
Citation: Ohk, S.-R.; Kim, Y.; Kim,

Y.-J. Phase-Based Low Power

Management Combining CPU and

GPU for Android Smartphones.

Electronics 2022, 11, 2480. https://

doi.org/10.3390/electronics11162480

Academic Editor: Davide Brunelli

Received: 16 June 2022

Accepted: 8 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Phase-Based Low Power Management Combining CPU and
GPU for Android Smartphones
Seung-Ryeol Ohk 1 , YongSin Kim 2 and Young-Jin Kim 1,*

1 Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea
2 Agency for Defense Development, Daejeon 34186, Korea
* Correspondence: youngkim@ajou.ac.kr

Abstract: Smartphones have limited battery capacity, so efficient power management is required for
high-performance applications and to increase usage time. In recent years, efficient power manage-
ment of smartphones has become very important as the demand for power use of smartphones has
grown due to deep learning, games, virtual reality, and augmented reality applications. Existing low-
power techniques of smartphones focus only on lowering power consumption without considering
actual power consumption based on utilization of the central processing unit (CPU) and graphics
processing unit (GPU), which are major components of smartphones. In addition, they do not take
into consideration the strict use of resources within the component and what instructions are being
processed to operate them. In this paper, we propose a low-power technique that manages power
by calculating the actual power consumption of smartphones at execution time and classifying the
detailed resource operating states of CPUs and GPUs. The proposed technique was implemented by
linking the kernel and native app on a Galaxy S7 smartphone equipped with Android. In experiments
with 15 workloads, the proposed technique achieves an energy reduction of 18.11% compared to the
low-power technique of the interactive governor built into the Galaxy S7 with a small FPS reduction
of 3.12%.

Keywords: phase; low power; power estimation; Android; smartphone

1. Introduction

According to [1], as of June 2021, the number of smartphone users worldwide reached
6.4 billion, increasing by 5.3 percent every year. In addition, the use rate of smartphones
among mobile handsets has reached 75% [1]. As a result, it is no exaggeration to say that the
use of smartphones has now become a daily routine for us. When a user uses a smartphone,
battery life is an important factor that affects user satisfaction. However, according to the
findings of [2], the biggest dissatisfaction of United Kingdom and United States users is
the lack of battery life, and the proportions are 35% and 45%, respectively, for mid-range
smartphones and premium smartphones.

There are two ways to increase battery life. The first is to increase the capacity of
batteries, and the second is to reduce the power consumption of smartphones. According
to a recent trend of battery technology development, the increase in battery capacity is
stagnating [3], so the size and weight of batteries generally increase to increase the battery
capacity. An increase in the size and weight of the battery will cause an increase in the
size and weight of the smartphone, which will cause inconvenience to smartphone users.
However, since a large battery capacity is not directly related to a long battery life [4], the
power consumption of a smartphone should be reduced to increase the battery life.

In this paper, the component-specific power consumption ratio of the Galaxy S7, a
smartphone to be used as a target, is 29%, 56%, 11%, and 4% for the central processing unit
(CPU), graphics processing unit (GPU), display, and others, respectively [5]. The sum of the
power consumption ratios of the CPU, GPU, and display components is 96%, accounting

Electronics 2022, 11, 2480. https://doi.org/10.3390/electronics11162480 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11162480
https://doi.org/10.3390/electronics11162480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0852-4277
https://orcid.org/0000-0002-7095-6505
https://doi.org/10.3390/electronics11162480
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11162480?type=check_update&version=2

Electronics 2022, 11, 2480 2 of 19

for most of the power consumption. Therefore, reducing the power consumption of the
three components is directly related to the overall power consumption of the smartphone,
and in this paper, among other things, we focus on reducing the power consumption of the
CPU and GPU.

The power consumption of the CPU and GPU varies according to driving voltage
and frequency. Based on the complementary metal-oxide-semiconductor circuit, the power
consumption of the CPU and GPU is generally proportional to the frequency and the square
of the voltage. Dynamic voltage and frequency scaling (DVFS) is a low-power technology
using this point. DVFS is a technique that adjusts voltage and frequency to obtain the
optimal trade-off between the power consumption and performance of the processor.
The interactive governor, a DVFS governor, is basically included in a smartphone with an
Android operating system (OS) based on the Linux kernel and is designed to manage power
considering utilization [6]. In addition, in HiCAP, a low-power technique for Android
mobile devices, DVFS was designed using CPU utilization and GPU utilization [7].

Low-power techniques using utilization simply consider the degree of CPU and GPU
usage. Linux interactive government and HiCAP perform DVFS considering the utilization
of the CPU or GPU, but utilization simply informs about the usage, so we do not know what
commands are being processed on the CPU or GPU. Knowing which commands the CPU
and GPU are currently processing will help in the design more power-efficient DVFS, as
the internal hardware resources of the CPU and GPU may vary in how they are processed.
In this paper, we propose a low-power technique that monitors the types of commands
processed by the processor with a performance-monitoring counter (PMC), divides the
case according to the detailed operating states of the CPU and GPU, and works based on
the phase. In this paper, phase is the execution state classified according to the usage ratio
of various instructions in the processor (CPU and GPU) occupied by the workload. The
CPU phase is determined by the cache miss rate and the load and store (LDST) inst rate,
which indicates the rate of instructions related to the CPU’s memory operation. The GPU
phase is determined by the usage ratio of units in the GPU microarchitecture. Detailed and
accurate explanations of the CPU/GPU phase are presented in Section 4.

In addition, the above two techniques use a method of lowering the frequency (or
voltage) without considering the phase or the real-time power consumption of the CPU and
GPU. Of course, since frequency directly affects the processor’s power consumption, power
can be reduced through the DVFS technique, but if the processor’s power consumption is
known and power is managed in real time, it would be possible to design DVFS for more
accurate and efficient power management.

On the other hand, reducing power consumption through DVFS is possible by reduc-
ing the frequency of the processor, but reducing the frequency may reduce the performance
of the processor, which may reduce the quality of service (QoS) of the running task. There-
fore, it is possible to implement a low-power technique without lowering QoS only when
frequency is appropriately controlled. In this paper, frames per second (FPS) is selected as
the QoS to confirm the effect of the proposed low-power technique on QoS.

In this paper, we propose a DVFS technique that calculates the actual power consump-
tion of CPU and GPU at execution time using a model, predicts the phase based on PMC
measurement, and optimizes QoS and power savings based on this. The technique pro-
posed in this paper specifically divides the operational states of CPU and GPU use, which
allows for more delicate and efficient control of the processor, and considering power con-
sumption in runtime, it is considered to achieve more effective power savings than DVFS,
which simply sees and controls utilization. The proposed technique was implemented at
the Linux kernel, sysfs file system, Android framework, and native application level of
Android-based smartphones, and extensive experiments with multiple 3D game bench-
mark applications were fulfilled to verify how much the proposed technique improved in
terms of power savings and FPS compared to other techniques.

The remainder of this paper is organized as follows. Section 2 describes the interactive
governor that is basically installed in Android smartphones. In addition, the DVFS method

Electronics 2022, 11, 2480 3 of 19

is described in which the interactive governor reduces power consumption by changing the
voltage and frequency of the CPU and GPU. In addition, existing low-power techniques
considering QoS and power savings are introduced for Android mobile devices. Section 3
mentions research motivation and contribution points through consideration of phase-
based methods for existing utilization-based methods. Section 4 describes the proposed
phase-based CPU and GPU integrated low-power technique. Section 5 implements the pro-
posed low-power technique on smartphones and presents experimental results compared
with interactive governors and existing studies. Finally, Section 6 concludes the paper after
describing the conclusions and future research.

