Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition
Abstract
:1. Introduction
2. Related Work
3. Materials and Method
3.1. Dataset
3.2. Spatio Temporal Power Spectral Feature-Based Gait Recognition
3.2.1. Preprocessing
3.2.2. Dynamic Gait Feature Extraction
3.2.3. Spatio Temporal Power Spectral Feature Extraction
HOG Computation of Dynamic Gait Feature
Power Spectral Density Analysis of Gait Features
- INPUT IMAGEI = [1200 × 451 × 3]
- DGF IMAGEDGFI = [656 × 875 × 1]
- HOG FEATURESHog = [1 × 71,928]
- HOG FEATURES (GAIT SIGNATURE)HOG = [1 × 359,640]
- PSD FEATURESPSD = [81,938 × 1]
- PSD FEATURES FOR GAIT SIGNATUREPSD = [65,537 × 1]
- STPS FEATURES FOR GAIT SIGNATURESTPS = [65,537 × 5]
Principal Component Analysis
3.2.4. Gait Recognition with Support Vector Machine
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Makihara, Y.; Ogi, G.; Li, X.; Yagi, Y.; Lu, J. The ou-isir gait database comprising the large population dataset with age and performance evaluation of age estimation. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 24. [Google Scholar] [CrossRef]
- Li, X.; Makihara, Y.; Xu, C.; Yagi, Y.; Ren, M. Gait-based human age estimation using age group-dependent manifold learning and regression. Multimed. Tools Appl. 2018, 77, 28333–28354. [Google Scholar] [CrossRef] [Green Version]
- Sakata, A.; Takemura, N.; Yagi, Y. Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 4. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Bhanu, B. Ethnicity Classification Based on Gait Using Multi-View Fusion. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Masood, H.; Farooq, H. A Proposed Framework for Vision Based Gait Biometric System against Spoofing Attacks. In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017. [Google Scholar]
- Rida, I.; Almaadeed, N.; Almaadeed, S. Robust gait recognition: A comprehensive survey. IET Biom. 2018, 8, 14–28. [Google Scholar] [CrossRef]
- Bouchrika, I. A Survey of Using Biometrics for Smart Visual Surveillance: Gait Recognition. In Surveillance in Action; Springer: Cham, Switzerland, 2018; pp. 3–23. [Google Scholar]
- Liu, T.; Ye, X.; Sun, B. Combining Convolutional Neural Network and Support Vector Machine for Gait-Based Gender Recognition. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November 2018. [Google Scholar]
- Kitchat, K.; Khamsemanan, N.; Nattee, C. Gender Classification from Gait Silhouette Using Observation Angle-Based Geis. In Proceedings of the 2019 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Bangkok, Thailand, 18–20 November 2019. [Google Scholar]
- Isaac, E.R.; Elias, S.; Rajagopalan, S.; Easwarakumar, K. Multiview gait-based gender classification through pose-based voting. Pattern Recognit. Lett. 2019, 126, 41–50. [Google Scholar] [CrossRef]
- Bouchrika, I.; Carter, J.N.; Nixon, M.S. Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras. Multimed. Tools Appl. 2016, 75, 1201–1221. [Google Scholar] [CrossRef]
- van Mastrigt, N.M.; Celie, K.; Mieremet, A.L.; Ruifrok, A.C.; Geradts, Z. Critical review of the use and scientific basis of forensic gait analysis. Forensic Sci. Res. 2018, 3, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Hadid, A.; Ghahramani, M.; Kellokumpu, V.; Pietikäinen, M.; Bustard, J.; Nixon, M. Can Gait Biometrics Be Spoofed? In Proceedings of the 21st International Conference on Pattern Recognition (Icpr2012), Tsukuba Science City, Japan, 11 November 2012. [Google Scholar]
- Hadid, A.; Ghahramani, M.; Bustard, J.; Nixon, M. Improving gait biometrics under spoofing attacks. Improving Gait Bio-metrics Under Spoofing Attacks. In Proceedings of the International Conference on Image Analysis and Processing, Naples, Italy, 9–13 September 2013; Springer: Berlin, Germany, 2013. [Google Scholar]
