of Lemma 1, we define the optimal weight vector as

G∗ = arg min
G∈Rm

{
sup

Υ∈ΩΥ

∣∣∣R(Υ)− GTφ(Υ)
∣∣∣}

and optimal approximation residual as

ψ∗(Υ) = R(Υ)− G∗Tφ(Υ).

Then, we obtain |ψ∗(Υ)| ≤ ψ.

Definition 1 ([37]). Given a continuous-time system

Ẋ = F(X), (5)

where X ∈ Rn is the state vector and initial state is X(t0) = X0. Assume that there exists v > 0
and T(v, X0) < ∞ such that ‖X(t)‖ < v for all X0 and t ≥ t0 + T(v, X0), and there is a
constant Tmax > 0 such that T ≤ Tmax for any X0. Then, the state is practically fixed-time stable.

Lemma 2 ([37]). Suppose that there exists a Lyapunov function V(X(t)) for the system (5)
such that

V̇(X(t)) ≤ −aVp(X(t))− bVq(X(t)) + c,

with constants a > 0, b > 0, c > 0, 0 < p < 1, and q > 1. Then, X(t) is practical fixed-time

stable and converges to the set
{

X(t)| 12 X2(t) ≤ Vm

}
with Vm = min

[(
c

a(1−κ)

) 1
p ,
(

c
b(1−κ)

) 1
q
]

,

where the settling time T is determined by T ≤ T̄ = 1
aκ(1−p) +

1
bκ(q−1) with 0 < κ < 1.

Lemma 3 ([28]). For any positive real numbers ςi, ξi and a positive integer n, one has

n
∑

i=1

(
ς

3
4
i + ξ

3
4
i

)
≥
[

n
∑

i=1
(ςi + ξi)

] 3
4
,

n
∑

i=1

(
ς2

i + ξ2
i
)
≥ 1

n

[
n
∑

i=1
(ςi + ξi)

]2
.

Lemma 4 ([38] Young’s inequality). For any positive real number ρa, ρb, ρc, and ρd satisfying
1
ρa

+ 1
ρb

= 1, one has

ρcρd ≤
ρ

ρa
c

ρa
+

ρ
ρb
d

ρb
. (6)

3. Problem Formulation

In this paper, the control objective is summarized as follows.
Control Objective: Given a bounded reference, the control objective is to propose a

fixed-time tracking control approach for the strict-feedback nonlinear system (1) such that
system output Y(t) can track the reference signal Xd(t) before t ≤ Tmax with a constant Tmax.
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4. Fixed-Time Adaptive Controller Design with Novel DSC filters and Stability Analysis

In this section, a fixed-time adaptive controller with novel DSC filters is designed. The
overall design can be shown in Figure 2.

( )
( ) ( )
1 , 1,..., 1i i i i

n n

X X F X i n

X H U F X
+= + = −

= +
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2
n
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n
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Figure 2. The flow chart of the presented design.

To tackle the input hysteresis, a compensation mechanism is introduced as

ϑ̇i = ϑi+1 − κiϑi, i = 1, . . . , n− 1,

ϑ̇n = ∆U − κnϑn, (7)

where ∆U = H(U)−U is the influence of the input hysteresis, κi > 0 is a constant, and the
initial state is ϑi(0) = 0. Define tracking errors Ei and filter errors Zi as

Ei = Xi − Ai−1 − ϑi, i = 1, . . . , n,

Zi = Ai − Si, i = 1, . . . , n− 1, (8)

where Si and Ai are designed later. In addition, we denote A0 = Xd.
Using RBFNNs to estimate the unknown functions Fi(X̄i) yields

Fi(X̄i) = G∗Ti Φi(X̄i) + ψ∗i (X̄i). (9)

Due to the unknown optimal weight G∗i , the adaptive parameter Θ̂i is defined as the
estimation of Θi with Θi =

∥∥G∗i
∥∥2. Furthermore, the parameter approximation error is

denoted as Θ̃i = Θi − Θ̂i.