2. Background and Related Work
2.1. DVFS Techniques on Smartphones

Modern processors are generally designed to be operable for multiple frequencies.
The amount of work that the CPU can process changes according to the frequency, and as
the CPU frequency increases, the CPU’s daily processing speed increases, so the amount of
work that can be processed increases. GPU frequency also controls the speed of operation
of the GPU.

It is possible to change the utilization of the processor by changing its frequency.
Increasing the frequency of the processor decreases the utilization of the processor, whereas
decreasing the frequency of the processor increases the utilization of the processor. How-
ever, for the above relationship to be established, the task of the processor must be kept
constant. Additionally, if the frequency is already at its maximum or minimum, it cannot be
raised or lowered further. The frequency governor controls frequency so that the processor
maintains proper utilization. Frequency governors provided by Linux-based Android
operating systems include performance, powersave, and interactive. Performance sets the
processor frequency to the highest, whereas powersave sets the processor frequency to
the lowest. Unlike these two governments, which perform simple operations, interactive
changes frequencies rapidly with the utilization of the processor. A short speaking, inter-
active governor sets the target utilization of the processor, increasing the frequency if the
current utilization is greater than the target utilization and decreasing the frequency if the
target utilization is less than the target utilization.

The interactive governor uses a DVFS technique that adjusts the frequency according
to the load of the processor. In Android-based smartphones, frequency and voltage have a
fixed number of pairs, and when frequency is changed, voltage is implemented to change
accordingly. The frequency is changed according to the set conditions to control the power
consumption of the processor. If the frequency of the processor is lowered unconditionally,
the power consumption of the smartphone can be absolutely reduced, but if the frequency
of the processor is lowered, the performance decreases as well, so the quality of work in
progress on the smartphone cannot be guaranteed. However, the interactive governor uses
a simple DVFS technique based on utilization, so it does not closely address the trade-off
that exists between power consumption reduction and performance improvement.

In recent mobile systems, the DVFS of the CPU and GPU is controlled by a DVFS
manager operating independently. On the Samsung Galaxy S Series, CPU DVFS admin-
istrators operate as part of heterogeneous multi-processing (HMP). HMP is a model that
allows all physical cores to operate simultaneously. It is the most powerful usage model
of the LITTLE architecture. HMP is a standard load scheduler, with high-priority threads
assigned to the big core and low-priority threads assigned to the little core. However, the
HMP does not predict the energy model (EM) of the CPU.

Meanwhile, in the mobile system, the GPU DVFS manager determines the next fre-
quency based on the previous usage rate. GPUs generally have two operating states: Active
and Sleep. Active is the GPU executing the command and Sleep is idle. Like the CPU,
the utilization rate is calculated as the ratio of the elapsed time of the previous calculation
to the time the GPU remains active. DVFS governor algorithms vary from manufacturer

Electronics 2022, 11, 2480 4 of 19

to manufacturer, but in general, if the usage rate is greater than the rising threshold, the
frequency increases and decreases if it is lower than the falling threshold.

2.2. Related Work

Low-power studies using DVFS for conventional Android smartphones have been
conducted for each component of CPUs, GPUs, and displays that account for a large
percentage of power in smartphones [8–12], and most smartphone low-power studies show
the use of FPS as QoS to express performance quality [7–13]. Unlike the studies conducted
for each component, CoCAP [13] and HiCAP [7] are low-power studies that integrate and
manage CPUs and GPUs for mobile devices.

HiCAP is a study that expanded and improved CoCAP and is a low-power technique
study that considers utilization, which is the usage of CPUs and GPUs. HiCAP designs
CPU and GPU integration government and manages CPU and GPU frequencies together,
not independently. First, in this technique, the normalized cost considering the CPU and
GPU frequency is calculated as in Equation (1).

Normalized Cost =
CurrUtilizationCurrFrequency

MaxUtilization MaxFrequency
(1)

Normalized cost is a value for classifying workloads and is classified into four cate-
gories, CPU/GPU-bound, CPU-bound, GPU-bound, and CPU/GPU-idle, depending on
the normalized cost value of each CPU and GPU. However, since the processor processes
various tasks while the workload is being performed, various operating states are shown.
Just because the processor utilization remains constant does not guarantee that it is contin-
uing to process the same task. Workload classification using HiCAP’s normalized cost is
insufficient to accurately determine the operation of CPUs and GPUs dynamically.

HiCAP does not have an algorithm to directly select a frequency and uses an existing
frequency governor, but uses a method to control the max frequency. The max frequency is
changed according to the cost in real time using the cost-specific max frequency Look-Up-
Table (LUT) prepared by CoCAP in another study by the same author. HiCAP changes the
max frequency according to workload classified according to normalized cost. Workloads
with a high proportion of CPU use control a CPU frequency, and workloads with a high
proportion of GPU use control a GPU frequency.

3. Motivational Studies

In this paper, phases are divided according to the use of internal resources (for phase
expansion, refer to Section 4). Next, it was confirmed that the result of measuring the
change in power consumption and FPS by phase showed a different pattern in the change
rate of power consumption and FPS depending on the phase. Tables 1 and 2 are tables
showing power consumption and FPS change rates according to CPU and GPU phase,
respectively. In the case of the CPU phase, the power consumption changed a lot for phases
1, 2, and 3, and the power consumption changed little for phases 4 and 5. The FPS changed
a lot during CPU phase 1, and the remaining CPU phase changed small. The higher the
CPU phase, the smaller the memory access ratio, and accordingly, phase 1, which has the
largest proportion of CPU operations, has a large power consumption and FPS change rate.
In the case of GPU phase, there was little change in FPS when GPU phase was 1 and 4, and
the change in FPS was large when GPU phase was 2 and 3. This is the result of GPU phases
2 and 3 being phase related to the shader core that renders graphics and tilers that combine
frames, respectively.

As a result, if the DVFS governor of the CPU/GPU considers the importance of
frequency scaling according to the CPU/GPU phase, it can be expected to bring about an
efficient change in power consumption and FPS. For example, when the CPU phase is 4 or 5,
changing the CPU frequency does not significantly change the CPU power consumption, so
high performance can be achieved by increasing the CPU frequency. Similarly, in the case
of GPUs, changing the GPU frequency when the GPU phase is 1 or 4 does not significantly

Electronics 2022, 11, 2480 5 of 19

change the FPS, so the GPU frequency can be lowered to benefit from low GPU power
consumption. That is, depending on the workload being executed, the phase of each of
the various CPUs and GPUs may be viewed, and the DVFS corresponding thereto may
be applied.

Table 1. Change rate of power consumption and FPS according to CPU phase when the CPU
frequency is changed.

CPU Phase Power Consumption (%) FPS (%)

1 −15~22 −4~7
2 −5~5 −2~2
3 −4~5 −1~1
4 −1~1 −1~1
5 −1~1 −1~1

Table 2. Change rate of power consumption and FPS according to GPU phase when the GPU
frequency is changed.

GPU Phase Power Consumption (%) FPS (%)

1 32~−14 0~−1
2 16~−20 2~−8
3 16~−16 2~−9
4 16~−15 1~−1

Using such observations, we compared the performance of an interactive governor on
the Galaxy S7 that uses utilization-based DVFS techniques with a simple DVFS algorithm
based on CPU/GPU phase. Figure 1 is a graph comparing the power consumption and FPS
of the original interactive governor based on the utilization- and phase-based interactive
governor. Tables 1 and 2 show the change rate of power consumption and FPS according to
phase when the frequency of CPU and GPU is changed. CPU and GPU frequencies were
changed from 520 MHz to 1768 MHz and from 546 MHz to 650 MHz, respectively. Addi-
tionally, the CPU and GPU frequency standards for calculating the change rate of power
consumption and FPS are 1144 MHz and 600 MHz, respectively. Based on Tables 1 and 2,
the phase-based governor makes the interactive governor raise the CPU frequency by one
level when the CPU phase is 4 or 5 and lower the GPU frequency by one level when the
GPU phase is 1 or 4. As a result, as shown in Figure 1, the phase-based power consumption
is lower and the FPS is higher than that of the interactive, showing more effective DVFS
governor performance.