- Jia, M.; Yang, H.; Huang, D.; Wang, Y. Attacking Gait Recognition Systems via Silhouette Guided GANs. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 15 October 2019. [Google Scholar]
- Yang, T.; Zeng, Z.; Chen, X. Gait Recognition Robust to Dress and Carrying Using Multi-Link Gravity Center Track. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Beijing, China, 8 August 2015. [Google Scholar]
- Ng, H.; Tan, W.-H.; Abdullah, J.; Tong, H.-L. Development of vision based multiview gait recognition system with MMUGait database. Sci. World J. 2014, 2014, 376569. [Google Scholar] [CrossRef]
- Towheed, M.A.; Kiyani, W.; Ummar, M.; Shanableh, T.; Dhou, S. Motion-Based Gait Recognition for Recognizing People in Traditional Gulf Clothing. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3 November 2019. [Google Scholar]
- Yu, S.; Tan, D.; Tan, T. Modelling the Effect of View Angle Variation on Appearance-Based Gait Recognition. In Proceedings of the Asian Conference on Computer Vision, Hyderabad, India, 13–16 January 2006; Springer: Berlin, Germany, 2006. [Google Scholar]
- Takemura, N.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Phillips, P.J.; Sarkar, S.; Robledo, I.; Grother, P.; Bowyer, K. The Gait Identification Challenge Problem: Data Sets and Baseline Algorithm. In Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02) 2002, Quebec City, Canada, 11 August 2002; Volume 1. [Google Scholar]
- Hofmann, M.; Sural, S.; Rigoll, G. Gait Recognition in The Presence of Occlusion: A New Dataset and Baseline Algorithms. In Proceedings of the 19th International Conference on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, 31 January 2011. [Google Scholar]
- Uddin, M.Z.; Muramatsu, D.; Takemura, N.; Ahad, M.A.R.; Yagi, Y. Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 1–18. [Google Scholar] [CrossRef]
- Singh, J.P.; Jain, S.; Arora, S.; Singh, U.P. Vision-based gait recognition: A survey. IEEE Access. 2018, 6, 70497–70527. [Google Scholar] [CrossRef]
- Makihara, Y.; Nixon, M.S.; Yagi, Y. Gait Recognition: Databases, Representations, and Applications. In Computer Vision: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–13. [Google Scholar]
- Iwama, H.; Okumura, M.; Makihara, Y.; Yagi, Y. The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.; Shi, J. The Cmu Motion of Body (Mobo) Database; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Uddin, M.Z.; Ngo, T.T.; Makihara, Y.; Takemura, N.; Li, X.; Muramatsu, D.; Yagi, Y. The ou-isir large population gait database with real-life carried object and its performance evaluation. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Makihara, Y.; Mannami, H.; Tsuji, A.; Hossain, M.A.; Sugiura, K.; Mori, A.; Yagi, Y. The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans. Comput. Vis. Appl. 2012, 4, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Makihara, Y.; Li, X.; Yagi, Y.; Lu, J. Speed-invariant gait recognition using single-support gait energy image. Multimed. Tools Appl. 2019, 78, 26509–26536. [Google Scholar] [CrossRef] [Green Version]
- Semwal, V.B.; Mazumdar, A.; Jha, A.; Gaud, N.; Bijalwan, V. Speed, Cloth and Pose Invariant Gait Recognition-Based Person Identification. In Machine Learning: Theoretical Foundations and Practical Applications; Springer: Singapore, 2021; pp. 39–56. [Google Scholar]
- Verlekar, T.T.; Correia, P.L.; Soares, L.D. View-invariant gait recognition system using a gait energy image decomposition method. IET Biom. 2017, 6, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Tan, Y.-P. Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 2010, 5, 761–770. [Google Scholar] [CrossRef]
- Makihara, Y.; Okumura, M.; Iwama, H.; Yagi, Y. Gait-Based Age Estimation Using a Whole-Generation Gait Database. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11 October 2011. [Google Scholar]
