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Abstract: Automated industrial quality detection (QD) boosts quality-detection efficiency and reduces
costs. However, current quality-detection algorithms have drawbacks such as low efficiency, easily
missed detections, and false detections. We propose QD-YOLO, an attention-based method to
enhance quality-detection efficiency on computer mainboards. Firstly, we propose a composite
attention module for the network’s backbone to highlight appropriate feature channels and improve
the feature fusion structure, allowing the network to concentrate on the crucial information in the
feature map. Secondly, we employ the Meta-ACON activation function to dynamically learn whether
the activation function is linear or non-linear for various input data and adapt it to varied input
scenarios with varying linearity. Additionally, we adopt Ghost convolution instead of ordinary
convolution, using linear operations as possible to reduce the number of parameters and speed up
detection. Experimental results show that our method can achieve improved real-time performance
and accuracy on the self-created mainboard quality defect dataset, with a mean average precision
(mAP) of 98.85% and a detection speed of 31.25 Frames Per Second (FPS). Compared with the
original YOLOv5s model, the improved method improves mAP@0.5 by 2.09% and detection speed
by 2.67 FPS.

Keywords: deep learning; YOLO; composite attention; computer mainboard quality detection;
real-time detection

1. Introduction

The electronics industry and its products evolved quickly with the continuous de-
velopment of industrial technology and industrial level. Computer mainboards have the
characteristics of high density, multiple layers, and complicated assembly [1]. For this
reason, people are always looking for new mainboard assembly techniques [2], and the
assembly of computer mainboards is moving toward smart controllable functionalities [3].
Following the assembly process, quality detection (QD) can aid in the reduction in assembly-
related losses. The main challenge in computer mainboard quality-detection tasks is that
the defect area is small, and the features are hard to capture. The traditional object-detection
algorithm has a high missed-detection rate in these scenarios. Pursuing high precision and
employing detection algorithms with complex network structures will reduce real-time
performance. Therefore, the computer mainboard assembly industry urgently needs a
new solution to improve the detection rate of defects while reducing the time required for
quality detection. In this situation, the YOLO algorithm [4] is a fast and accurate one-stage
detection method that can effectively be applied to quality-detection scenarios [5].

Currently, the quality-detection methods for computer mainboards can be broadly
divided into three categories. The first is the manual detection method: the inspector
manually checks the product’s quality, and their experience determines the task’s success.
Therefore, this method is unstable and inefficient.
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With developments in industrial technology, quality detection based on electrical
characteristics has become more accurate and faster. Yotsuyanagi [6] proposed an electrical
test circuit to detect Printed Circuit Board (PCB) defects based on electrical performance.
However, because the method requires contact operations, it may result in secondary
PCB damage.

Currently, computer vision technology is widely used in various fields, such as image
segmentation [7,8], object detection [9], image classification [10], information hiding [11],
and industrial quality detection. Zhou et al. designed the AT-YOLO helmet-wearing
detection model [12], in which mean average precision (mAP) reaches 96.5%, providing a
new solution for helmet-wearing detection. Adibhatla VA et al. used Convolutional Neural
Networks (CNNs) for PCB defect detection [13], reducing false detections and increasing
productivity. Zhang et al. used CNNs to detect and classify defects on metal surfaces in
complex industrial scenarios [14]. Computer-vision-based defect detection has surpassed
manual detection in accuracy and speed [15]. However, current computer-vision-based
defect detection algorithms can only extract a few features [16]. A two-stage image detector
uses candidate frame extract objects. This method first creates image candidate frames and
then filters the candidate frames using a classifier and a regressor to find the target. This
method is slow and does not satisfy real-time detection requirements.

The above models have improved structures based on their application scenarios,
allowing them to detect image targets more accurately. There are few models that have
improved mainboard defect detection. Therefore, we propose QD-YOLO for detecting
computer mainboards to improve network performance and real-time detection. This
paper’s main contributions are as follows:

(1) We constructed a dataset for the quality detection of computer mainboards using
multiple techniques. We augmented the mainboard quality-detection dataset with
selfie data and data augmentation techniques, such as cropping and random rotation,
to increase the sample size and diversify the scenes and categories, which avoids
overfitting by insufficient data.