On the other hand, we investigated the effect on power saving and FPS according
to pattern classification by phase over normalized cost used in HiCAP. To this end, a
method of calculating and using HiCAP’s CPU/GPU normalized cost instead of phase in
the phase-based interactive governor used earlier was applied. The normalized cost was
calculated by Equation (1), and 15 workloads were classified into 4 categories according to
the boundness as shown in Figure 2 using the normalized cost. For these 15 workloads,
the CPU/GPU frequency was changed to measure the power consumption and FPS for
the workload, creating a table of power consumption and FPS change rates. As shown in
Table 3, the experimental results show that when the workload is classified based on phase
rather than normalized cost, the overall energy savings and small FPS reduction of 2% are
based on the large energy savings seen in the GPU. In other words, it can be seen that while
reducing the overall power savings of smartphones by 8.9%, the effect on performance is
not significant.

Electronics 2022, 11, 2480 6 of 19

Electronics 2022, 11, x FOR PEER REVIEW 6 of 20

(a)

(b)

Figure 1. Comparisons of (a) power consumption and (b) FPS for the original interactive governor

and phase-based interactive governor.

On the other hand, we investigated the effect on power saving and FPS according to

pattern classification by phase over normalized cost used in HiCAP. To this end, a method

of calculating and using HiCAP’s CPU/GPU normalized cost instead of phase in the

phase-based interactive governor used earlier was applied. The normalized cost was cal-

culated by Equation (1), and 15 workloads were classified into 4 categories according to

the boundness as shown in Figure 2 using the normalized cost. For these 15 workloads,

the CPU/GPU frequency was changed to measure the power consumption and FPS for

the workload, creating a table of power consumption and FPS change rates. As shown in

Table 3, the experimental results show that when the workload is classified based on

phase rather than normalized cost, the overall energy savings and small FPS reduction of

2% are based on the large energy savings seen in the GPU. In other words, it can be seen

that while reducing the overall power savings of smartphones by 8.9%, the effect on per-

formance is not significant.

Figure 1. Comparisons of (a) power consumption and (b) FPS for the original interactive governor
and phase-based interactive governor.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 20

Figure 2. Workloads classified by normalized cost in HiCAP.

Table 3. Comparisons of power saving and FPS of interactive governors classifying workloads by

phase over normalized cost.

Energy

FPS
CPU Little CPU Big GPU Display Total

Saving Rate 0% 2.2% 14.4% 0% 8.9% −2%

This paper proposes a new phase-based workload classification technique to im-

prove the classification of existing utilization-based or utilization-like workload patterns

for Android mobile devices based on these experimental results. Furthermore, we intend

to develop a DVFS technique that is more power- and performance-efficient than the

DVFS technique of the existing interactive governor by performing the workload classifi-

cation delicately and accurately according to the internal resource use of the CPU/GPU.

The main contributions of this paper are summarized as follows.

 The proposed phase prediction and management technique makes the workload

classification more accurate and provides the basis for system-specific holistic low-

power techniques by simultaneous and in-depth consideration of CPU and GPU re-

source usage when performing workloads.

 By integrating CPU/GPU based on phase, it is possible to design a more power- and

performance-efficient DVFS technique than the existing DVFS technique of Linux in-

teractive governor by delicately and accurately performing workload classification

according to the internal resource state.

 The proposed phase-based DVFS technique is very practical because it is easy to im-

plement the technique at the governor level in the operating system for mobile de-

vices equipped with Android platforms, including Android smartphones, and it is

highly scalable.

4. Phase-Based CPU and GPU Low Power Approach

4.1. Phase Classification

In this paper, “phase” refers to the detailed resource operation states of the CPU and

GPU. CPU phase is classified by how often the CPU uses memory and by the memory

devices that the CPU mainly uses. Figure 3 shows the phase of the CPU classified into five

categories. Two determination criteria are used to decide the phase in Figure 3. First, it is

a cache miss ratio or its corresponding alternative value. If the cache miss ratio is high, the

CPU uses more dynamic random access memory (DRAM) than the cache in the time in-

terval, so the CPU phase at that time is determined as a DRAM-related phase. Conversely,

if the cache miss ratio is low, the CPU uses more cache than DRAM in the corresponding

time interval, so the CPU phase at that time is determined as a phase related to the cache.

Figure 2. Workloads classified by normalized cost in HiCAP.

Table 3. Comparisons of power saving and FPS of interactive governors classifying workloads by
phase over normalized cost.

Energy
FPS

CPU Little CPU Big GPU Display Total

Saving Rate 0% 2.2% 14.4% 0% 8.9% −2%

This paper proposes a new phase-based workload classification technique to improve
the classification of existing utilization-based or utilization-like workload patterns for
Android mobile devices based on these experimental results. Furthermore, we intend to
develop a DVFS technique that is more power- and performance-efficient than the DVFS
technique of the existing interactive governor by performing the workload classification

Electronics 2022, 11, 2480 7 of 19

delicately and accurately according to the internal resource use of the CPU/GPU. The main
contributions of this paper are summarized as follows.

• The proposed phase prediction and management technique makes the workload
classification more accurate and provides the basis for system-specific holistic low-
power techniques by simultaneous and in-depth consideration of CPU and GPU
resource usage when performing workloads.

• By integrating CPU/GPU based on phase, it is possible to design a more power- and
performance-efficient DVFS technique than the existing DVFS technique of Linux
interactive governor by delicately and accurately performing workload classification
according to the internal resource state.

• The proposed phase-based DVFS technique is very practical because it is easy to
implement the technique at the governor level in the operating system for mobile
devices equipped with Android platforms, including Android smartphones, and it is
highly scalable.

4. Phase-Based CPU and GPU Low Power Approach
4.1. Phase Classification

In this paper, “phase” refers to the detailed resource operation states of the CPU and
GPU. CPU phase is classified by how often the CPU uses memory and by the memory
devices that the CPU mainly uses. Figure 3 shows the phase of the CPU classified into
five categories. Two determination criteria are used to decide the phase in Figure 3. First,
it is a cache miss ratio or its corresponding alternative value. If the cache miss ratio is
high, the CPU uses more dynamic random access memory (DRAM) than the cache in
the time interval, so the CPU phase at that time is determined as a DRAM-related phase.
Conversely, if the cache miss ratio is low, the CPU uses more cache than DRAM in the
corresponding time interval, so the CPU phase at that time is determined as a phase related
to the cache. Second, it is an LDST instruction ratio or an alternative value corresponding
thereto. Since the LDST instruction ratio represents the ratio of instructions related to the
memory operation of the CPU among all instructions, the phase of the CPU is determined
by the memory system-related phase (DRAM, cache) or CPU phase as the LDST instruction
ratio increases and decreases.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 20

Second, it is an LDST instruction ratio or an alternative value corresponding thereto. Since

the LDST instruction ratio represents the ratio of instructions related to the memory op-

eration of the CPU among all instructions, the phase of the CPU is determined by the

memory system-related phase (DRAM, cache) or CPU phase as the LDST instruction ratio

increases and decreases.

Figure 3. Visualization of CPU phase classification [5].

