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Abstract: For diseases that affect brain function, such as strokes, post-onset rehabilitation plays a
critical role in the wellbeing of patients. MEG is a technique with high temporal and spatial resolution
that measures brain functions non-invasively, and it is widely used for clinical applications. Without
the ability to concurrently monitor patient brain activity in real-time, the most effective rehabilitation
cannot occur. To address this problem, it is necessary to develop a neurofeedback system that can
aid rehabilitation in real time; however, doing so requires an analysis method that is quick (less
processing time means the patient can better connect the feedback to their mental state), encourages
brain-injured patients towards task-necessary neural oscillations, and allows for the spatial location
of those oscillation patterns to change over the course of the rehabilitation. As preliminary work
to establish such an analysis method, we compared three decomposition methods for their speed
and accuracy in detecting event-related synchronization (ERS) and desynchronization (ERD) in a
healthy brain during a finger movement task. We investigated FastICA with 10 components, FastICA
with 20 components, and spatio-spectral decomposition (SSD). The results showed that FastICA with
10 components was the most suitable for real-time monitoring due to its combination of accuracy and
analysis time.

Keywords: magnetoencephalography; continuous wavelet transformation; event-related
desynchronization; event-related synchronization; independent component analysis; spatio-spectral
decomposition

1. Introduction

For diseases that affect brain function, such as Parkinson’s disease and stroke, post-
onset rehabilitation plays a critical role in the wellbeing of patients. Neurofeedback systems
repeatedly collect neuroimaging data while participants process a stimulus or perform a
task and then provide visual, auditory, haptic, or electrical feedback so that the participant
can learn to modulate their own brain activity [1]. Many patients retain intact brain function,
head, and eye movements, a significant number of approaches focus on methods based
on brain activity. Such methods utilize electroencephalography (EEG) combined with eye
movements using electrooculography (EOG) [2,3]. The relationship between EEG and eye
movements has been well studied and is widely used in fields such as brain–computer
interface and human-computer interface. One of the techniques used for non-invasive brain
function evaluation is magnetoencephalography (MEG) [4,5]. MEG has high temporal
resolution as well as high spatial resolution, and it is commonly used clinically for epilepsy
diagnosis and rehabilitation [6]. However, without the ability to monitor and derive
meaning from a patient’s brain activity in real time during rehabilitative exercises, the most
efficient rehabilitation cannot occur. Connecting a patient’s brain activity to the calculated
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feedback as quickly as possible is critical for achieving effective rehabilitation. It is known
that recovery from rehabilitation involves a variety of normal activation patterns in the
brain [4,7–9]. Our goal with this work was to develop an analysis method to evaluate brain
function in real time by focusing on known, healthy, and task-necessary neural patterns.

Sensorimotor rhythms (SMR) are neural oscillations in the 8–30 Hz band that occur in
the sensorimotor cortex [10]. SMR band rhythms may be more specifically around 13–15 Hz
in most people [11]. Event-related desynchronization (ERD) and synchronization (ERS)
are patterns in SMR that occur during real and imagined movement [12,13]. ERD is a
time-locked decrease in SMR band spectral power, relative to baseline power in the same
frequencies, during real or imagined movement, while ERS is a time-locked increase in SMR
band spectral power immediately following the ERD [14]. Neither ERD nor ERS is phase-
locked [15]. While both ERD and ERS have been observed over the entirety of the SMR band,
ERD has often been observed in lower frequencies (alpha band 8–13 Hz, specifically the
mu rhythm from 10–12 Hz) while ERS has been observed in higher frequencies (beta band
13–30 Hz). Due to the rapid occurrence and recovery of ERD and ERS—measurements can
be taken in a fraction of a second [15]—these patterns are prime targets for feature extraction
in a neurofeedback system, which must quickly analyze and return feedback to the patient.
Individual differences have been observed in ERD and ERS frequencies [14], leading to
the need for neurofeedback to be personalized on a patient-by-patient basis. Creating a
neurofeedback system around ERD and ERS is advantageous to patients with paralysis
because ERD and ERS are produced by both motor tasks (i.e., real physical movement) and
motor imagery (MI; i.e., imagined or visualized movement without physically moving the
body) [12,16,17].