(2) We designed a composite attention mechanism to capture both location informa-
tion and long-range dependencies while focusing on network feature fusion. The
composite attention mechanism enables the model to pay attention to both spatial
information and channels of feature maps. This attention mechanism enables more
accurate detection of small objects in images.

(3) Ghost convolution and Meta-ACON improve model robustness and reduce param-
eters. The Meta-ACON Activation function adapts network linearity to input con-
ditions, boosting model robustness. Ghost convolution utilizes linear operations
to create similar feature maps without fully connected layers, which speeds model
detection by reducing model calculation and parameters.

This paper is organized as follows: Section 2 presents research related to object-
detection algorithms, Section 3 describes the method proposed in this paper, Section 4
describes the experiments, Section 5 discusses our shortcomings and related research, and
Section 6 summarizes the work in this paper.

2. Related Work

Deep-learning-based computer mainboard quality detection aims for automatic op-
tical detection by rapidly and precisely identifying image defects. The object-detection
technology involved in defect detection is an important component of computer vision.
Most of the existing item detection algorithms are one-stage or two-stage.

YOLO is a classical one-stage object-detection algorithm that reconstructs object-
detection as a single regression problem, mapping from the pixel space of the input image to
the detection result. The YOLO algorithm performs real-time positioning and classification
of the detection target with a delay time of less than 25 milliseconds and a fast detection rate
that satisfies the requirements for real-time detection. However, YOLOv1 has significant
localization errors and cannot detect nearby objects or small groups. The authors optimized
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YOLOv1 and proposed YOLOv2 [17] with the Anchor mechanism to address localization
errors and recall. K-means improves the algorithm’s recall by clustering the training set.
Fine-grained image features help detect small targets. Batch normalization [18] achieves a
more efficient and rapid convergence.

YOLOv3 [19] increased network depth while employing darknet53 as the backbone.
The inner residual block [20] uses skip connections while mitigating the gradient vanishing
issue caused by increasing network depth. All at the same, the multi-scale prediction is
realized using the FPN [21] network structure, which improves the detection accuracy and
speed while reducing the background error rate.

YOLOv4 [22] modified the backbone to CSPDarknet53 and used PANet [23] as the
neck. PANet enhances defect feature extraction while CSPNet [24] improves gradient
combination information and reduces computation.

YOLOv5 enhanced input data with Mosaic to improve small-target detection. Using
adaptive anchor frames, the best anchor frame was derived for different training sets. FPN
and PAN structures aggregate parameters from different backbone layers for different
detection layers. In addition to the YOLO family of algorithms, more advanced one-stage
detectors currently include YOLOX [25], FCOS [26], FSAF [27], DETR [28], etc.

In addition to one-stage algorithms, two-stage algorithms have continuously improved
since their creation. Common two-stage detectors include Faster R-CNN [29], VFNet [30],
CenterNet2 [31], Cascade-RCNN [32], etc. The two-stage algorithm remains the predomi-
nant algorithm in the detection field, often used to solve complex object-detection problems,
such as those that require high precision or multiple scales or do not need to be solved
quickly. A summary of the related work is shown in Table 1.

Table 1. Summary of related work on object detection.