In addition, the utilization value of each detailed resource, which is a unit, is used as

a reference value used to determine the phase of the GPU. Table 4 shows a method of

calculating the utilization of each unit of a GPU. These four values are used as a phase

determination criterion used in the phase determination method. Meanwhile, the utiliza-

tion value of the memory unit is different in units of numbers from other utilization val-

ues. Therefore, all values are used after a standardization process in which the average is

subtracted and divided into standard deviations. In this way, a method of determining a

phase using the standardized utilization value of the unit is a maximum-based method.

In the present method, a phase corresponding to a unit having a maximum value among

four standardized utilization values is selected as a phase of the GPU. Therefore, the phase

of the GPU is determined in the same manner as in Equation (2). In Equation (2), FFU

means a fixed function unit.

�ℎ������ = ��� (�������, ���������, �����������, ����������) (2)

Table 4. GPU phase decision criteria.

Criteria (Unit Utilization) Calculation of Unit Utilization

FFU Utilization
(FRAG_ACTIVE + COMPUTE_ACTIV −

TRIPIPE_ACTIVE)/GPU_ACTIVE

Tiler Utilization TI_ACTIVE/GPU_ACTIVE

Tri-pipe Utilization TRIPIPE_ACTIVE/GPU_ACTIVE

Memory Utilization L2_ANY_LOOKUP/GPU_ACTIVE

4.2. Data Collection for Proposed Method

Unlike the existing smartphone low-power techniques, this paper proposes a tech-

nique that obtains power savings by considering the power consumption of smartphones

in execution time. For execution time consumption prediction, the proposed low-power

technique uses a power model [5] that predicts CPU and GPU power consumption in real

time and a display power model [14] that predicts power consumption using display pixel

size. The CPU and GPU power models quickly calculate power consumption within 50

ms through calculations using factors created through reinforcement learning through ge-

netic algorithms. The smartphone CPU and GPU power model is a phase-based power

model that divides detailed operating states of the CPU and GPU into several cases and

predicts power consumption with an independent power model according to the phase.

Figure 3. Visualization of CPU phase classification [5].

In addition, the utilization value of each detailed resource, which is a unit, is used
as a reference value used to determine the phase of the GPU. Table 4 shows a method of
calculating the utilization of each unit of a GPU. These four values are used as a phase
determination criterion used in the phase determination method. Meanwhile, the utilization
value of the memory unit is different in units of numbers from other utilization values.
Therefore, all values are used after a standardization process in which the average is
subtracted and divided into standard deviations. In this way, a method of determining a
phase using the standardized utilization value of the unit is a maximum-based method. In
the present method, a phase corresponding to a unit having a maximum value among four

Electronics 2022, 11, 2480 8 of 19

standardized utilization values is selected as a phase of the GPU. Therefore, the phase of
the GPU is determined in the same manner as in Equation (2). In Equation (2), FFU means
a fixed function unit.

PhaseGPU = max
(
utilFFU , utilTiler, utilTripipe, utilMemory

)
(2)

Table 4. GPU phase decision criteria.

Criteria (Unit Utilization) Calculation of Unit Utilization

FFU Utilization (FRAG_ACTIVE + COMPUTE_ACTIV −
TRIPIPE_ACTIVE)/GPU_ACTIVE

Tiler Utilization TI_ACTIVE/GPU_ACTIVE
Tri-pipe Utilization TRIPIPE_ACTIVE/GPU_ACTIVE
Memory Utilization L2_ANY_LOOKUP/GPU_ACTIVE

4.2. Data Collection for Proposed Method

Unlike the existing smartphone low-power techniques, this paper proposes a technique
that obtains power savings by considering the power consumption of smartphones in
execution time. For execution time consumption prediction, the proposed low-power
technique uses a power model [5] that predicts CPU and GPU power consumption in real
time and a display power model [14] that predicts power consumption using display pixel
size. The CPU and GPU power models quickly calculate power consumption within 50 ms
through calculations using factors created through reinforcement learning through genetic
algorithms. The smartphone CPU and GPU power model is a phase-based power model
that divides detailed operating states of the CPU and GPU into several cases and predicts
power consumption with an independent power model according to the phase. The display
power model may quickly calculate display power by using a LUT. Both power models
repeatedly used Monsoon Power Monitor [15] for modeling.

The CPU and GPU power models were designed for the Samsung Exynos M1 and
ARM Cortex A-53 CPU and the Mali T880 GPU, which have four little and four big cores
and eight cores, respectively. Additionally, the CPU power model used one little core and
one big core in the CPU. The GPU power model used whole cores in the GPU. The power
consumption of each of the eight CPU cores may be calculated by using the point that the
power consumption of each CPU core may be independently calculated.

The power model is also designed to fix CPU big core and GPU frequency at 2184 MHz
and 600 MHz, respectively. The frequency is frequently changed because the low-power
technique targeted in this paper reduces the power consumption of smartphones by chang-
ing the frequency to the DVFS technique. Therefore, a process of correcting the predicted
power consumption of the power model according to the changing frequency is required.
Equation (3) is used for the predicted power consumption correction according to the
frequency change.

P = aCV2 f (3)

As shown in [16] and [17], the DVFS technique used in this paper is one of the widely
known software-level low-power techniques. In Equation (3), P is the power consumption
of the CPU, a is the switching activity, C is the capacitance, V is the voltage applied to the
CPU, and f is the frequency applied to the CPU. Because the proposed DVFS method uses
the average of power consumption calculated several times for the same workload and the
same workload performs a fixed task in the processor, a can be considered as a constant
value. Additionally, C can be regarded as a constant value because the hardware CPU and
GPU are fixed. These are because circuits and applications are fixed in the aspect of the
DVFS technique, and the power is related to the square of voltage multiplied by frequency
mainly. Therefore, if the voltage and frequency set in the power model are Vold and fold,

Electronics 2022, 11, 2480 9 of 19

respectively, and the changed voltage and frequency are Vn and fn, respectively, the power
consumption Pold predicted by the power model is calculated using Equation (4).

Pn = Pold
Vn fn

Vold fold
(4)

The power consumption of the GPU is also corrected in the same method as in the
CPU power consumption correction Equation (4). CPU and GPU have 21 and 5 variable
frequencies, respectively, and the frequency is paired with a voltage determined for each
frequency. Therefore, whenever calibrated power consumptions of the CPU and GPU were
calculated, the power consumption of each processor was calculated using the LUT without
using Equation (4). The power consumption correction of these CPUs and GPUs was used
in all power consumption calculations in the low-power technique proposed in this paper.

In addition to power consumption, we collect various data from CPUs and GPUs.
The utilization of the CPU and the FPS of the smartphone display are collected at 50 ms
intervals. It was observed that the reason for collecting at intervals of 50 ms was that the
CPU/GPU’s consumption power prediction and data collection process had overhead, so
the calculation results were not guaranteed at intervals below 50 ms. Therefore, a minimum
period of 50 ms, which can show real-time power consumption while ensuring the accuracy
of data such as CPU/GPU predictive power consumption and utilization and FPS, was set
as a measurement and collection interval.

The processor utilization used the load value calculated by the interactive governor of
the Linux kernel. It is the same calculation as utilization, with the total execution time of
the processor minus the time spent in the idle state.