Preliminary work on an MEG-based neurofeedback system to improve motor func-
tion [18,19] used data from healthy subjects performing a motor task to train an adaptive
neural network classifier. However, these systems rely on the assumption that a machine
learning model trained on data from healthy participants will be able to adapt to clinical
use in rehabilitating patients. Although the researchers achieved an impressive 96.5%
classification accuracy in their “pseudo-real-time” test using a single held-out subject’s
data [19], the assumption of applicability to patients may not prove dependable. While
we agree with the reasoning of Halme and Parkkonen (2018) [18] that “when employing
neurofeedback for rehabilitation, the feedback should drive brain activity towards that of
a healthy brain and not to reinforce the prevailing pathological state as a patient-specific
[brain-computer interface] might do,” we differentiate between location of brain activity
and event-related oscillatory patterns [18]. In patients with cortical lesions who leverage
neuroplasticity to regain function, the location of activity may be altered from healthy
brains and from other patients’ brains [20,21], while the temporal and oscillatory patterns
should remain the same if those patterns are functionally required for movement [19]. We
propose the use of observations of timed oscillatory phenomena (i.e., ERD and ERS) from
healthy participants to inform a motor-task-specific neurofeedback system for rehabilitating
patients with paralysis as a result of brain damage. Furthermore, training a classifier during
a calibration period at the beginning of a patient’s neurofeedback session may inadvertently
strengthen unhelpful activity if the patient is not able to immediately access healthy motor
imagery (MI) or if their MI is weak. Finally, the classification of MI into specific categories
(e.g., rest vs. MI) is potentially less useful for rehabilitation than a quantitative indicator of
performance which might be able to be trained to increase in strength.

The purpose of this study was to investigate the use of MATLAB’s spatio-spectral
decomposition (SSD) algorithm and MNE-Python’s FastICA algorithm for quick extraction
of event-related desynchronization (ERD) and synchronization (ERS) information from
real-time MEG during spontaneous movement [12,22–24]. SSD and FastICA are both
techniques that have been used for decomposing data recorded from EEG/MEG into
components each described by source location and time course. FastICA is a popular form
of independent components analysis (ICA), which decomposes a signal by making use
of the non-Gaussianity of the additive sources; in the case of FastICA specifically, this is
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performed using skewness [22]. SSD, however, optimizes the signal-to-noise ratio (SNR) of
neural oscillations by amplifying power in a specified frequency band while diminishing
power in the flanking frequency bands [22]. SSD was chosen for this study due to its
indication as the superior method for MI feature extraction from MEG data [18]. FastICA
was chosen for this study for three important reasons: ICA is similar to SSD and has been
compared to SSD in previous research [22]; to our knowledge, FastICA specifically has not
been compared to SSD; and FastICA aims to shorten the often-lengthy analysis time of
ICA algorithms. The processing time required to provide feedback to a patient is critical
in neurofeedback; therefore, we seek to minimize processing time to 3 s or less between
the end of an MI period and the presentation of feedback to the participant. SSD computes
around 10,000 times faster than does ICA, and SSD is based on linear decomposition
that does not assume non-Gaussianity [22]. For this preliminary research, MEG data was
recorded from a healthy subject during spontaneous movement and analyzed offline using
proposed techniques for real-time analysis in a neurofeedback system. Although SSD has
been found to outperform SOBI ICA in reconstructing simulated data [22], we found that
FastICA outperformed SSD in the task of quickly extracting ERD and ERS from real data.
Due to its superior classification results, FastICA was chosen as the superior option for
ERD and ERS feature extraction in a neurofeedback system.

In this paper, we develop an analysis method for a real-time neurofeedback system
that enables more effective rehabilitation using non-invasive MEG. We force SSD, ICA as
the superior method for MI feature extraction from MEG data. SSD was compared to ICA,
specifically FastICA, run with both 10 and 20 components. Decomposition methods are
compared in terms of analysis time and their ability to detect of ERD and ERS patterns.
We discuss these results and provide recommendations for application of these results to
motor-function rehabilitative neurofeedback systems.