Author Methods Results

One-stage methods: - -
Redmon et al. [4] (2016) YOLO 66.4% mAP@0.5 on VOC 2007
Redmon et al. [17] (2017) YOLOv2 76.8% mAP@0.5 on VOC 2007
Redmon et al. [19] (2018) YOLOv3 57.9% mAP@0.5 on COCO

Tian et al. [26] (2019) FCOS 65.9% mAP@0.5 on COCO
Zhu et al. [27] (2019) FSAF 65.2% mAP@0.5 on COCO

Carion et al. [28] (2020) DERT 62.4% mAP@0.5 on COCO
Bochkovskiy et al. [22] (2020) YOLOv4 65.7% mAP@0.5 on COCO

Ge et al. [25] (2021) YOLOX 67.3% mAP@0.5 on COCO

Two-stage methods: - -
Ren et al. [29] (2016) Faster R-CNN 70.0% mAP@0.5 on VOC 2007
Cai et al. [32] (2018) Cascade-RCNN 67.7% mAP@0.5 on COCO

Zhang et al. [30] (2021) VFNet 73.0% mAP@0.5 on COCO
Zhou et al. [31] (2021) CenterNet2 74.0% mAP@0.5 on COCO

3. Materials and Methods
3.1. Abbreviations

The abbreviations used in this article are summarized in Table 2.

Table 2. The abbreviations used in this manuscript.

Abbreviations Meaning

QD Quality Detection
mAP Mean Average Precision
FPS Frames Per Second
PCB Printed Circuit Boards

CNNs Convolutional Neural Network
RCNN Region-Based Convolutional Neural Network
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Table 2. Cont.

Abbreviations Meaning

FPN Feature Pyramid Network
PAN Path Aggregation Network
CSP Cross Stage Partial

FCOS Fully Convolutional One-Stage
FSAF Feature Selective Anchor-Free

ACON Activate Or Not
IoU Intersection over Union
GPU Graphics Processing Unit
CPU Central Processing Unit
SPP Spatial Pyramid Pooling

ReLU Rectified Linear Unit
FLOPS Floating-Point Operations Per Second

GFLOPS Giga Floating-Point Operations Per Second
CIoU Complete Intersection over Union
NMS Non-Maximum Suppression

SE Squeeze-and-Excitation
CA Coordinate Attention
P Precision
R Recall

TP True Positive
FP False Positive
FN False Negative

3.2. Data Acquisition

This experiment’s dataset is partly derived from the computer mainboard quality-
detection dataset, which contains 311 images and information on five defect types. This
dataset is too small, and the defect types are too few, which can easily lead to network
overfitting and poor generalization performance. Therefore, we added four different
models of computer mainboards to capture the dataset, resulting in 2639 images with
12 different defect types: loose fan screws, missing fan screws, loose mainboard fixing
screws, missing mainboard fixing screws, missed fan wiring, loose fan wiring, wrong screw
type, mainboard scratches, fan scratches, chip polishing, interface scratches, and interface
oxidation. Various defect types are shown in Figure 1. Moreover, in order to improve the
model’s generalization performance, this paper applies data enhancement techniques to
the original dataset, such as randomly rotating images, modifying contrast and exposure,
and removing images that cause augmentation errors. Finally, we obtained 11,300 images,
including 8350 augmented images with image data.

Figure 1. Examples of the 12 types of defects. (a) Loose fan screws. (b) Missing fan screws. (c) Loose
mainboard fixing screws. (d) Missing mainboard fixing screws. (e) Missing fan wiring. (f) Loose
fan wiring. (g) Wrong type of screws. (h) mainboard scratches. (i) fan scratches. (j) chip polishing.
(k) Interface scratches. (l) interface oxidation.
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3.3. The QD-YOLO Network Model

The QD-YOLO model presented in this paper is intended to optimize network de-
tection speed and accuracy. To improve upon YOLOv5s, we replace the Swish activation
function [33] with the Meta-ACON activation function [34] and add a composite attention
mechanism to the backbone. Meanwhile, Ghost convolution blocks replace convolution
blocks, and Ghost Bottleneck is applied to the backbone and neck. Figure 2 depicts the
network structure of the QD-YOLO system.

Figure 2. QD-YOLO network structure.