- Chuen, B.K.Y.; Connie, T.; Song, O.T.; Goh, M. A Preliminary Study of Gait-Based Age Estimation Techniques. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015. [Google Scholar]
- Hong, J. Human Gait Identification and Analysis. Ph.D. Thesis, Brunel University School of Engineering and Design, London, UK, 2012. [Google Scholar]
- Sudha, L.; Bhavani, R. An efficient spatio-temporal gait representation for gender classification. Appl. Artif. Intell. 2013, 27, 62–75. [Google Scholar] [CrossRef]
- Hassan, O.M.S.; Abdulazeez, A.M.; TİRYAKİ, V.M. Gait-Based Human Gender Classification Using Lifting 5/3 Wavelet and Principal Component Analysis. In Proceedings of the 2018 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 9 October 2018. [Google Scholar]
- Bashir, K.; Xiang, T.; Gong, S. Cross View Gait Recognition Using Correlation Strength. In Proceedings of the British Machine Vision Conference, BMVC, Aberystwyth, UK, 31 August 2010. [Google Scholar]
- Bashir, K.; Xiang, T.; Gong, S. Gait Recognition Using Gait Entropy Image. In Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), London, UK, 3 December 2009. [Google Scholar]
- Jeevan, M.; Jain, N.; Hanmandlu, M.; Chetty, G. Gait Recognition Based on Gait Pal and Pal Entropy Image. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013. [Google Scholar]
- Rokanujjaman, M.; Islam, M.S.; Hossain, M.A.; Islam, M.R.; Makihara, Y.; Yagi, Y. Effective part-based gait identification using frequency-domain gait entropy features. Multimed. Tools Appl. 2015, 74, 3099–3120. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Pu, J.; Yuan, X.; Wang, L. Chrono-Gait Image: A Novel Temporal Template for Gait Recognition. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wang, C.; Zhang, J.; Wang, L.; Pu, J.; Yuan, X. Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 2164–2176. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wang, C.; Wang, L. Multiple Hog Templates for Gait Recognition. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012. [Google Scholar]
- Chen, C.; Liang, J.; Zhao, H.; Hu, H.; Tian, J. Factorial HMM and parallel HMM for gait recognition. IEEE Trans. Syst. Man Cybern. Part C 2008, 39, 114–123. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Zhao, H.; Hu, H.; Tian, J. Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 2009, 30, 977–984. [Google Scholar] [CrossRef]
- Lam, T.H.; Lee, R.S. A New Representation for Human Gait Recognition: Motion Silhouettes Image (Msi). In International Conference on Biometrics, Hong Kong, China, 5–7 January 2006; Springer: Berlin, Germany, 2006. [Google Scholar]
- Lee, H.; Hong, S.; Nizami, I.F.; Kim, E. A noise robust gait representation: Motion energy image. Int. J. Control. Autom. Syst. 2009, 7, 638–643. [Google Scholar] [CrossRef]
- Kusakunniran, W.; Wu, Q.; Li, H.; Zhang, J. Multiple Views Gait Recognition Using View Transformation Model Based on Optimized Gait Energy Image. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, Kyoto, Japan, 27 September 2009. [Google Scholar]
- Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 316–322. [Google Scholar] [CrossRef]
- Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Support Vector Regression for Multi-View Gait Recognition Based on Local Motion Feature Selection. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Zheng, S.; Zhang, J.; Huang, K.; He, R.; Tan, T. Robust view transformation model for gait recognition. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011. [Google Scholar]
- Yang, X.; Zhou, Y.; Zhang, T.; Shu, G.; Yang, J. Gait recognition based on dynamic region analysis. Signal Processing 2008, 88, 2350–2356. [Google Scholar] [CrossRef]
- Abdullah, B.A.; El-Alfy, E.S.M. Statistical Gabor-Based Gait Recognition Using Region-Level Analysis. Signal Processing 2008, 88, 2350–2356. [Google Scholar]