4.1. Adaptive Backstepping-Based Controller Design
4.1.1. Step 1

On account of (8), taking the time derivative of E1 results in

Ė1 = G∗T1 Φ1(X1) + ψ∗1 (X1) + E2 + S1 + Z1 − Ẋd + κ1ϑ1. (10)
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The virtual control is designed as

S1 = −K1,1E1 − K1,2E3
1 −

Θ̂1

2η1
E1ΦT

1 Φ1 + Ẋd − κ1ϑ1, (11)

where η1 > 0, K1,1 > 0, and K1,2 > 0 are constants. To avoid the differentiation of S1,
a novel DSC filter is developed as

Ȧ1 =
S1 − A1

v1,1
+

(S1 − A1)
3

v1,2
, A1(0) = 0, (12)

with constants v1,1 > 0 and v1,2 > 0. To resolve the parameter approximation problem,
a fixed-time adaptive law is proposed as

˙̂Θ1 =
1

2η1
E2

1ΦT
1 Φ1 − Γ1,1Θ̂1 − Γ1,2Θ̂3

1, Θ̂1(0) ≥ 0, (13)

with constants Γ1,1 > 0 and Γ1,2 > 0.

4.1.2. Step i(2 ≤ i ≤ n− 1)

From (8), taking the derivative of Ei leads to

Ėi = G∗Ti Φi(X̄i) + ψ∗i (X̄i) + Ei+1 + Si + Zi − Ȧi−1 + κiϑi. (14)

Design

Si = −Ei−1 − Ki,1Ei − Ki,2E3
i −

Θ̂i
2ηi

EiΦT
i Φi + Ȧi−1 − κiϑi, (15)

with constants ηi > 0, Ki,1 > 0, and Ki,2 > 0. To avoid the differentiation of Si, introduce a
novel DSC filter as

Ȧi =
Si − Ai

vi,1
+

(Si − Ai)
3

vi,2
, Ai(0) = 0, (16)

where vi,1 > 0 and vi,2 > 0 are constants. To handle the parameter approximation problem,
an adaptive law is developed as

˙̂Θi =
1

2ηi
E2

i ΦT
i Φi − Γi,1Θ̂i − Γi,2Θ̂3

i , Θ̂i(0) ≥ 0, (17)

with positive constants Γi,1 and Γi,2.

4.1.3. Step n

On the basis of (7) and (8), differentiating En yields

Ėn = G∗Tn Φn(X) + ψ∗n(X) + H(U)− Ȧn−1 − ∆U + κnϑn

= G∗Tn Φn(X) + ψ∗n(X) + U − Ȧn−1 + κnϑn. (18)

Design

U = −En−1 − Kn,1En − Kn,2E3
n −

Θ̂n

2ηn
EnΦT

nΦn + Ȧn−1 − κnϑn, (19)

with ηn > 0, Kn,1 > 0, and Kn,2 > 0.
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To approximate the adaptive parameter Θn, a fixed-time adaptive law is constructed as

˙̂Θn =
1

2ηn
E2

nΦT
nΦn − Γn,1Θ̂n − Γn,2Θ̂3

n, Θ̂n(0) ≥ 0, (20)

where Γn,1 and Γn,2 are positive constants.

4.2. Stability Analysis

Next, to demonstrate the feasibility of the developed design in Section 4, the stability
of the closed-loop system is analyzed.

4.2.1. Step 1

Substituting (11) into (10), one has

Ė1 = G∗T1 Φ1(X1) + ψ∗1 (X1)− K1,1E1 + Z1 + E2 − K1,2E3
1 −

Θ̂1

2η1
E1ΦT

1 Φ1. (21)

The Lyapunov function for E1 and Θ̃1 is chosen as

V1
(
E1, Z1, Θ̃1

)
=

1
2

E2
1 +

1
2

Z2
1 +

1
2

Θ̃2
1. (22)

Taking the derivative of V1 results in

V̇1 = E1Ė1 + Z1Ż1 − Θ̃1
˙̂Θ1

= E1G∗T1 Φ1(X1) + E1ψ∗1 (Υ1)− K1,1E2
1 + E1E2 + E1Z1

+Z1Ż1 − K1,2E4
1 −

Θ̂1

2η1
E2

1ΦT
1 Φ1 − Θ̃1

˙̂Θ1. (23)

Utilizing the Young’s inquality yields

E1G∗T1 Φ1(X1) ≤
Θ1

2η1
E2

1ΦT
1 Φ1 +

η1

2
,

E1ψ∗1 (X1) ≤ |E1|ψ1 ≤
1
2

(
E2

1 + ψ2
1

)
. (24)