3.4. Meta-ACON Activation Function

We hope that the QD-YOLO model will be able to be generalized to a wider variety of
datasets while achieving greater accuracy without the addition of excessive parameters
and computation. ACON (Activate Or Not), proposed by Ma et al., allows each neuron
to activate or deactivate adaptively, which helps improve generalization and transfer
performance. Since the Meta-ACON activation function can determine the activation
degree explicitly, we attempt to use it in the QD-YOLO network model, which can be
formulated as:

Meta− ACON(x) = (p1 − p2)x·σ[β(p1 − p2)x] + p2x (1)

The learning switching factor βc depends on the input sample x, x ∈ RC×H×W , and
the switching factor βc is determined as:

βc = σW1W2

H

∑
h=1

W

∑
w=1

xc,h,w (2)

where W1 ∈ RC×C/r, W2 ∈ RC/r×C.

3.5. Composite Attention Mechanism

The attention mechanism integrates correlations, allowing the model to dynamically
focus on important input parts to more effectively complete the task. We introduce an at-
tention mechanism module into QD-YOLO to improve network performance by improving
the network’s recognition of features. A single attention mechanism will cause the model to
pay more attention to a subset of the information, and it cannot capture all useful content.
For example, channel attention typically ignores some position information, limiting the
scope for accuracy improvement, whereas Coordinate Attention [35] can address the issue
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of ignoring position information. As a result, we combine the Squeeze-and-Excitation (SE)
block [36] and the Coordinate Attention (CA) module to optimize the network.

3.5.1. Coordinate Attention Layer

Coordinate Attention, a new network attention mechanism proposed by HOU et al. [35],
encodes channel relationships and long-term dependencies via precise location data. As
shown in Figure 3, the overall module can be divided into two steps: coordinate information
embedding and Coordinate Attention generation.

Figure 3. Coordinate Attention layer.

(1) Coordinate information embedding

To motivate the attention module to capture remote spatial interactions with precise
location information, Coordinate Attention decomposes global pooling into a one-to-one
feature encoding operation.

Zc =
1

H ×W

H

∑
i=1

W

∑
j=1

Xc(h, j) (3)

Each channel is encoded along with the horizontal and vertical coordinates for a given
input X, using a pooling kernel of size (H,1) or (1,W), respectively. Thus, the output of the
cth channel with height h can be expressed as:

Zh
c (h) =

1
W ∑

0≤i≤W
XC(h, j) (4)

Similarly, the output of channel C with width W can be written as:

Zw
c (h) =

1
H ∑

0≤i≤H
XC(j, w) (5)

These two transformations aggregate features along two spatial directions to obtain a
pair of direction-aware feature maps, enabling the attention module to capture long-term
dependencies and precise location information along different spatial directions to locate
objects of interest accurately.

(2) Coordinate Attention Generation

In order to utilize the representation produced by information embedding, we adopt
Coordinate Attention to generate and concatenate the information embedding result and
then use the 1 × 1 convolution transformation function F1 to transform it:

f = δ(F1([Zh, Zw])) (6)

δ is the nonlinear activation function, and f is the intermediate feature mapping
that encodes spatial information in horizontal and vertical directions. The transform
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decomposes f into two separate tensors: f h and f w along the spatial dimension, where
f h ∈ RC/r×H , f w ∈ RC/r×w.

We transform fh and fw into tensors with the same number of channels to the input X
using the other two 1 × 1 convolutional transform Fh and Fw, respectively:

gh = σ(Fh( f h)) (7)

gw = σ(Fw( f w)) (8)

Finally, the output y of the Coordinate Attention block can be written as:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (9)

3.5.2. SE Attention Layer

SE-Net, a network structure proposed by Jie Hu et al., focuses on feature fusion
between channels in convolutional operations in the backbone network. Channel calibration
of the original feature maps is done through squeeze, excitation, and reweight, adaptively
learning the importance of each feature channel, and assigning different weights. The
structure of the SE attention mechanism can be seen in Figure 4.

Figure 4. SE layer.

(1) Squeeze operation

First, we encode the entire spatial feature of the channel as a global feature using
global average pooling.

ZC = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j), z ∈ RC (10)

(2) Excitation operations

Then, a global description of the features is obtained by the Squeeze operation, using
a gating mechanism in the form of sigmoid to correlate the information between channels.