- Wang, X.; Wang, J.; Yan, K. Gait recognition based on Gabor wavelets and (2D) 2 PCA. Multimed. Tools Appl. 2018, 77, 12545–12561. [Google Scholar] [CrossRef]
- Jia, N.; Sanchez, V.; Li, C.T. On view-invariant gait recognition: A feature selection solution. IET Biom. 2018, 7, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.D.; Tjahjadi, T. Robust view-invariant multiscale gait recognition. Pattern Recognit. 2015, 48, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Wang, K.; Yan, T.; Lv, Z. Complete canonical correlation analysis with application to multi-view gait recognition. Pattern Recognit. 2016, 50, 107–117. [Google Scholar] [CrossRef]
- Alvarez, I.R.T.; Sahonero-Alvarez, G. Gait Recognition Based on Modified Gait Energy Image. In Proceedings of the 2018 IEEE Sciences and Humanities International Research Conference (SHIRCON), Lima, Peru, 20–22 November 2018. [Google Scholar]
- Rida, I. Towards human body-part learning for model-free gait recognition. arXiv 2019, arXiv:1904.01620. [Google Scholar]
- Wu, Z.; Huang, Y.; Wang, L.; Wang, X.; Tan, T. A comprehensive study on cross-view gait based human identification with deep cnns. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chen, H.; Wang, Q.; Shen, L.; Huang, Y. Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 2017, 239, 81–93. [Google Scholar] [CrossRef]
- Elharrouss, O.; Almaadeed, N.; Al-Maadeed, S.; Bouridane, A. Gait recognition for person re-identification. J. Supercomput. 2021, 77, 3653–3672. [Google Scholar] [CrossRef]
- Lu, H.; Plataniotis, K.N.; Venetsanopoulos, A.N. Venetsanopoulos, A full-body layered deformable model for automatic model-based gait recognition. EURASIP J. Adv. Signal Processing 2007, 2008, 1–13. [Google Scholar] [CrossRef] [Green Version]
- El-Alfy, H.; Mitsugami, I.; Yagi, Y. Gait recognition based on normal distance maps. IEEE Trans. Cybern. 2017, 48, 1526–1539. [Google Scholar] [CrossRef]
- Sokolova, A.; Konushin, A. Pose-based deep gait recognition. IET Biom. 2019, 8, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognit. 2020, 98, 107069. [Google Scholar] [CrossRef]
- Li, X.; Makihara, Y.; Xu, C.; Yagi, Y. End-to-End Model-Based Gait Recognition Using Synchronized Multi-View Pose Constraint. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Wang, L.; Tan, T.; Ning, H.; Hu, W. Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1505–1518. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Wang, C.; Yang, F. Silhouette-based gait recognition via deterministic learning. Pattern Recognit 2014, 47, 3568–3584. [Google Scholar] [CrossRef]
- Tafazzoli, F.; Bebis, G.; Louis, S.; Hussain, M. Genetic feature selection for gait recognition. J. Electron. Imaging 2015, 24, 013036. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yin, Y.; Qin, W.; Li, Y. Gait recognition based on outermost contour. Int. J. Comput. Intell. Syst. 2011, 4, 1090–1099. [Google Scholar]
- Choudhury, S.D.; Tjahjadi, T. Gait recognition based on shape and motion analysis of silhouette contours. Comput. Vis. Image Underst. 2013, 117, 1770–1785. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.P.; Tan, A.W.; Tan, S.C. Gait recognition via optimally interpolated deformable contours. Pattern Recognit. Lett. 2013, 34, 663–669. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, C.; Long, H. A Gait Recognition Method Based on the Combination of Human Body Posture and Human Body Contour. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Chao, H.; He, Y.; Zhang, J.; Feng, J. Gaitset: Regarding Gait as a Set for Cross-View Gait Recognition. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January 2019. [Google Scholar]