Substituting (24) into (23), we obtain

V̇1 ≤ −K1,1E2
1 − K1,2E4

1 + E1E2 + E1Z1 +
E2

1 + ψ2
1

2

+Z1Ż1 +
η1

2
− Θ̃1

(
˙̂Θ1 −

1
2η1

E2
1ΦT

1 Φ1

)
. (25)

Recalling the adaptive law (13), V̇1 becomes

V̇1 ≤ −
(

K1,1 −
1
2

)
E2

1 − K1,2E4
i,1 + E1E2 + E1Z1

+Z1Ż1 +
ψ2

1
2

+
η1

2
+ Γ1,1Θ̃1Θ̂1 + Γ1,2Θ̃1Θ̂3

1. (26)

4.2.2. Step i(2 ≤ i ≤ n− 1)

Inserting (15) into (14), one has

Ėi = G∗Ti Φi(Xi) + ψ∗i (X̄i)− Ei−1 − Ki,1Ei + Zi + Ei+1 − Ki,2E3
i −

Θ̂i
2ηi

EiΦT
i Φi. (27)
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Select Lyapunov function for Ei and Θ̃i as

Vi
(
Ei, Zi, Θ̃i

)
=

1
2

E2
i +

1
2

Z2
i +

1
2

Θ̃2
i . (28)

Differentiating Vi, one has

V̇i = Ei Ėi + ZiŻi − Θ̃i
˙̂Θi

= EiG∗Ti Φi(X̄i) + Eiψ
∗
i (X̄i)− Ki,1E2

i − Ki,2E4
i

+ZiŻi − Ei−1Ei + EiEi+1 −
Θ̂i
2ηi

E2
i ΦT

i Φi − Θ̃i
˙̂Θi. (29)

Recalling the Young’s inequality, we have

EiG∗Ti Φi(X̄i) ≤
Θi
2ηi

E2
i ΦT

i Φi +
ηi
2

,

Eiψ
∗
i (X̄i) ≤ |Ei|ψi ≤

1
2

(
E2

i + ψ2
i

)
. (30)

Inserting (30) into (29) leads to

V̇i ≤ −Ki,1E2
i − Ki,2E4

i − Ei−1Ei + EiEi+1 + EiZi +
ηi
2

+ZiŻi +
E2

i + ψ2
i

2
− Θ̃i

(
˙̂Θi −

1
2ηi

E2
i ΦT

i Φi

)
. (31)

On the basis of the fixed-time adaptive law (17), V̇i becomes

V̇i ≤ −
(

Ki,1 −
1
2

)
E2

i − Ki,2E4
i,1 − Ei−1Ei + EiEi+1

+EiZi + ZiŻi +
ψ2

i
2

+
ηi
2
+ Γi,1Θ̃iΘ̂i + Γi,2Θ̃iΘ̂3

i . (32)

4.2.3. Step n

Inserting (19) into (18), we obtain

Ėn = G∗Tn Φn(X) + ψ∗n(X)− En−1 − Kn,1En − Kn,2E3
n −

Θ̂n

2ηn
EnΦT

nΦn. (33)

The Lyapunov function for En and Θ̃n is chosen as

Vn
(
En, Θ̃n

)
=

1
2

E2
n +

1
2

Θ̃2
n. (34)

The derivative of Vn satisfies

V̇n = EnĖn − Θ̃n
˙̂Θn

= EnG∗Tn Φn(X) + Enψ∗n(X)− Kn,1E2
n − Kn,2E4

n

−En−1En −
Θ̂n

2ηn
E2

nΦT
nΦn − Θ̃n

˙̂Θn. (35)

Using the Young’s inquality, one obtains

EnG∗Tn Φn(X) ≤ Θn

2ηn
E2

nΦT
nΦn +

ηn

2
,

Enψ∗n(X) ≤ |En|ψn ≤
1
2

(
E2

n + ψ2
n

)
. (36)
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Substituting (36) into (35), one has

V̇n ≤ −Kn,1E2
n − Kn,2E4

n − En−1En +
ηn

2

+
E2

n + ψ2
n

2
− Θ̃n

(
˙̂Θn −

1
2ηn

E2
nΦT

nΦn

)
. (37)

From (20), V̇n is transformed as

V̇n ≤ −
(

Kn,1 −
1
2

)
E2

n − Kn,2E4
n − En−1En

+
ψ2

n
2

+
ηn

2
+ Γn,1Θ̃nΘ̂n + Γn,2Θ̃nΘ̂3

n. (38)

Theorem 1. For the strict-feedback nonlinear system (1) with the developed design in Section 4,
there exists Tm > 0 such that the fixed-time performance can be obtained with settling time T ≤ Tm.