S = Fex(Z, W) = σ(g(Z, W)) = σ(W2ReLU(W1Z)) (11)

where W1 ∈ R
C
r ×C, W2 ∈ RC× C

r .
A bottleneck structure with two fully connected layers is used. The first FC layer acts as

a dimensionality reduction, with the dimensionality reduction factor r being a hyperparame-
ter, and then ReLU activation is used. The final FC layer restores the original dimensionality
by multiplying the obtained activation values of each channel by the original features on U
to reduce the complexity of the model and improve the generalization capability.

xc = Fscale(uc, sc) = uc × sc (12)

We connect the SE attention mechanism and CA mechanism to form a composite
attention mechanism added to the backbone of the YOLOv5 network, as shown in Figure 5.
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Figure 5. Composite attention mechanism.

3.6. Ghost Convolution Blocks and Ghost Bottleneck

Conventional feature extraction methods can capture a wealth of feature informa-
tion and generate redundant data. Many redundant feature maps will be generated by
stacking multiple convolutional layers, requiring many parameters and computations to
process. Therefore, some researchers proposed methods to compress the model, such as
pruning, quantization, and knowledge distillation, that effectively reduce the number of
parameters. Unfortunately, they suffer from the problem of complex model design and
training difficulties. Other methods concentrate on network structure optimization, such
as MobileNet [37] and ShuffleNet [38], which are simple, effective, and straightforward to
implement, although 1 × 1 convolutional layers continue to consume a significant amount
of memory and FLOPs.

In order to better achieve real-time detection, we adopt Ghost convolution blocks and
Ghost Bottleneck [39] in this paper to reduce the number of parameters and operations in
the network.

Ghost convolution allows extracting feature maps with as few operations as possible,
as shown in Figure 6. We use different convolution kernels to extract features from the
input feature maps and perform simple linear transformation operations on these feature
maps to generate more small feature maps, which can be formulated as:

Y′ = X× f ′ (13)

where Y′ = Rh′×w′×m, f ′ ∈ Rc×k×k×m.

Figure 6. Ghost convolution structure.

Ignoring m, n, and bias terms, other hyperparameters remain the same as ordinary
convolutions to keep feature maps consistent. To further obtain the desired n mappings,
simple linear operations are applied to each feature in Y′ to extract features and increase
the number of channels. In Ghost convolution, the identity map is parallelized with a linear
transformation to preserve the inherent feature map.

The Ghost Bottleneck comprises two stacked Ghost convolution blocks. The first Ghost
convolution block is used to increase the number of channels of the input feature map and
expand it for subsequent operations. Following this, the second Ghost convolution block
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reduces the number of channels of the output feature map to match the network’s structure.
Then, the shortcut is used to connect the input and output of these two Ghost modules.

We use the Ghost convolution block to replace the ordinary convolution block in the
backbone and neck of the YOLOv5s network and utilize the Ghost Bottleneck to replace
the C3 block in the backbone and neck of the YOLOv5s network. In this way, the scale of
the network’s parameters and the number of computing resources it uses can be optimized
without changing how well it detects things.

4. Experiments and Results
4.1. Experimental Evaluation Criteria

In this paper, we mainly use mAP@0.5 to reflect and evaluate detection performance,
which is the average AP@0.5 value of all classification detection results that overcomes
the limitation of single-point Precision (P) and Recall (R) values and can effectively reflect
global performance. The AP@0.5 value denotes the closed area of the precision and recall
curves when the Intersection over Union (IoU) threshold is 0.5. P, R, F1, and mAP@0.5 are
the performance metrics used in this paper.

P(precision) =
TP

TP + FP
(14)

R(recall) =
TP

TP + FN
(15)

F1 =
2× P× R

P + R
(16)

True Positive (TP) represents accurately detected positive samples, False Positive (FP)
represents negative samples that were misclassified as positives, and False Negative (FN)
represents positives that were misclassified as negatives.