The FPS of the display was calculated using the Android SurfaceFlinger. SurfaceFlinger
is responsible for allowing smartphones to synthesize and output screens created by users’
processes or applications to be displayed on the display screen. The SurfaceFlinger manages
colors, screen locations, and display order, and works with the frame buffer so that final
images created with the frame buffer driver present in the Linux kernel can be output to
the screen via the frame buffer driver. The HWComposer in Figure 4 counts the number
of frames generated in one variable each time the final image synthesis is completed. By
dividing the counted number of frames by the time taken, the FPS may be calculated.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 20

by users’ processes or applications to be displayed on the display screen. The Surface-

Flinger manages colors, screen locations, and display order, and works with the frame

buffer so that final images created with the frame buffer driver present in the Linux kernel

can be output to the screen via the frame buffer driver. The HWComposer in Figure 4

counts the number of frames generated in one variable each time the final image synthesis

is completed. By dividing the counted number of frames by the time taken, the FPS may

be calculated.

Figure 4. Process of composing and displaying an image by SurfaceFlinger.

4.3. Proposed Method

Figure 5 shows the overall process of the proposed low power management. Our

proposed DVFS method proceeds as follows. First, check the CPU utilization to see if the

CPU frequency and GPU frequency are changing. Second, check the current phase of the

CPU and GPU and predict the next phase. Third, predict the power consumption of the

next phase according to the predicted phase. Finally, select the optimal frequency of the

CPU and the GPU according to the predicted power consumption. Finally, repeat the

above process until the workload is over. Here, the workload is a mobile game applica-

tion.

Figure 5. Overall flow of the proposed DVFS method.

Figure 4. Process of composing and displaying an image by SurfaceFlinger.

4.3. Proposed Method

Figure 5 shows the overall process of the proposed low power management. Our
proposed DVFS method proceeds as follows. First, check the CPU utilization to see if the
CPU frequency and GPU frequency are changing. Second, check the current phase of the
CPU and GPU and predict the next phase. Third, predict the power consumption of the
next phase according to the predicted phase. Finally, select the optimal frequency of the
CPU and the GPU according to the predicted power consumption. Finally, repeat the above
process until the workload is over. Here, the workload is a mobile game application.

Electronics 2022, 11, 2480 10 of 19

Electronics 2022, 11, x FOR PEER REVIEW 10 of 20

by users’ processes or applications to be displayed on the display screen. The Surface-

Flinger manages colors, screen locations, and display order, and works with the frame

buffer so that final images created with the frame buffer driver present in the Linux kernel

can be output to the screen via the frame buffer driver. The HWComposer in Figure 4

counts the number of frames generated in one variable each time the final image synthesis

is completed. By dividing the counted number of frames by the time taken, the FPS may

be calculated.

Figure 4. Process of composing and displaying an image by SurfaceFlinger.

4.3. Proposed Method

Figure 5 shows the overall process of the proposed low power management. Our

proposed DVFS method proceeds as follows. First, check the CPU utilization to see if the

CPU frequency and GPU frequency are changing. Second, check the current phase of the

CPU and GPU and predict the next phase. Third, predict the power consumption of the

next phase according to the predicted phase. Finally, select the optimal frequency of the

CPU and the GPU according to the predicted power consumption. Finally, repeat the

above process until the workload is over. Here, the workload is a mobile game applica-

tion.

Figure 5. Overall flow of the proposed DVFS method. Figure 5. Overall flow of the proposed DVFS method.

Figure 6 shows the part that determines whether to raise, fix, or lower frequency
according to CPU utilization, which is the first step of the proposed low-power technique.
That is, the frequency of the processor should be changed according to the CPU utilization.
There are many cases where the CPU and GPU of a mobile device used in this paper are
21 and 6, respectively, and because of running a workload, the frequency in all cases is
not used. Table 5 shows the share by frequency of CPU big core confirmed by running
15 workloads on the basic CPU governor of the Galaxy S7. Of the 21 frequencies, only
5 frequencies were used, not 1664 MHz or higher. In addition, Table 6 is the share of each
GPU frequency confirmed by running 15 workloads on the basic GPU governor of the
Galaxy S7. As a result of the measurement, it was confirmed that only 650 MHz, 600 MHz,
and 546 MHz were used among the six GPU frequencies. Therefore, the proposed low-
power technique uses CPU big core frequency between 1560 MHz and 520 MHz, and GPU
frequency between 650 MHz, 600 MHz, and 546 MHz.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 20

Figure 6 shows the part that determines whether to raise, fix, or lower frequency ac-

cording to CPU utilization, which is the first step of the proposed low-power technique.

That is, the frequency of the processor should be changed according to the CPU utiliza-

tion. There are many cases where the CPU and GPU of a mobile device used in this paper

are 21 and 6, respectively, and because of running a workload, the frequency in all cases

is not used. Table 5 shows the share by frequency of CPU big core confirmed by running

15 workloads on the basic CPU governor of the Galaxy S7. Of the 21 frequencies, only 5

frequencies were used, not 1664 MHz or higher. In addition, Table 6 is the share of each

GPU frequency confirmed by running 15 workloads on the basic GPU governor of the

Galaxy S7. As a result of the measurement, it was confirmed that only 650 MHz, 600 MHz,

and 546 MHz were used among the six GPU frequencies. Therefore, the proposed low-

power technique uses CPU big core frequency between 1560 MHz and 520 MHz, and GPU

frequency between 650 MHz, 600 MHz, and 546 MHz.

Figure 6. The process of CPU utilization monitoring.

Table 5. CPU big core frequency share.

CPU Big Core Frequency (MHz) Occupancy Time

1 1560 70%

2 1456 11%

3 1352 8%

4 1248 6%

5 1144 5%

Table 6. GPU frequency share.

GPU Frequency (MHz) Occupancy Time

1 650 70%

2 600 11%

3 546 8%

Now, when we start the low-power technique using only the given frequency, we

first check the CPU utilization of the smartphone. If the CPU utilization is 86% or more,

we increase the CPU frequency by one step. If the CPU utilization is high, it is lowered by

increasing the frequency because CPU throughput is high. When the CPU utilization

reaches 100%, it increases the CPU frequency because it can cause tasks that CPU cannot

handle, and performance can be degraded. In addition, the optimal threshold for the CPU

Figure 6. The process of CPU utilization monitoring.

Electronics 2022, 11, 2480 11 of 19

Table 5. CPU big core frequency share.

CPU Big Core Frequency (MHz) Occupancy Time

1 1560 70%
2 1456 11%
3 1352 8%
4 1248 6%
5 1144 5%

Table 6. GPU frequency share.

GPU Frequency (MHz) Occupancy Time

1 650 70%
2 600 11%
3 546 8%

Now, when we start the low-power technique using only the given frequency, we
first check the CPU utilization of the smartphone. If the CPU utilization is 86% or more,
we increase the CPU frequency by one step. If the CPU utilization is high, it is lowered
by increasing the frequency because CPU throughput is high. When the CPU utilization
reaches 100%, it increases the CPU frequency because it can cause tasks that CPU cannot
handle, and performance can be degraded. In addition, the optimal threshold for the CPU
utilization is found so that the interactive governor, the default CPU frequency governor,
increases the CPU frequency when the CPU utilization is over 86%. When the CPU
frequency is more than 76% and less than 86%, it maintains the CPU frequency. This is to
prevent a rapid repetition of the CPU frequency changes in the saturation case by creating
a case where the CPU is fully used, and the CPU frequency is maintained.

If the CPU utilization is 76% or less, the CPU frequency is selected using the power
consumption and FPS variation according to the CPU/GPU frequencies for each phase.
The next phase should be predicted first. The process of predicting the next phase of the
processor is as follows. First, we load a record of the last 7 phases of the processor. Each of
these phases has a weight; the more recent, the greater the weight. For example, the phase
from the nearest past has a weight of 7, and the subsequent phases have weights of 6, 5, 4,
3, 2, and 1, respectively, in order of closest to the present. Then, the same phases’ weights
are added and we select the phase with the highest weight as the prediction phase.