2. Materials and Methods
2.1. Data Collection

The data were collected using full-head 306-channel magnetoencephalography (Vec-
torview, Elekta-Neuromag, Helsinki, Finland) at a sampling frequency of 1000 Hz. To
reduce power supply noise and other interference, measurements were taken inside a
magnetic field shield room (1 kHz shielding rate 55.2 dB). The participant was a healthy
person who had an accelerometer attached to the middle finger of his right hand. Data
from the accelerometer was used to record subject motor task execution. This protocol
was approved by the Ethics Committee of the JUNWAKAI MEMORIAL HOSPITAL, Japan
(protocol code 220629-1, on 29 June 2022).

Each of the 60 trials consisted of three parts: preparation, task, and rest (Figure 1).
Visual cues were presented to the subject using a projector placed in front of the subject.
First, the subject was given the Preparation cue. After a delay of 2.0 s, the subject was given
the Go cue, at which they performed the motor task. Finally, the Rest cue was presented
3.0 s after the Go cue. Another Preparation cue was presented after 5.0 s of rest. The
subject was instructed not to move during the preparation or rest periods. When the subject
received the Go signal, they performed the motor task: self-initiated spontaneous flexion
(i.e., bending) and extension (i.e., relaxing) movements of the middle finger of the subject’s
right hand (hereinafter referred to as the “task”).

Figure 1. The flow of a single trial. There were 60 trials in total.
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2.2. Analysis

After collecting the raw MEG data from all 306 channels, we selected all gradiometers
(207 ch) then we repaired artifacts with Fast ICA or SSD. Finally, we assessed brain activity
by calculating ERD and ERS.

2.2.1. ICA

Independent component analysis (ICA) is a technique for estimating independent
source signals from a set of recordings in which the source signals were mixed in unknown
ratios. Gradiometer data was bandpass filtered above 8 Hz and below 30 Hz in order to
exclude signals and noise outside of the sensorimotor rhythm (SMR). MNE-Python was
used to run FastICA analysis on the bandpass filtered gradiometer data. MNE is an open-
source software supporting a collaborative development effort which provides a complete
pipeline for MEG and EEG data analysis [25,26]. Because the ultimate application of this
analysis will be within a neurofeedback system, processing speed was critical. Therefore,
the specific ICA algorithm chosen for this analysis was FastICA, tested with the number of
components set to 10 and 20. The FastICA analysis flow is depicted in Figure 2.

Figure 2. The FastICA analysis flow. Total number of components was 10 or 20.

2.2.2. ERD and ERS Calculation in ICA Components

We used event-related desynchronization (ERD) and synchronization (ERS) as indica-
tors of task-relevant brain activity. ERD is a time-locked decrease in sensorimotor rhythm
(SMR) band spectral power, relative to baseline power in the same frequencies, during real
or imagined movement, while ERS is a time-locked increase in SMR band spectral power
immediately following the ERD [18]. While both ERD and ERS have been observed over
8–30 Hz, ERD has often been observed in lower frequencies (alpha band 8–13 Hz) while
ERS has been observed in higher frequencies (beta band 13–30 Hz). The same phenomenon
has been reported to occur not only during actual exercise but also during motor imagery
(MI) [27].

In order to calculate ERD and ERS, we used continuous wavelet transform (CWT) to
obtain the power spectrum of the FastICA data for each frequency. The mother wavelet was
“Morlet.” Using the reference value calculated by averaging the data during the preparation
period at a specific frequency, the rate of increase/decrease was calculated for all the data in
one trial (Figure 3a, (1)). To calculate ERD, each frequency bin from 8 to 13 Hz was averaged,
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first, during the reference period and, second, during the ERD period from 500 ms after the
start of the task cue to 500 ms after the start of the rest cue (Figure 1: 2.5–5.5 s). This left
one average value per frequency bin per time period. The reference values were subtracted
from the ERD-period values, and the resulting number was divided by the reference value
before being multiplied by 100 to derive the percent rate of change. The values were then
averaged across frequency bins to leave one ERD value per component. The component
with the lowest ERD value was selected as the ERD-representative component for that
trial only (Figure 3c). A similar procedure was used to calculate ERS. The ERS period was
from 500 ms after the rest start cue to 1500 ms after the rest start cue (Figure 1: 5.5–6.5 s),
and the ERS frequency band was 13 to 30 Hz. However, ERS values were not averaged
across the entire time and frequency ranges. Instead, the maximum rate of change was
calculated, and the average across time and frequency was taken within a window of ±1 Hz
and ±100 ms around the maximum point. If the maximum point was near a definitional
time cutoff for ERS, the cutoff value was extended to accommodate the ±100 ms window.
However, frequency accommodations were not made outside of 8 to 13 Hz. ERS was
calculated for each component. The component with the highest ERS value was selected as
the ERS-representative component for that trial only (Figure 3d). The flow of the calculation
of ERD and ERS in ICA components is depicted in Figure 3.