4.2. Experimental Environment

This experiment conducts all training and testing on the same hardware and software
platform. The experiment is configured on Windows 10, using Pytorch as the deep-learning
framework and Pycharm as the programming environment for the proposed approach.
The experiment’s hardware configuration is as follows: Central Processing Unit (CPU):
Intel Core I5-9300H @2.4GHz. Graphics Processing Unit (GPU): NVIDIA GeForce GTX1650.
The environment software consists of CUDA 10.2, CUDNN 7.6, and Python 3.9.

The following are the training’s specific configurations: Before entering the network,
the input image size is scaled to 640 × 640 pixels, and the batch size is 8. The network’s
initial learning rate is 0.01, its ultimate learning rate is 0.002, and the optimizer uses adam
with a weight decay value of 5 × 10−4. Three hundred iterations are performed on each
model. The starting momentum value of the warmup is set to 0.8, and the first 3 epochs
are trained as warmups with a slow learning rate. In subsequent epochs, the learning
rate is varied using the cosine annealing training method [40]. The classification loss and
localization loss are computed with BCEWithLogitsLoss, whereas the confidence loss is
computed with CIoU. The experiment’s parameter settings had a significant impact on the
results. Both the YOLOv5s and the QD-YOLO networks make use of identical values for
their training parameters. This is done to ensure that the experiment results are correct
and accurate.

4.3. Experimental Results

In order to accurately reflect the detection performance and convergence performance
of the network before and after improvement, the evaluation results in this section are
mainly based on the loss function curve and mAP. In the network training process, the loss
change curve [41] intuitively reflects whether the network model can converge stably as
the number of iterations increases.
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As seen in Figure 7, the curves of both the QD-YOLO algorithm and the original
YOLOv5s show a decreasing training trend, with the loss function’s value gradually de-
creasing with the number of iterations. When the model is iterated 100 times, the QD-YOLO
algorithm has a loss function value of 0.018, while YOLOv5s still have a loss function value
of 0.023. When the model is iterated 300 times, the loss values of both algorithms drop to
close to 0, and the network converges. At this time, the loss function value of the QD-YOLO
algorithm is 0.011, while the loss value of YOLOv5s is still 0.014. Compared with YOLOv5s,
the QD-YOLO model has a faster loss decay rate and smaller decay function value, which
indicates that our model has a faster convergence performance.

Figure 7. Comparison of CIoU values in network training before and after improvement.

As shown in Figure 8, The mAP@0.5 of the original YOLOv5s requires about
100 iterations of training to reach 90%, and the mAP@0.5 in the iterative training is only
96.76% at the highest, while QD-YOLO only needs 30 iterations of training to reach about
90%. At the same time, the highest accuracy can reach 98.85% of QD-YOLO. These figures
show that QD-YOLO has a higher accuracy rate than YOLOv5s and greatly improves
convergence speed. Since we adopted the Meta-ACON activation function, the network
has different characteristics and properties for different samples, making the network
better applicable in different scenarios. Meanwhile, introducing the composite attention
mechanism can make the network pay more attention to the critical samples in the sample.
The improved model is able to capture the correct information in a short training period to
a certain extent, showing the accuracy and efficiency of the model.

Figure 8. Comparison of mAP values in network training before and after improvement.
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In addition, the actual detection performance of QD-YOLO is better than that of
YOLOv5s in terms of small-target and background recognition. Figure 9 shows the detection
results of QD-YOLO and YOLOv5s for the same image.

Figure 9. Comparison of actual detection results.

By observing the detection results of the two networks, we can find that QD-YOLO
can detect minor defects in high-resolution images, return the positioning frame more
accurately, and avoid the background being detected as a wrong sample effectively, which
is difficult for YOLOv5s to do. It also shows the effectiveness of the improved scheme in
this paper.

4.4. Ablation Experiment of Attentional Mechanisms

In order to explore the impact of different attention mechanisms on the network model,
we set up ablation experiments, as shown in Table 3, to demonstrate their impact on the
network’s overall performance.