The aforementioned two CPU utilization thresholds are set according to the interactive
governor [6], which changes CPU frequency according to CPU utilization. The interactive
governor set the default values of the two thresholds to 90% and 80%. Through the
experiment, we found the optimal CPU utilization thresholds with better performance
than the interactive governor’s default values. Figure 7 shows the performance score of
the proposed low-power technique when experimenting with changing the upper CPU
utilization threshold from 90% to 70%. The lower CPU utilization threshold is 10% below
the upper one. The performance score is the normalized power consumption reduction
rate for the normalized FPS reduction rate. Therefore, the performance score increases
when the normalized power consumption reduction rate is high and the normalized FPS
reduction rate is low. Additionally, the higher performance score, the better the upper CPU
utilization threshold. Therefore, when the upper CPU utilization threshold is 86%, the
proposed low-power technique showed the best performance.

Electronics 2022, 11, 2480 12 of 19

Electronics 2022, 11, x FOR PEER REVIEW 12 of 20

utilization is found so that the interactive governor, the default CPU frequency governor,

increases the CPU frequency when the CPU utilization is over 86%. When the CPU fre-

quency is more than 76% and less than 86%, it maintains the CPU frequency. This is to

prevent a rapid repetition of the CPU frequency changes in the saturation case by creating

a case where the CPU is fully used, and the CPU frequency is maintained.

If the CPU utilization is 76% or less, the CPU frequency is selected using the power

consumption and FPS variation according to the CPU/GPU frequencies for each phase.

The next phase should be predicted first. The process of predicting the next phase of the

processor is as follows. First, we load a record of the last 7 phases of the processor. Each

of these phases has a weight; the more recent, the greater the weight. For example, the

phase from the nearest past has a weight of 7, and the subsequent phases have weights of

6, 5, 4, 3, 2, and 1, respectively, in order of closest to the present. Then, the same phases’

weights are added and we select the phase with the highest weight as the prediction

phase.

The aforementioned two CPU utilization thresholds are set according to the interac-

tive governor [6], which changes CPU frequency according to CPU utilization. The inter-

active governor set the default values of the two thresholds to 90% and 80%. Through the

experiment, we found the optimal CPU utilization thresholds with better performance

than the interactive governor’s default values. Figure 7 shows the performance score of

the proposed low-power technique when experimenting with changing the upper CPU

utilization threshold from 90% to 70%. The lower CPU utilization threshold is 10% below

the upper one. The performance score is the normalized power consumption reduction

rate for the normalized FPS reduction rate. Therefore, the performance score increases

when the normalized power consumption reduction rate is high and the normalized FPS

reduction rate is low. Additionally, the higher performance score, the better the upper

CPU utilization threshold. Therefore, when the upper CPU utilization threshold is 86%,

the proposed low-power technique showed the best performance.

Figure 7. Performance score according to each upper CPU utilization threshold.

If the phase of the next section is predicted, the power consumption of the current

section is now calculated. Only the two power consumptions of the CPU big core and

GPU are considered. Since the frequency of the CPU little core is not controlled and the

display power is not affected by the low-power technique proposed in this paper, the CPU

little core and the power of the display are calculated.

If the power consumption in the current section was calculated and the phase in the

next section was predicted, the power consumption according to CPU/GPU frequency

Figure 7. Performance score according to each upper CPU utilization threshold.

If the phase of the next section is predicted, the power consumption of the current
section is now calculated. Only the two power consumptions of the CPU big core and GPU
are considered. Since the frequency of the CPU little core is not controlled and the display
power is not affected by the low-power technique proposed in this paper, the CPU little
core and the power of the display are calculated.

If the power consumption in the current section was calculated and the phase in the
next section was predicted, the power consumption according to CPU/GPU frequency
should now be predicted in the predicted phase. Figure 8 shows the flow of this process.
Before that, one should check whether the CPU phase and GPU phase are phases with large
power consumption and FPS changes according to the CPU/GPU frequency mentioned
above. Here, if the CPU phase or GPU phase is a phase with a small amount of power
consumption and FPS change, the frequency of the component is selected as the lowest
frequency, and the frequency selected in the next process is ignored. CPU frequency and
GPU frequency are 520 MHz and 546 MHz, respectively, the lowest frequencies.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 20

should now be predicted in the predicted phase. Figure 8 shows the flow of this process.

Before that, one should check whether the CPU phase and GPU phase are phases with

large power consumption and FPS changes according to the CPU/GPU frequency men-

tioned above. Here, if the CPU phase or GPU phase is a phase with a small amount of

power consumption and FPS change, the frequency of the component is selected as the

lowest frequency, and the frequency selected in the next process is ignored. CPU fre-

quency and GPU frequency are 520 MHz and 546 MHz, respectively, the lowest frequen-

cies.

Figure 8. The process of selection of next frequency.

If both CPU and GPU frequencies are selected, the process finishes selecting fre-

quency, but otherwise proceeding to the next step. It goes to the section corresponding to

the predicted phase in the power consumption and FPS variation table. Next, it finds the

location corresponding to the current CPU/GPU frequencies and explores the eight near-

est CPUs/GPU frequencies around the location. First, since the current CPU/GPU frequen-

cies may not be the reference frequencies, the process increases or decreases to the same

value as the eight surrounding values so that the current frequency consumption power

and FPS change amount are 0%. The reference CPU frequency is 1144 MHz, which is the

middle value among the CPU frequency range, and the reference GPU frequency is 600

MHz, the middle value among the GPU frequency range.

In addition, the current power consumption is multiplied by the amount of change

in the surrounding eight, and the predicted power consumption change is calculated

when the CPU/GPU frequencies are changed. For eight variable frequencies, the process

adds the predicted power consumption of the CPU and GPU, and then selects the fre-

quency with a little FPS change rate within 5% and the lowest predicted power consump-

tion sum as the frequency of the next interval. The reason why the maximal FPS degrada-

tion is set at 5% is that, for workloads over 15 fps, small frame rate differences are not

considered important by humans according to [18]. Algorithm 1 shows an algorithm for

finding a frequency that minimizes power consumption. We select a frequency by repeat-

ing the above process every section until the workload is over.

Algorithm 1 Selecting CPU/GPU Frequency

Input: CPU/GPU Frequency, CPU/GPU Phase 1 For (i = −1; i <= 1; i++)

Output: Selected CPU/GPU frequency 2 For (j = −1; j <= 1; j++)

���� : Predicted CPU phase 3 Max = 0

����: Predicted GPU phase
4 if (PP(����, ����, ���� + i,

���� + j < Min)

Figure 8. The process of selection of next frequency.

If both CPU and GPU frequencies are selected, the process finishes selecting frequency,
but otherwise proceeding to the next step. It goes to the section corresponding to the
predicted phase in the power consumption and FPS variation table. Next, it finds the
location corresponding to the current CPU/GPU frequencies and explores the eight nearest
CPUs/GPU frequencies around the location. First, since the current CPU/GPU frequencies

Electronics 2022, 11, 2480 13 of 19

may not be the reference frequencies, the process increases or decreases to the same value
as the eight surrounding values so that the current frequency consumption power and FPS
change amount are 0%. The reference CPU frequency is 1144 MHz, which is the middle
value among the CPU frequency range, and the reference GPU frequency is 600 MHz, the
middle value among the GPU frequency range.

In addition, the current power consumption is multiplied by the amount of change in
the surrounding eight, and the predicted power consumption change is calculated when
the CPU/GPU frequencies are changed. For eight variable frequencies, the process adds
the predicted power consumption of the CPU and GPU, and then selects the frequency
with a little FPS change rate within 5% and the lowest predicted power consumption sum
as the frequency of the next interval. The reason why the maximal FPS degradation is set
at 5% is that, for workloads over 15 fps, small frame rate differences are not considered
important by humans according to [18]. Algorithm 1 shows an algorithm for finding a
frequency that minimizes power consumption. We select a frequency by repeating the
above process every section until the workload is over.