ROC =
Data f req − Re f erence f req

Re f erence f req
× 100 (1)

Figure 3. Flow of ERD and ERS calculation. (a) the wavelet-transformed data. (b) For the wavelet-
transformed data, the rate of change from baseline (i.e., increase for ERS and decrease for ERD) was
calculated using the average value from the reference period (from the preparation cue to the task
cue). (c) ERD was calculated as the average rate (8–13 Hz) of decrease from 500 ms after the task cue
“Go” until 500 ms after the rest cue “Rest”. The component with the lowest ERD value was selected
as the ERD-representative component for that trial only. (d) ERS was calculated as the average rate
(13–30 Hz) of increase from 500 ms after the rest cue “Rest” until 1500 ms after the rest cue “Rest”.
The component with the highest ERS value was selected as the ERS-representative component for
that trial only.
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2.2.3. SSD

MEG signals contain overlapping activity from multiple neural sources as well as
strong background noise. Spatio-spectral decomposition (SSD) is a novel method for fast
extraction of neuronal oscillations which extracts neural oscillations within EEG/MEG data
with a high signal-to-noise ratio. The SSD algorithm was applied to all gradiometer data
for the extraction of alpha oscillations in the 8–13 Hz frequency band and beta oscillations
in the 13–19 Hz frequency band. Figure 4 shows the SSD analysis flow.

Figure 4. The flow of SSD analysis.

2.2.4. ERD and ERS Calculation in SSD Components

For the calculation of ERD and ERS, we used frequency ranges informed by both
previous research as well as the data itself. The ERD range used in SSD analysis was
8–13 Hz while the ERS range used in SSD analysis was 13–19 Hz (Figure 3). Following the
wavelet transform, the ERD and ERS results were calculated in the same way as the ERD
and ERS calculations for ICA.

2.2.5. Classification

Two classification schemes were evaluated: (1) ERD change from baseline was less
than −10.0% AND ERS change from baseline was greater than 150.0%; and (2) ERD change
from baseline was less than the reference trial (i.e., Trial 31, which had no movement) AND
ERS change from baseline was greater than the same reference trial. The cut-offs for the
first classification scheme were derived from the data. The second classification scheme
was developed in reference to the trial (Trial 31) wherein participant error led to no task
performance following the Go cue; hypothetically, this trial should not have contained as
much, if any, ERD and ERS patterns due to the lack of motor activity or MI.

3. Results

From this point onward, the results of ICA analyses will be labeled with the number
of components used in the analysis (i.e., the analysis with 10 components will be indicated
by “ICA_n10” while the analysis with 20 components will be indicated by “ICA_n20”). The
results of the SSD analysis are labeled “SSD.”

3.1. CWT Results

Example wavelet transforms of the ICA and SSD component data are provided
(Figure 5). In each analysis, both ERD and ERS were indicated by one single compo-
nent or by one component each. However, ERD and ERS patterns were not captured in
all trials.
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Figure 5. CWT results indicating ERD and ERS. (a) CWT results from ICA_n10 indicating ERD.
(b) CWT results from ICA_n10 indicating ERS. (c) CWT results from ICA_n20 indicating both ERD
and ERS in one component. (d) CWT results from SSD indicating ERD. (e) CWT results from SSD
indicating ERS.

3.2. ERD/ERS Results

Figures 6–8 show scatter plots of the percent change in power from baseline for the
ERD (x-axis) and the ERS (y-axis) for each ICA_n10, ICA_n20, and SSD. Each dot is an
individual trial, with all 60 trials represented in each figure. The triangle represents the 31st
trial where no task was executed after the Go cue (i.e., due to participant error, there was
no movement execution).