Table 3. Comparison of performance-optimization effects of different attention modules.

Model Precision (%) Recall (%) F1 (%) mAP@0.5 (%)

YOLOv5s 97.19 93.94 95.53 96.76
YOLOv5s + Ghost 95.26 94.26 94.75 96.13

YOLOv5s + Meta-ACON 94.13 96.70 95.39 97.02
YOLOv5s + CA 97.67 96.10 96.88 97.47
YOLOv5s + SE 96.55 95.22 95.88 97.51

YOLOv5s + CA + SE 97.26 97.67 97.46 98.09
QD-YOLO 95.93 99.08 97.48 98.85

Compared with the original YOLOv5s, the mAP increased by 0.71% after adding
the Coordinate Attention (CA) mechanism, the mAP increased by 0.75% after adding the
Squeeze-and-Excitation (SE) attention mechanism, and the mAP increased by 1.33% after
adding SE and CA at the same time. We found that the precision of the network with SE
and CA is lower than that of the network with only CA. However, the recall rate is greatly
improved. On the other hand, the F1 of the network with SE and CA is higher than that
with only CA, indicating that the network has better overall detection performance.

The SE attention mechanism pays attention to the relationship between channels
and automatically learns the importance of different channel features. The CA attention
mechanism captures cross-channel, orientation-aware, and position-sensitive information,
locating target regions more accurately. Therefore, combining the CA and SE can effectively
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improve the network’s recognition of features and improve the network’s performance
in detection.

4.5. Ablation Experiment of Ghost Convolution

Aiming to explore the impact of using Ghost convolution on the network, we set up
experiments on model size and detection speed, as shown in Table 4.

Table 4. Comparison of Ghost convolution optimization performance.

Model Precision (%) Recall (%) F1 (%) mAP@0.5 (%)

YOLOv5s 97.19 93.94 95.53 96.76
YOLOv5s + Ghost 95.26 94.26 94.75 96.13

YOLOv5s + Meta-ACON 98.10 96.47 97.27 97.02
YOLOv5s + CA 97.67 96.10 96.88 97.47
YOLOv5s + SE 96.55 95.22 95.88 97.51

YOLOv5s + CA + SE 97.26 97.67 97.46 98.09
QD-YOLO 95.93 99.08 97.48 98.85

According to Table 4, when the composite attention mechanism and the Meta-ACON
activation function are added to YOLOv5s, the number of network layers is increased
by 157, the number of parameters is increased by 0.9 M, the amount of computation is
increased by 1 GFLOPS, and the FPS is decreased by 5.3. Compared with the original
YOLOv5s, QD-YOLO has more network layers and smaller parameters. Specifically, the
amount of computation is reduced by 6.3 GFLOPS, and the FPS is increased by 2.7, which
shows better real-time performance.

4.6. Comparison with Other Networks

We compare the performance of the QD-YOLO model and the current mainstream
detection algorithms applied to the quality detection of computer mainboards, including
Faster R-CNN, Cascade R-CNN, YOLOv3, etc., as shown in Table 5.

Table 5. Comparison of results of different target detection algorithms.

Model mAP@0.5 (%) FPS

Faster-RCNN 94.15 1.322
Cascade R-CNN 99.20 7.69

FPN 92.08 6.46
YOLO v3 89.16 21.47
YOLO v4 95.84 25.46
YOLO v5 96.76 28.58

QD-YOLO 98.85 31.25

Faster-RCNN networks have many parameters that are much more computationally
intensive than one-stage algorithms, which results in detection algorithms that are less
than real-time. Meanwhile, Faster-RCNN cannot be combined with the whole picture
for comprehensive analysis in the computer mainboard quality-detection scene, which
causes serious network misjudgment of the background. This leads to lower accuracy than
QD-YOLO for Faster-RCNN deployed under the same conditions. The Cascade R-CNN has
the highest accuracy in this scenario. It aims to optimize the prediction results by cascading
several detection networks continuously. However, the cascade of multiple sub-detection
networks increases the structural complexity of the network, which has a particular impact
on the detection speed. It takes 0.13 s to detect a picture, which is insufficient in real-time.
FPN fuses the shallow layers with high resolution and the deep layers with rich semantic
information. In actual use, the FPN network has not achieved outstanding results. The
network has a poor effect on small-target detection and low accuracy. At the same time,
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in terms of real-time performance, the speed is only 6.46 FPS, which is far lower than the
requirements of real-time detection.