- Deng, M.; Yang, H.; Cao, J.; Feng, X. View-Invariant Gait Recognition Based on Deterministic Learning and Knowledge Fusion. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14 July 2019. [Google Scholar]
- Mu, Z.; Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Li, Y.-R.; Yu, S. iLGaCo: Incremental Learning of Gait Covariate Factors. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, TX, USA, 28 September 2020. [Google Scholar]
- Wang, Y.; Chen, Z.; Wu, Q.J.; Rong, X. Deep mutual learning network for gait recognition. Multimed. Tools Appl. 2020, 79, 22653–22672. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Liu, W.; Ma, H.; Meng, Z. Appearance and Gait-Based Progressive Person Re-Identification for Surveillance Systems. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018. [Google Scholar]
- Wang, X.; Zhang, J.; Yan, W.Q. Gait recognition using multichannel convolution neural networks. Neural Comput. Appl. 2020, 32, 14275–14285. [Google Scholar] [CrossRef]
- Beauchemin, S.S.; Barron, J.L. The computation of optical flow. ACM Comput. Surv. 1995, 27, 433–466. [Google Scholar] [CrossRef]
- Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; López-Tapia, S.; de la Blanca, N.P. Evaluation of CNN Architectures for Gait Recognition Based on Optical Flow Maps. In Proceedings of the 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 20 September 2017. [Google Scholar]
- Mahfouf, Z.; Merouani, H.F.; Bouchrika, I.; Harrati, N. Investigating the use of motion-based features from optical flow for gait recognition. Neurocomputing 2018, 283, 140–149. [Google Scholar] [CrossRef]
- Arora, P.; Srivastava, S.; Singhal, S. Analysis of Gait Flow Image and Gait Gaussian Image Using Extension Neural Network for Gait Recognition. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2020; pp. 429–449. [Google Scholar]
- Yang, Y.; Tu, D.; Li, G. Gait Recognition Using Flow Histogram Energy Image. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Montreal, QC, Canada, 24 August 2014. [Google Scholar]
- Luo, Z.; Yang, T.; Liu, Y. Gait Optical Flow Image Decomposition for Human Recognition. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016. [Google Scholar]
- Lam, T.H.; Cheung, K.H.; Liu, J.N. Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognit. 2011, 44, 973–987. [Google Scholar] [CrossRef]
- Wang, L.; Jia, S.; Li, X.; Wang, S. Human Gait Recognition Based on Gait Flow Image Considering Walking Direction. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012. [Google Scholar]
- Hu, M.; Wang, Y.; Zhang, Z.; Zhang, D.; Little, J.J. Incremental learning for video-based gait recognition with LBP flow. IEEE Trans. Cybern. 2012, 43, 77–89. [Google Scholar]
- Masood, H.; Farooq, H. An Appearance Invariant Gait Recognition Technique Using Dynamic Gait Features. Int. J. Opt. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Gong, S.; Liu, C.; Ji, Y.; Zhong, B.; Li, Y.; Dong, H. Advanced Image and Video Processing Using MATLAB; Springer: Berlin/Heidelberg, Germany, 2018; Volume 12. [Google Scholar]
- Haining, R.P. Spatial autocorrelation and the quantitative revolution. Geogr. Anal. 2009, 41, 364–374. [Google Scholar] [CrossRef]
- Chan, S.H.; Võ, D.T.; Nguyen, T.Q. Subpixel Motion Estimation without Interpolation. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010. [Google Scholar]
- Su, H.; Liao, Z.-W.; Chen, G.-Y. A Gait Recognition Method Using L1-PCA and LDA. In Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, Baoding, China, 12 July 2009. [Google Scholar]
- Pushparani, M.; Sasikala, D. A survey of gait recognition approaches using pca and ica. Glob. J. Comput. Sci. Technol. 2012, 12, 1–5. [Google Scholar]
- Ali, H.; Dargham, J.; Ali, C.; Moung, E.G. Gait Recognition Using Radon Transform With Principal Component Analysis. In Proceedings of the 3rd International Conference on Machine Vision (ICMV), Hong Kong, China, 28 December 2010. [Google Scholar]
