Algorithm of Computer Mainboard Quality Detection for Real-Time Based on QD-YOLO
Abstract
:1. Introduction
- (1)
- We constructed a dataset for the quality detection of computer mainboards using multiple techniques. We augmented the mainboard quality-detection dataset with selfie data and data augmentation techniques, such as cropping and random rotation, to increase the sample size and diversify the scenes and categories, which avoids overfitting by insufficient data.
- (2)
- We designed a composite attention mechanism to capture both location information and long-range dependencies while focusing on network feature fusion. The composite attention mechanism enables the model to pay attention to both spatial information and channels of feature maps. This attention mechanism enables more accurate detection of small objects in images.
- (3)
- Ghost convolution and Meta-ACON improve model robustness and reduce parameters. The Meta-ACON Activation function adapts network linearity to input conditions, boosting model robustness. Ghost convolution utilizes linear operations to create similar feature maps without fully connected layers, which speeds model detection by reducing model calculation and parameters.
2. Related Work
3. Materials and Methods
3.1. Abbreviations
3.2. Data Acquisition
3.3. The QD-YOLO Network Model
3.4. Meta-ACON Activation Function
3.5. Composite Attention Mechanism
3.5.1. Coordinate Attention Layer
- (1)
- Coordinate information embedding
- (2)
- Coordinate Attention Generation
3.5.2. SE Attention Layer
- (1)
- Squeeze operation
- (2)
- Excitation operations
3.6. Ghost Convolution Blocks and Ghost Bottleneck
4. Experiments and Results
4.1. Experimental Evaluation Criteria
4.2. Experimental Environment
4.3. Experimental Results
4.4. Ablation Experiment of Attentional Mechanisms
4.5. Ablation Experiment of Ghost Convolution
4.6. Comparison with Other Networks
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arabian, J. Computer Integrated Electronics Manufacturing and Testing; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Reyes, A.C.C.; Del Gallego, N.P.A.; Deja, J.A.P. Mixed reality guidance system for motherboard assembly using tangible augmented reality. In Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations, Sydney, Australia, 14–16 February 2020; ACM: New York, NY, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Grieco, L.A.; Boggia, G.; Piro, G.; Jararweh, Y.; Campolo, C. Ad-Hoc, Mobile, and Wireless Networks: Proceedings of the 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, 19–21 October 2020; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 12338. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, H.; Chen, Q.; Fan, Q.; Quan, H. Research on a product quality monitoring method based on multi scale PP-YOLO. IEEE Access 2021, 9, 80373–80387. [Google Scholar] [CrossRef]
- Yotsuyanagi, H.; Ono, A.; Takagi, M.; Roth, Z.; Hashizume, M. A built-in electrical test circuit for interconnect tests in assembled PCBs. In Proceedings of the 2012 2nd IEEE CPMT Symposium Japan, Kyoto, Japan, 10–12 December 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, J.; Xiang, X.; Tan, Y.; Ren, Y. MOLS-Net: Multi-organ and lesion segmentation network based on sequence feature pyramid and attention mechanism for aortic dissection diagnosis. Knowl.-Based Syst. 2022, 239, 107853. [Google Scholar] [CrossRef]
- Hou, G.; Qin, J.; Xiang, X.; Tan, Y.; Xiong, N.N. Af-net: A medical image segmentation network based on attention mechanism and feature fusion. CMC-Comput. Mater. Contin. 2021, 69, 1877–1891. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, T.; Qin, J.; Zhou, Q.; Cai, Z. Joint-attention feature fusion network and dual-adaptive NMS for object detection. Knowl.-Based Syst. 2022, 241, 108213. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Luo, Y.; Qin, J.; Xiang, X.; Tan, Y. Coverless image steganography based on multi-object recognition. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2779–2791. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, J.; Xiang, X.; Tan, Y.; Xiong, N.N. Algorithm of helmet wearing detection based on AT-YOLO deep mode. CMC Comput. Mater. Contin. 2021, 69, 159–174. [Google Scholar] [CrossRef]
- Adibhatla, V.A.; Chih, H.-C.; Hsu, C.-C.; Cheng, J.; Abbod, M.F.; Shieh, J.-S. Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics 2020, 9, 1547. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7, 128837–128868. [Google Scholar] [CrossRef]
- Jian, C.; Gao, J.; Ao, Y. Automatic surface defect detection for mobile phone screen glass based on machine vision. Appl. Soft Comput. 2017, 52, 348–358. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar] [CrossRef] [Green Version]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 9627–9636. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; He, Y.; Savvides, M. Feature selective anchor-free module for single-shot object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 840–849. [Google Scholar] [CrossRef] [Green Version]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Dayoub, F.; Sunderhauf, N. Varifocalnet: An iou-aware dense object detector. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8514–8523. [Google Scholar] [CrossRef]