Proof. The Lyapunov function is defined as

V =
n

∑
i=1

Vi.

The first-order derivative of V satisfies

V̇ ≤ −
n

∑
i=1

(
K′ i,1E2

i + Ki,2E4
i

)
+

1
2

n

∑
i=1

(
ψ2

i + ηi

)
+

n−1

∑
i=1

(
EiZi + ZiŻi

)
+

n

∑
i=1

[
Γi,1Θ̃iΘ̂i + Γi,2Θ̃iΘ̂3

i

]
, (39)

with k′i,1 = Ki,1 − 1
2 .

The derivative of Zi is

Żi = Ȧi − Ṡi = −
Zi

vi,1
−

Z3
i

vi,2
− Ṡi,

where

Ṡ1 = −K1,1Ė1 − 3K1,2E2
1 Ė1 − κ1ϑ̇1 + Ẍd −

˙̂Θ1

2η1
E1ΦT

1 Φ1 −
Θ̂1

2η1
Ė1ΦT

1 Φ1 −
Θ̂1

η1
E1ΦT

1 Φ̇1

and

Ṡi = −Ėi−1 − Ki,1Ėi − 3Ki,2E2
i Ėi − κiϑ̇i −

Żi−1

vi−1,1
−

3Z2
i−1Żi−1

vi−1,2

−
˙̂Θi

2ηi
EiΦT

i Φi −
Θ̂i
2ηi

ĖiΦT
i Φi −

Θ̂i
ηi

EiΦT
i Φ̇i, i = 2, . . . , n− 1

are continuous on Ωi, where

Ωi =
{
(Ei, Zi, ϑi)

∣∣∣E2
i + Z2

i + ϑ2
i ≤ Ri

}
,
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and R0 > 0 and Ri > 0 [20]. Therefore,
∣∣Ṡi
∣∣ ≤ Mi with Mi > 0. Employing the Young’s

inequality, one obtains

EiZi ≤
E2

i
2

+
Z2

i
2

,

ZiŻi ≤
η0Z2

i
2

+
M2

i
2η0

. (40)

From Lemma 3, the following inequalities hold

(
E2

i

) 3
4 ≤ 3

4

(
E2

i

)
+

1
4

,(
Θ̃2

i

) 3
4 ≤ 3

4

(
Θ̃2

i

)
+

1
4

. (41)

From Young’s inequality, we have

Θ̃iΘ̂i ≤
1
2

Θ2
i −

1
2

Θ̃2
i ≤

1
2

Θ2
i +

1
6
− 2

3

(
Θ̃2

i

) 3
4

Θ̃iΘ̂3
i = Θ̃iΘ3

i −Θ2
i Θ̃2

i + ΘiΘ̃3
i − Θ̃4

i

≤ Γi,3
Θ̃4

i
4

+ Γ
1
3
i,3

3Θ4
i

4
+

Θ4
i

2Γi,3
+ Γi,3

Θ̃4
i

2

+Γ
1
3
i,4

3Θ̃4
i

4
+ Γi,4

Θ4
i

4
− Θ̃4

i

= −
(

1− 3
4

(
Γi,3 + Γ

1
3
i,4

))
Θ̃4

i

+

(
3
4

Γ
1
3
i,3 +

1
2Γi,3

+
1
4

Γi,4

)
Θ4

i , (42)

with Γi,3 > 0, Γi,4 > 0, 1− 3
4

(
Γi,3 + Γ

1
3
i,4

)
> 0. Due to Lemma 3, one has

n

∑
j=1

[(
E2

i

) 3
4
+
(

Θ̃2
i

) 3
4
]
≥
[

n

∑
j=1

(
E2

i + Θ̃2
i

)] 3
4

,

n

∑
j=1

[(
E2

i

)2
+
(

Θ̃2
i

)2
]
≥ 1

n

[
n

∑
j=1

(
E2

i + Θ̃2
i

)]2

. (43)