Algorithm 1 Selecting CPU/GPU Frequency

Input: CPU/GPU Frequency, CPU/GPU Phase 1 For (i = −1; i <= 1; i++)
Output: Selected CPU/GPU frequency 2 For (j = −1; j <= 1; j++)
PCPU : Predicted CPU phase 3 Max = 0
PGPU : Predicted GPU phase 4 if (PP(PCPU , PGPU , FCPU + i, FGPU + j < Min)
FCPU : Current CPU frequency 5 Min = PP(PCPU , PGPU , FCPU + i, FGPU + j)
FGPU : Current GPU frequency 6 F′CPU = FCPU + i
F + i: i th frequency from F in frequency table 7 F′GPU = FGPU + j
PP(p1, p2, f1, f2): Predicted power consumption with CPU/GPU phase p1, p2
and CPU/GPU frequency f1, f2

8 Return F′CPU , F′GPU

F′CPU : next CPU frequency
F′GPU : next GPU frequency

As a result, the proposed low-power technique uses algorithms that consider the
predicted power consumption when the frequency is changed according to the phase of
the CPU and GPU of the Android smartphone at 50 ms intervals to reduce the device’s
power consumption.

5. Experimental Environment and Results
5.1. Experimental Environment

In this section, CPU- and GPU-integrated low-power techniques are verified through
experiments. Specifically, the low power consumption of the workload was calculated by
implementing a low power technique proposed for the Linux kernel-based Android-based
smartphone, and the basic state without implementing the proposed low power technique
and the smartphone consumption energy when running the workload were compared. In
addition, smartphone consumption energy was compared when applied to the low-power
technique that proposes HiCAP’s CPU/GPU cost, and the remaining battery time of the
smartphone was calculated to verify the smartphone consumption energy.

The overall experimental environment is shown in Figure 9. After collecting the
data required for the low-power technique that runs the workload on the smartphone
and proposes it at regular intervals, CPU/GPU frequency can be selected through the
low-power technique that suggests it with the collected data. In addition, the energy
consumption according to the proposed low-power technique was analyzed and compared
with other techniques.

Electronics 2022, 11, 2480 14 of 19

Electronics 2022, 11, x FOR PEER REVIEW 14 of 20

����: Current CPU frequency
5 Min = PP(����, ����, ����

+ i, ���� + j)

����: Current GPU frequency 6 ����
� = ���� + i

� + i: i th frequency from F in frequency table 7 ����
� = ���� + j

PP(p1, p2, f1, f2): Predicted power consumption with CPU/GPU phase p1, p2

and CPU/GPU frequency f1, f2
8 Return ����

� , ����
�

����
� : next CPU frequency

����
� : next GPU frequency

As a result, the proposed low-power technique uses algorithms that consider the pre-

dicted power consumption when the frequency is changed according to the phase of the

CPU and GPU of the Android smartphone at 50 ms intervals to reduce the device’s power

consumption.

5. Experimental Environment and Results

5.1. Experimental Environment

In this section, CPU- and GPU-integrated low-power techniques are verified through

experiments. Specifically, the low power consumption of the workload was calculated by

implementing a low power technique proposed for the Linux kernel-based Android-

based smartphone, and the basic state without implementing the proposed low power

technique and the smartphone consumption energy when running the workload were

compared. In addition, smartphone consumption energy was compared when applied to

the low-power technique that proposes HiCAP’s CPU/GPU cost, and the remaining bat-

tery time of the smartphone was calculated to verify the smartphone consumption energy.

The overall experimental environment is shown in Figure 9. After collecting the data

required for the low-power technique that runs the workload on the smartphone and pro-

poses it at regular intervals, CPU/GPU frequency can be selected through the low-power

technique that suggests it with the collected data. In addition, the energy consumption

according to the proposed low-power technique was analyzed and compared with other

techniques.

Figure 9. Experimental environment.

The smartphone used in the experiment was a Samsung Galaxy S7. This smartphone

uses an Android operating system based on the Linux kernel. The processor uses Exynos

8 Octa (8890) system-on-chip. The processor is equipped with Samsung Exynos M1 MP4

2.29 GHz + ARM Cortex-A53 MP4 1.59 GHz as CPU and ARM Mali-T880 MP12 650 MHz

as GPU. The CPU is a big cluster of Samsung Exynos M1 in quad-core configuration and

ARM Cortex-A53 in quad-core configuration to form a little cluster in ARM big. It is an

octa-core CPU that uses LITTLE solutions.

Figure 9. Experimental environment.

The smartphone used in the experiment was a Samsung Galaxy S7. This smartphone
uses an Android operating system based on the Linux kernel. The processor uses Exynos
8 Octa (8890) system-on-chip. The processor is equipped with Samsung Exynos M1 MP4
2.29 GHz + ARM Cortex-A53 MP4 1.59 GHz as CPU and ARM Mali-T880 MP12 650 MHz
as GPU. The CPU is a big cluster of Samsung Exynos M1 in quad-core configuration and
ARM Cortex-A53 in quad-core configuration to form a little cluster in ARM big. It is an
octa-core CPU that uses LITTLE solutions.

A total of 15 workloads were used in the experiment, which was installed on the
Samsung Galaxy S7 smartphone in the Google Play Store. The installed workloads are
3DMark [19], Madagascar 3D benchmark [20], Kassja benchmark [21], Renderscript bench-
mark [22], Nena benchmark [23], V1 GPU benchmark [24], Seascape benchmark [25], Base-
mark [26], 3D benchmark [27], Relative benchmark [28], and L-bench [29]. The 3DMark
workload treated the section as five different workloads. In this way, it was used to verify
the performance of the low-power technique, which proposes a total of 15 workloads.
Figure 10 is a system configuration diagram of the proposed low-power technique. It
shows the system in which power consumption, FPS, and various data are calculated
and used.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 20

A total of 15 workloads were used in the experiment, which was installed on the

Samsung Galaxy S7 smartphone in the Google Play Store. The installed workloads are

3DMark [19], Madagascar 3D benchmark [20], Kassja benchmark [21], Renderscript

benchmark [22], Nena benchmark [23], V1 GPU benchmark [24], Seascape benchmark

[25], Basemark [26], 3D benchmark [27], Relative benchmark [28], and L-bench [29]. The

3DMark workload treated the section as five different workloads. In this way, it was used

to verify the performance of the low-power technique, which proposes a total of 15 work-

loads. Figure 10 is a system configuration diagram of the proposed low-power technique.

It shows the system in which power consumption, FPS, and various data are calculated

and used.

Figure 10. Diagram of the proposed system configuration diagram on the Android platform.

The CPU and GPU power consumption calculation starts with a gator driver [30] in

the Linux kernel. The gator driver uses the PMC to measure the number of events per-

formed on the CPU and GPU. There is an operation that multiplies the number of selected

events and factors learned using genetic algorithms, and the real and log operations make

it difficult for Linux kernels to calculate only integers. As such, we made a native app and

calculated CPU and GPU power consumption and sent it to the kernel.

The display power consumption is calculated using the display power model [14]. It

is an operation that uses LUT to multiply both the display pixel size and the selected con-

stant, but it cannot be calculated in the Linux kernel for the same reason as CPU and GPU

power consumption, so it is calculated using the native app and sent to the kernel. In the

SurfaceFlinger, which creates a display frame, the FPS counts frames by one for each

frame completed, calculating the frames counted over a unit time (1 s), and sending them

to the kernel. Power consumption and FPS are sent via sysfs when sent to the kernel. The

sysfs is a virtual file system provided by the Linux kernel that can send information to the

kernel driver in the user space.