- Liu, L.-F.; Jia, W.; Zhu, Y.-H. Gait Recognition Using Hough Transform and Principal Component Analysis. In Proceedings of the International Conference on Intelligent Computing, Ulsan, Korea, 16–19 September 2009; Springer: Cham, Switzerland, 2009. [Google Scholar]
- Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 966–980. [Google Scholar] [CrossRef]
- Zhang, Z.; Tran, L.; Yin, X.; Atoum, Y.; Liu, X.; Wan, J.; Wang, N. Gait Recognition via Disentangled Representation Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 20 June 2019. [Google Scholar]
- Liao, R.; Cao, C.; Garcia, E.B.; Yu, S.; Huang, Y. Pose-Based Temporal-Spatial Network (Ptsn) for Gait Recognition with Carrying and Clothing Variations. In Proceedings of the Chinese Conference on Biometric Recognition, Shenzhen, China, 28–29 October 2017; Springer: Berlin, Germany. [Google Scholar]
- Martín-Félez, R.; Xiang, T. Gait Recognition by Ranking. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin, Germany. [Google Scholar]
- Liu, W.; Zhang, C.; Ma, H.; Li, S. Learning efficient spatial-temporal gait features with deep learning for human identification. Neuroinformatics 2018, 16, 457–471. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, S.; Yu, X. Gait Recognition via Effective Global-Local Feature Representation and Local Temporal Aggregation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Huang, X.; Zhu, D.; Wang, H.; Wang, X.; Yang, B.; He, B.; Liu, W.; Feng, B. Context-Sensitive Temporal Feature Learning for Gait Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Peng, Y.; Hou, S.; Ma, K.; Zhang, Y.; Huang, Y.; He, Z. Learning Rich Features for Gait Recognition by Integrating Skeletons and Silhouettes. arXiv preprint 2021, arXiv:2110.13408. [Google Scholar]
- Huang, Z.; Xue, D.; Shen, X.; Tian, X.; Li, H.; Huang, J.; Hua, X.-S. 3D Local Convolutional Neural Networks for Gait Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
View 1 | View 2 | View 3 | |
---|---|---|---|
Use Case 1 | 98.7% | 99.87% | 99.5% |
Use Case 2 | 98% | 99% | 99.27% |
Use Case 3 | 99.4% | 97.15% | 99% |
Use Case 4 | 99% | 99.3% | 99.35% |
Research Work and Methodology | Accuracy % | ||||||||
---|---|---|---|---|---|---|---|---|---|
View 1 | View 2 | View 3 | |||||||
Use Case 1 | Use Case 2 | Use Case 3 | Use Case 1 | Use Case 2 | Use Case 3 | Use Case 1 | Use Case 2 | Use Case 3 | |
GS + Gaitset [77] | 96.9% | 88.8% | 77.3% | 91.7% | 81% | 70.1% | 97.8% | 90% | 73.5% |
Pose + LSTM [68] | 96.7% | 76.6% | 61.29% | 97.6% | 70.2% | 56.5% | 94.35% | 69.35% | 54.84% |
GS + GLconv [105] | 97.9% | 95.5% | 87.1% | 95.4% | 89.3% | 79% | 98.9% | 96.5% | 87% |
3DCNN [108] | 99.3% | 97.5% | 89.2% | 96% | 91.7% | 80.5% | 99.1% | 96.5% | 84.3% |
CSTL [106] | 98.4% | 96% | 87.2 % | 95.2% | 90.5% | 81.5% | 98.9% | 96.8% | 88.4% |
MSGG [107] | 99.3% | 97.6% | 93.8% | 97.5% | 91.6% | 89.4% | 99.1% | 96.6% | 93.8% |
STPS (Our) | 98.7% | 98% | 99.4% | 99.87% | 99% | 97.15% | 99.5% | 99.27% | 99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, H.; Farooq, H. Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition. Electronics 2022, 11, 2386. https://doi.org/10.3390/electronics11152386
Masood H, Farooq H. Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition. Electronics. 2022; 11(15):2386. https://doi.org/10.3390/electronics11152386
Chicago/Turabian StyleMasood, Hajra, and Humera Farooq. 2022. "Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition" Electronics 11, no. 15: 2386. https://doi.org/10.3390/electronics11152386
APA StyleMasood, H., & Farooq, H. (2022). Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition. Electronics, 11(15), 2386. https://doi.org/10.3390/electronics11152386