Inserting (40)–(43) into (39) obtains

V̇ ≤ −
n

∑
i=1

[
4
3

K′ i,1
(

E2
i

) 3
4
+

2Γi,1

3

(
Θ̃2

i

) 3
4
]
+

1
2

n

∑
i=1

(
ψ2

i + ηi

)
+

1
6

n

∑
i=1

(
2K′ i,1 + Γi,1

)
−

n

∑
i=1

Γi,2

4

(
4− 3Γi,3 − 3Γ

1
3
i,4

)
Θ̃4

i −
n

∑
i=1

Ki,2E4
i +

1
2

n

∑
i=1

Γi,1Θ2
i

+
1
2

n

∑
i=1

Γi,2

(
3
2

Γ
1
3
i,3 +

1
Γi,3

+
1
2

Γi,4

)
Θ4

i

≤ −a1V
3
4 − a2

n
V2 + b, (44)
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with

a1 = 2
3
4 min

i=1,...,n

{
4K′ i,1

3
,

2Γi,1

3

}
,

a2 = 4 min
i=1,...,n

{
Ki,2,

Γi,2

4

(
4− 3Γi,3 − 3Γ

1
3
i,4

)}
,

b =
1
2

n

∑
i=1

(
Γi,1Θ2

i + ψ2
i + ηi

)
+

1
6

n

∑
i=1

(
2K′ i,1 + Γi,1

)
+

1
2

n

∑
i=1

Γi,2

(
3
2

Γ
1
3
i,3 +

1
Γi,3

+
1
2

Γi,4

)
Θ4

i .

On the basis of Lemma 2, Ei and Θ̃i converge to{(
E1, Θ̃1, . . . , En, Θ̃n

)∣∣1
2

n

∑
i=1

(
E2

i + Θ̃2
i

)
≤ Vs

}

before t ≤ Tmax with

Tmax = max
{

4
a1o

+
1
a2

,
4
a1

+
1

a2o

}
,

0 < o < 1, and

Vs = min

{(
b

(1− o)a1

) 4
3
,
(

b
(1− o)a2

) 1
2
}

.

As a consequence, based on the error definition (8), fixed-time convergence of Ei is
proved. On the basis of the DSC filter design (12) and (16), Ȧi is bounded. Due to (7), (11),
(15), and (19), Si, U, Ai, and ϑi are bounded. According to (1) and (2), Xi and H(U) are
bounded. Finally, the fixed-time performance can be proved.

5. Simulation Results
5.1. Example 1

Consider the following system

Ẋ1 = X2 − X2
1

Ẋ2 = X3 + 2X1X2

Ẋ3 = H(U) + X1X3 − 2X2X3 + 5X1X2X3

Y = X1

with Xd = 0.5[sin(t) + sin(2t)].
From the definition of Tmax and VS, to accelerate convergence speed, Tmax and VS

should be reduced small enough, which requires enough large a1 and a2 and enough small
b. On the basis of (44), to increase a1 and a2 and decrease b, we need to increase Ki,2 and
decrease Γi,4, where Ki,1, Γi,1, Γi,2, and Γi,3 should be chosen neither too large nor too small.

We select the initial conditions as X1(0) = 0.2, X2(0) = −2.5, and X3(0) = −0.2
and the design parameters as K1,1 = 20, K2,1 = 210, K3,1 = 330, K1,2 = K2,2 = K3,2 = 2,
κ1 = κ2 = κ3 = 50, v1,1 = v2,1 = 0.1, v1,2 = v2,2 = 10, Γ1,1 = Γ2,1 = Γ3,1 = 5, Γ1,2 = 10,
Γ2,2 = 20, Γ3,2 = 30, and η1 = η2 = η3 = 0.5.

The RBFNNs are selected as in (4), i.e., RBFNN Φ1(X1) contains three hidden nodes
with the center distributing in [−2, 0, 2]. RBFNN Φ2(X̄2) has 9 nodes with the center
selected as [−2, 0, 2]× [−2, 0, 2]. RBFNN Φ3(X3) contains 27 nodes, where the centers are
chosen as [−2, 0, 2]× [−2, 0, 2]× [−2, 0, 2].
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The simulation results are shown in Figures 3–5. From Figure 3, one can observe the
output converges to the reference. In Figure 4, the curves of filter errors and tracking errors
are depicted. From Figure 5, the control input and the hysteresis nonlinearity are displayed.