The network structure of YOLOv3 is relatively simple, which brings good speed
performance and poor performance in detection accuracy. YOLOv3 makes it difficult to
detect small objects in the computer mainboard defect dataset, so it is not suitable for
quality detection of computer mainboards. YOLOv4 introduces some tricks, which means
it has higher detection accuracy. Some speed-optimization techniques introduced also
mean that YOLOv4 has a good detection speed during testing. However, compared to
QD-YOLO, YOLOv4 is lower in both accuracy and speed. Compared with YOLOv5s,
QD-YOLO improves mAP by 2.09%. This paper adds some structure to the network,
which makes the QD-YOLO network develop in a complex direction. However, due to
the use of Ghost convolution instead of ordinary convolution, the number of parameters
is significantly reduced, and the detection speed is accelerated. The speed of 31.25 FPS
satisfies the requirement of real-time detection.

5. Discussion

Table 3 shows the results of ablation experiments on the detection performance of the
network with different structural improvements. We have discovered that the network’s
performance diminishes after using Ghost convolution. The mAP is reduced by 0.63%
when compared to the original YOLOv5s. We believe this is because Ghost convolution
uses a linear operation to generate a part of the feature map, which leads to the loss of
some information and the degradation of network detection performance. When combined
with Table 4, Ghost convolution is very effective at improving real-time performance, and
the detection performance loss in this area is low-cost. Ghost convolution can effectively
reduce the network’s computational load, can significantly accelerate detection speed, and
has convenient use characteristics.

In Section 4, we discuss the performance of QD-YOLO, which achieved satisfactory
detection results in the application scenario of computer mainboard quality detection. The
QD-YOLO can reach 31.25 FPS, close to real-time detection. In terms of detection effect,
QD-YOLO achieves a mAP of 98.85% and has good robustness with variable inputs, making
it suitable for real-time quality detection. However, the detection algorithm could not
produce accurate results for partially occluded objects. This is also the issue that the object-
detection model should address [42]. Identifying occluded objects can be achieved using
a variety of methods, such as optimizing the loss function for application scenarios [43],
optimizing the Non-Maximum Suppression (NMS) method [44], optimizing the network
structure [45], and so on. The structure of the QD-YOLO model will be further optimized
in future work.

6. Conclusions and Future Work

This paper proposes a QD-YOLO mainboard quality detection model. Meta-ACON
replaces swish activation function in the YOLOv5 network to improve generalization. Then,
a composite attention mechanism is embedded in the network’s backbone to model channel
and location information. In the meantime, Ghost convolution has replaced conventional
convolution to ensure efficient real-time detection. In addition, a computer mainboard
quality detection dataset with 11,300 images and 12 different defect types was established.
Experiments show that the method in this paper achieves mAP of 98.85% and FPS of 31.25
in the self-made dataset test. The QD-YOLO network outperforms other methods in both
accuracy and speed.

Currently, our QD-YOLO network focuses on enhancing detection precision and small-
target detection effect. The improvement in the speed of detection is relatively modest. In
the future, we will make every effort to reduce the number of parameters and the amount
of computation required for the network to run smoothly on mobile devices. Alternatively,
we will combine the correlation of time series in order to optimize the defect detection
problem. In the meantime, future research will introduce the model to larger datasets to
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improve its generalizability. Furthermore, the way small targets are found and modeled
will be tweaked to improve the accuracy of the detection model.
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