Figure 6. Plot of ERD ratio of change (x-axis) vs. ERS ratio of change (y-axis) derived from ICA_n10.
Dotted lines indicate ERD/ERS criteria as set by session 31 (triangle). Solid lines indicate the criteria
for ERD < −10% and ERS > 150%. The number that satisfies these criteria is the number of points in
the upper-left section as demarcated by the respective lines.
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Figure 7. Plot of ERD ratio of change (x-axis) vs. ERS ratio of change (y-axis) derived from ICA_n20.
Dotted lines indicate ERD/ERS criteria as set by session 31 (triangle). Solid lines indicate the criteria
for ERD < −10% and ERS > 150%. The number that satisfies these criteria is the number of points in
the upper-left section as demarcated by the respective lines.

Figure 8. Plot of ERD ratio of change (x-axis) vs. ERS ratio of change (y-axis) derived from SSD.
Dotted lines indicate ERD/ERS criteria as set by session 31 (triangle). Solid lines indicate the criteria
for ERD < −10% and ERS > 150%. The number that satisfies these criteria is the number of points in
the upper-left section as demarcated by the respective lines.

3.3. Classification Results

Table 1 summarizes the number of trials by decomposition analysis method that
satisfies each of the two classification schemes. For the first classification scheme with
data-derived cutoff values (i.e., ERD < (−10.0%) and ERS > 150.0%), the ICA_n20 method
classified the most trials as showing ERD and ERS patterns (57 out of 60 trials or 95.0%
of trials). For the second classification scheme with cutoff values derived from the no-
movement trial, the ICA_n10 method classified the most trials as showing ERD and ERS
patterns (39 out of 60 trials or 65.0% of trials).

Table 1. Number of trials (out of 60 total) that meet each condition.

ERD < (−10%) and ERS > 150% |ERD| and |ERS| both > Trial 31

SSD 37 (61.7%) 18 (30.0%)

ICA_n10 42 (70.0%) 39 (65.0%)

ICA_n20 57 (95.0%) 20 (33.3%)

3.4. Analysis Time

Analysis time from decomposition (i.e., ICA or SSD) through the ERD and ERS cal-
culations was calculated for every trial and averaged by analysis method. The analy-
sis time was estimated on a computer Core i7-7700k 4.2 GHz, 16 GB RAM, using Mat-
lab2021b, Windows 10 Pro. The analysis time for ICA_n10 was 1.78 ± 0.68 s, ICA_n20 was
4.74 ± 0.89 s, and SSD was 1.97 ± 0.11 s.
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3.5. Verification with a Second Participant

In order to confirm our results, we repeated the experiment with a second healthy
participant and ran the same analyses. Results are presented in Table 2. FastICA with
20 components had the highest accuracy (98.3%) in detecting ERD and ERS patterns.
FastICA with 10 components had the shortest analysis time (0.80–1.68 s).

Table 2. Method verification with test data.

ERD < (−10%) and ERS > 150% Processing Time (s)

SSD 39/60 (65.0%) 1.95 ± 0.15

ICA_n10 40/60 (66.7%) 1.24 ± 0.44

ICA_n20 59/60 (98.3%) 3.52 ± 1.58

4. Discussion

The purpose of this study was to develop an analysis method for a real-time neu-
rofeedback system that enables more effective rehabilitation using non-invasive MEG.
Spatio-spectral decomposition (SSD) was compared to independent components analysis
(ICA), specifically FastICA, run with both 10 and 20 components. Decomposition methods
were compared in terms of analysis time and their ability to detect of ERD and ERS patterns.