0 1 2 3 4 5 6 7 8 9 10
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1

0 1 2 3 4 5 6 7 8 9 10

-2
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0 1 2 3 4 5 6 7 8 9 10
-20

0

20

40

Figure 3. Output tracking performance.

Figure 4. Curves of error signals and compensation filter states.
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Figure 5. The control input and hysteresis nonlinearity.

5.2. Example 2: Circuit System

This section provides a comparison between the approach in this paper with classic
DSC-based methods [39] using a circuit system, where the circuit diagram is shown in
Figure 6.
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899899:� ;<=8><=8A2A4:�:��:�:� )2)4
)�BC:D�E

Figure 6. Circuit diagram.
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The parameters are chosen as

R = 50 kΩ, C = 20 pF, R1 = 250 kΩ, R2 = 125 kΩ

The circuit system can be modeled as

Ẋ1 = X2

Ẋ2 = X3

Ẋ3 = H(U) + 0.2X1X2 − 0.4X2X3

Y = X1

with

X1 = U1, X2 = U2, X3 = U3, Y = Uout, U = Uin

Xd = 0.5[sin(t) + sin(2t)] (45)

and initial conditions X1(0) = 0.3, X2(0) = −1.5, and X3(0) = −0.3. For the design
parameters, we select K1,1 = 10, K2,1 = 150, K3,1 = 280, K1,2 = K2,2 = K3,2 = 1.5,
κ1 = κ2 = κ3 = 40, v1,1 = v2,1 = 0.1, v1,2 = v2,2 = 10, Γ1,1 = 6, Γ2,1 = 8, Γ3,1 = 7,
Γ1,2 = 10, Γ2,2 = 20, Γ3,2 = 30, and η1 = η2 = η3 = 0.5.

The RBFNNs are selected the same as in Example 1, i.e., RBFNN Φ1(X1) contains three
hidden nodes with the centers distributing in [−2, 0, 2]. RBFNN Φ2(X̄2) has 9 nodes with
the centers distributed in [−2, 0, 2]× [−2, 0, 2]. RBFNN Φ3(X3) contains 27 nodes, where
the centers are distributed in [−2, 0, 2]× [−2, 0, 2]× [−2, 0, 2].

The simulation results of the method in this paper are shown in Figures 7–9. In
Figure 7, the evolution of system states is displayed, where all system states converge to
the reference signals. Figure 8 depicts the trajectories of filter errors and tracking errors.
The control input and the hysteresis nonlinearity are displayed in Figure 9.

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

0 1 2 3 4 5 6 7 8 9 10
-2

0
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0 1 2 3 4 5 6 7 8 9 10
-10

0
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20

Figure 7. Output tracking performance.
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 a: Evolution of tracking errors 
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 b: Trajectories of filter errors 
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Figure 8. Curves of error signals and compensation filter states.
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Figure 9. The control input and hysteresis nonlinearity.

Utilizing the scheme in [39], the results are shown in Figures 10–12, where the pre-
sented method outperforms the method in [39]. In Figure 8, filter errors and tracking errors
do not converge to zero. The control input and the hysteresis nonlinearity are given in
Figure 9.
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Figure 10. Output tracking performance.
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Figure 11. Curves of error signals and compensation filter states.
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Figure 12. The control input and hysteresis nonlinearity.

Based on the definition of Tmax, Tmax is calculated as 0.83 s in Example 1 and 0.76 s
in Example 2. From these figures, we can observe that the system states all converge to
corresponding reference signals before t = Tmax, both in Examples 1 and 2. Therefore,
the system states achieve fixed-time convergence indeed. It can be concluded that de-
spite the input hysteresis, the method developed in this paper is verified as effective for
the system (1).

6. Conclusions

In this paper, for strict-feedback systems with the input hysteresis, an adaptive tracking
control approach is presented, where fixed-time convergence is achieved. The introduced
compensation filter can overcome the effect of the input hysteresis. The constructed fixed-
time adaptive law can ensure fixed-time properties of the parameter approximation errors.
The novel DSC employed can tackle the explosion of complexity with the guarantee of
fixed-time convergence. Moreover, singularity problems in the control input are excluded.
Simulation results validate the effectiveness of the scheme proposed. Future works will
extend the method presented to stochastic systems and dynamic uncertainties.
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