- Zhou, X.; Koltun, V.; Krähenbühl, P. Probabilistic two-stage detection. arXiv 2021, arXiv:2103.07461. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, X.; Liu, M.; Sun, J. Activate or not: Learning customized activation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8032–8042. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [Google Scholar] [CrossRef]
- Zhang, K.; Xiong, F.; Sun, P.; Hu, L.; Li, B.; Yu, G. Double anchor R-CNN for human detection in a crowd. arXiv 2019, arXiv:1909.09998. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, T.; Jiang, Y.; Shao, S.; Sun, J.; Shen, C. Repulsion loss: Detecting pedestrians in a crowd. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7774–7783. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ge, Z.; Jie, Z.; Yoshie, O. Nms by representative region: Towards crowded pedestrian detection by proposal pairing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10750–10759. [Google Scholar] [CrossRef]
- Xie, J.; Pang, Y.; Cholakkal, H.; Anwer, R.; Khan, F.; Shao, L. PSC-Net: Learning part spatial co-occurrence for occluded pedestrian detection. Sci. China Inf. Sci. 2021, 64, 120103. [Google Scholar] [CrossRef]
Author | Methods | Results |
---|---|---|
One-stage methods: | - | - |
Redmon et al. [4] (2016) | YOLO | 66.4% [email protected] on VOC 2007 |
Redmon et al. [17] (2017) | YOLOv2 | 76.8% [email protected] on VOC 2007 |
Redmon et al. [19] (2018) | YOLOv3 | 57.9% [email protected] on COCO |
Tian et al. [26] (2019) | FCOS | 65.9% [email protected] on COCO |
Zhu et al. [27] (2019) | FSAF | 65.2% [email protected] on COCO |
Carion et al. [28] (2020) | DERT | 62.4% [email protected] on COCO |
Bochkovskiy et al. [22] (2020) | YOLOv4 | 65.7% [email protected] on COCO |
Ge et al. [25] (2021) | YOLOX | 67.3% [email protected] on COCO |
Two-stage methods: | - | - |
Ren et al. [29] (2016) | Faster R-CNN | 70.0% [email protected] on VOC 2007 |
Cai et al. [32] (2018) | Cascade-RCNN | 67.7% [email protected] on COCO |
Zhang et al. [30] (2021) | VFNet | 73.0% [email protected] on COCO |
Zhou et al. [31] (2021) | CenterNet2 | 74.0% [email protected] on COCO |
Abbreviations | Meaning |
---|---|
QD | Quality Detection |
mAP | Mean Average Precision |
FPS | Frames Per Second |
PCB | Printed Circuit Boards |
CNNs | Convolutional Neural Network |
RCNN | Region-Based Convolutional Neural Network |
FPN | Feature Pyramid Network |
PAN | Path Aggregation Network |
CSP | Cross Stage Partial |
FCOS | Fully Convolutional One-Stage |
FSAF | Feature Selective Anchor-Free |
ACON | Activate Or Not |
IoU | Intersection over Union |
GPU | Graphics Processing Unit |
CPU | Central Processing Unit |
SPP | Spatial Pyramid Pooling |
ReLU | Rectified Linear Unit |
FLOPS | Floating-Point Operations Per Second |
GFLOPS | Giga Floating-Point Operations Per Second |
CIoU | Complete Intersection over Union |
NMS | Non-Maximum Suppression |
SE | Squeeze-and-Excitation |
CA | Coordinate Attention |
P | Precision |
R | Recall |
TP | True Positive |
FP | False Positive |
FN | False Negative |
Model | Precision (%) | Recall (%) | F1 (%) | [email protected] (%) |
---|---|---|---|---|
YOLOv5s | 97.19 | 93.94 | 95.53 | 96.76 |
YOLOv5s + Ghost | 95.26 | 94.26 | 94.75 | 96.13 |
YOLOv5s + Meta-ACON | 94.13 | 96.70 | 95.39 | 97.02 |
YOLOv5s + CA | 97.67 | 96.10 | 96.88 | 97.47 |
YOLOv5s + SE | 96.55 | 95.22 | 95.88 | 97.51 |
YOLOv5s + CA + SE | 97.26 | 97.67 | 97.46 | 98.09 |
QD-YOLO | 95.93 | 99.08 | 97.48 | 98.85 |
Model | Precision (%) | Recall (%) | F1 (%) | [email protected] (%) |
---|---|---|---|---|
YOLOv5s | 97.19 | 93.94 | 95.53 | 96.76 |
YOLOv5s + Ghost | 95.26 | 94.26 | 94.75 | 96.13 |
YOLOv5s + Meta-ACON | 98.10 | 96.47 | 97.27 | 97.02 |
YOLOv5s + CA | 97.67 | 96.10 | 96.88 | 97.47 |
YOLOv5s + SE | 96.55 | 95.22 | 95.88 | 97.51 |
YOLOv5s + CA + SE | 97.26 | 97.67 | 97.46 | 98.09 |
QD-YOLO | 95.93 | 99.08 | 97.48 | 98.85 |
Model | [email protected] (%) | FPS |
---|---|---|
Faster-RCNN | 94.15 | 1.322 |
Cascade R-CNN | 99.20 | 7.69 |
FPN | 92.08 | 6.46 |
YOLO v3 | 89.16 | 21.47 |
YOLO v4 | 95.84 | 25.46 |
YOLO v5 | 96.76 | 28.58 |
QD-YOLO | 98.85 | 31.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, G.; Qin, J.; Xiong, N.N. Algorithm of Computer Mainboard Quality Detection for Real-Time Based on QD-YOLO. Electronics 2022, 11, 2424. https://doi.org/10.3390/electronics11152424
Tu G, Qin J, Xiong NN. Algorithm of Computer Mainboard Quality Detection for Real-Time Based on QD-YOLO. Electronics. 2022; 11(15):2424. https://doi.org/10.3390/electronics11152424
Chicago/Turabian StyleTu, Guangming, Jiaohua Qin, and Neal N. Xiong. 2022. "Algorithm of Computer Mainboard Quality Detection for Real-Time Based on QD-YOLO" Electronics 11, no. 15: 2424. https://doi.org/10.3390/electronics11152424
APA StyleTu, G., Qin, J., & Xiong, N. N. (2022). Algorithm of Computer Mainboard Quality Detection for Real-Time Based on QD-YOLO. Electronics, 11(15), 2424. https://doi.org/10.3390/electronics11152424