As shown in Figure 5, we observed increases and decreases in sensorimotor rhythm
(SMR) frequency power that has previously been described as event-related desynchro-
nization (ERD) and event-related synchronization (ERS). All three tested analysis methods
were able to detect ERD and ERS as related to a finger movement task in two healthy
subjects. However, these methods could not detect ERD or ERS patterns in every trial.
Figures 6–8 show the summative ERD and ERS results for all trials collected from Subject 1.
In these figures, the triangle indicated Trial 31, wherein the task was not executed due
to participant error; however, it is worth noting that the detected ERD and ERS in Trial
31 were not remotely outside of the range of ERD and ERS detected in the other trials by
ICA_n20 and SSD. This may indicate ERD and ERS patterns less extreme than those in
Trial 31 are not actually movement-related; alternatively, this could indicate that a different
neurological or muscular process inhibited the participant from executing the motor task
(i.e., the participant had ERD and ERS but was otherwise inhibited from task execution).
In order to distinguish between these possibilities, more non-movement data, with and
without motor imagery (MI), needs to be collected and analyzed. The second subject,
whose data was used for verification, did not have a similar failed-task trial to which we
could compare.

For the first classification scheme with data-derived cutoff values (i.e., ERD < (−10.0%)
and ERS > 150.0%), the ICA_n20 method classified the most trials as showing ERD and ERS
patterns (57 out of 60 trials or 95.0% of trials for Subject 1, and 59 out of 60 trials or 98.3%
of trials for Subject 2). However, ICA_n20 had the longest analysis time at about 3–5 s,
which is not ideal for a neurofeedback system due to the desire to promote patient learning
by connecting neural activity with feedback as closely in time as possible. Using the
same classification scheme, ICA_n10 identified 42 out of 60 total trials (70.0%) as showing
ERD and ERS patterns for Subject 1 and 40 out of 60 trials (66.7%) as showing ERD and
ERS patterns for Subject 2. The ICA_n10 analysis time was less than about 2 s, which is
reasonable for a neurofeedback system. SSD also had a fast analysis time of less than 2 s, but
the classification accuracy was the lowest at 37 out of 60 trials (61.7%) for Subject 1 and 39
out of 60 trials (65.0%) for Subject 2. For the second classification scheme with cutoff values
derived from the no-movement trial (i.e., Trial 31), the ICA_n10 method classified the most
trials as showing ERD and ERS patterns (39 out of 60 trials or 65.0% of trials). ICA_n10
was inferior to ICA_n20 in accuracy using the first classification scheme, but it boasts a
critically faster analysis time; therefore, we conclude that FastICA with 10 components is
the most suitable for real-time feedback systems. Furthermore, the correlation between the
ERD value at ICA_n10 and the ERD value at ICA_n20 shows a high positive correlation of
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R = 0.81. Even in the case of ERS, we have confirmed that a positive correlation is shown
with a correlation coefficient of R = 0.73. In our future work, it is necessary to verify the
relationship with topography which indicates the site of brain activity.

Currently, there are various MEG analysis methods, but a method for analyzing and
evaluating in real-time has not yet been established [6,28]. This method may be able to
extract ERD and ERS features in order to evaluate the tasks performed by the subject in
a relatively short analysis time. Future research will verify whether this method can be
utilized with paralyzed patients due to the differences between the brain activity of healthy
subjects and paralyzed patients [29]. This study will reveal the differences in ERD and
ERS activity between healthy subjects and patients and will bring us one step closer to
implementing real-time neurorehabilitation.

5. Conclusions

The proposed method may allow us to assess brain activity in less than 2 s by perform-
ing an analysis using FastICA with 10 components. Future research includes additional
offline analysis with new participants, comparing Morlet wavelet to fast Fourier transform
(FFT) [30,31], comparing successive decomposition index (SDI) [32] to our established meth-
ods, and testing the proposed method in a real-time neurofeedback system. The proposed
design for our clinical neurofeedback system to assist in the rehabilitation of stroke patients
does not require classification but rather a quantitative indicator of joint ERD and ERS
activity as a patient’s brain activity changes over time, which we believe can be derived
by summing the absolute values of ERD and ERS activity observed in this study. We plan
to use the quantitative indicator in a custom adaptive learning algorithm to encourage
continuous improvement in patient performance. Ultimately, this line of research will
lead to the development of a system for the rehabilitation of patients who cannot move
their limbs freely due to brain injuries or diseases. Additional research, including that
involving executive function, may help to extend the feasibility of neurofeedback systems
and rehabilitative brain-computer interfaces [33–37]. Not only rehabilitation but also the
EEG-based attention measuring method [30,31] have been proposed and are expected to be
used in various fields.
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