In the case of CPU utilization, the CPU load used by the interactive governor pro-

vided by Android was used. The CPU load is the time remaining after subtracting the

time entering the idle state from the execution time for a constant execution time of the

CPU. Therefore, it has a value between 0% and 100%.

The Linux kernel used the EXPORT_SYMBOL command to share data across multi-

ple drivers. All variables and functions were declared so that data could be used within

other drivers. The central DVFS governor was created using the CPU interactive governor.

The frequency update period was set to 50 ms as described above. In order to syn-

chronize with the native app, a variable that can recognize the start of the governor cycle

Figure 10. Diagram of the proposed system configuration diagram on the Android platform.

The CPU and GPU power consumption calculation starts with a gator driver [30] in the
Linux kernel. The gator driver uses the PMC to measure the number of events performed
on the CPU and GPU. There is an operation that multiplies the number of selected events
and factors learned using genetic algorithms, and the real and log operations make it

Electronics 2022, 11, 2480 15 of 19

difficult for Linux kernels to calculate only integers. As such, we made a native app and
calculated CPU and GPU power consumption and sent it to the kernel.

The display power consumption is calculated using the display power model [14].
It is an operation that uses LUT to multiply both the display pixel size and the selected
constant, but it cannot be calculated in the Linux kernel for the same reason as CPU and
GPU power consumption, so it is calculated using the native app and sent to the kernel. In
the SurfaceFlinger, which creates a display frame, the FPS counts frames by one for each
frame completed, calculating the frames counted over a unit time (1 s), and sending them
to the kernel. Power consumption and FPS are sent via sysfs when sent to the kernel. The
sysfs is a virtual file system provided by the Linux kernel that can send information to the
kernel driver in the user space.

In the case of CPU utilization, the CPU load used by the interactive governor provided
by Android was used. The CPU load is the time remaining after subtracting the time
entering the idle state from the execution time for a constant execution time of the CPU.
Therefore, it has a value between 0% and 100%.

The Linux kernel used the EXPORT_SYMBOL command to share data across multiple
drivers. All variables and functions were declared so that data could be used within other
drivers. The central DVFS governor was created using the CPU interactive governor.

The frequency update period was set to 50 ms as described above. In order to synchro-
nize with the native app, a variable that can recognize the start of the governor cycle was
created so that the native app could monitor it. The power calculation speed of the Native
App was less than 50 ms, so data on power could be sent no later than the governor’s
period. All frequency selection processes are performed in the CPU interactive governor,
and the selected CPU frequency can be set to the CPU using the function implemented in
the CPU frequency driver, and the selected GPU frequency can also be set using the GPU
frequency set function implemented by the GPU driver.

To implement the proposed technique, we added a gator driver to enable PMC control
at the level of device drivers in Lineage OS [31], which is an open-source operating system
based on the Android mobile platform. In addition, the proposed DVFS was implemented
by adding a low-power algorithm governor based on the interactive governor. Additionally,
the power calculation that requires real part operation was performed using a native
app. All these processes can be implemented only by adding source code to the Android
operating system and implementing a native app.

5.2. Experimental Results

The proposed low-power technique was compared with the default frequency gov-
ernor of the Samsung Galaxy S7 to confirm the improved performance of the proposed
low-power technique. In addition, the power management advantages were confirmed
through phase classification of the proposed low power technique by comparing HiCAP, a
related study, with the proposed low-power technique. Finally, the power consumption
reduction rate of the proposed low-power technique was verified using the remaining time
of the smartphone battery.

The Samsung Galaxy S7 smartphone used in the experiment has an Android operating
system based on the Linux kernel. The Linux kernel controls the CPU frequency governor
and GPU frequency governor, and the default frequency governor of the Samsung Galaxy
S7 smartphone is the CPU interactive governor and GPU, respectively. In this paper, we
compared the consumption energy of the proposed CPU- and GPU-integrated low-power
techniques with the default frequency governor of the Samsung Galaxy S7 smartphone.
To this end, the default frequency governor and the proposed low-power technique were
carried out with all eight CPU cores online. For each technique, the same workload was
executed and the power consumption of the smartphone from the start to the end was
collected. Power consumption is collected in four types: CPU little core, CPU big core,
GPU, and display.

Electronics 2022, 11, 2480 16 of 19

In order to calculate the energy consumed to execute one workload as power consump-
tion and time consumption, the energy consumption was calculated using Equation (5).

E = ∑ Pntn (5)

In Equation (5), E is the energy consumed when running one workload, Pn is the power
consumed at the time interval in which the power model calculates the power consumed,
and tn is the time interval.

In this paper, we compared the energy consumption when using the default frequency
governor for 15 workloads with the Samsung Galaxy S7 smartphone and when using
the proposed low-power technique. The use of the low-power technique proposed for
all workloads used in the experiment showed lower energy consumption than the use of
the default frequency governor. The comparable energy consumption is the total energy
consumption of the smartphone when the workload is run once. Equation (6) shows that
the total energy consumption Etotal is the sum of all of the energy consumption for the four
components calculated using the power model described above: ECPUlittle, ECPUbig, EGPU ,
and EDisplay.

Etotal = ECPUlittle + ECPUbig + EGPU + EDisplay (6)

When comparing the total energy consumption for each workload of the two tech-
niques, the total energy consumption of the proposed low-power technique was less than
the default frequency governor for all workloads, so the total energy consumption rate of
the proposed technique was calculated through Equation (7).

D(%) =

∣∣∣∣∣Etotalproposed − Etotalde f ault

Etotalde f ault

∣∣∣∣∣× 100% (7)

Figure 11 shows the total energy reduction rate D and average of the proposed tech-
nique for the total energy consumption of the default frequency governor for 15 workloads.
Figure 11 shows the FPS reduction rate of the proposed low-power technique for the FPS of
the default frequency governor while running each workload. The FPS of each technique is
the average of N FPS collected at 50 ms data collection intervals as shown in FPSaverage of
Equation (8).

FPSaverage =
∑N

1 FPSk
N

(8)

Electronics 2022, 11, x FOR PEER REVIEW 17 of 20

When comparing the total energy consumption for each workload of the two tech-

niques, the total energy consumption of the proposed low-power technique was less than

the default frequency governor for all workloads, so the total energy consumption rate of

the proposed technique was calculated through Equation (7).

�(%) = �
�������������� − �������������

�������������

� × 100% (7)

Figure 11 shows the total energy reduction rate D and average of the proposed tech-

nique for the total energy consumption of the default frequency governor for 15 work-

loads. Figure 11 shows the FPS reduction rate of the proposed low-power technique for

the FPS of the default frequency governor while running each workload. The FPS of each

technique is the average of N FPS collected at 50 ms data collection intervals as shown in

���������� of Equation (8).

Figure 11. Energy reduction rate and FPS increase rate of the proposed method for the default

frequency governor while running 15 workloads.

���������� =
∑ ����

�
�

�
 (8)

With the proposed low-power technique, the overall frequency is lower than that of

the default frequency governor. Therefore, using the proposed low-power technique re-

duces the FPS along with the total energy consumption.

Using the low-power techniques proposed in Figure 11, compared to using the de-

fault frequency governor of the Samsung Galaxy S7 smartphone, the total energy con-

sumption shows an average reduction rate of 18.11%, and the FPS shows an average re-

duction rate of 3.12%. The total energy consumption is greatly reduced while the FPS is

only slightly reduced, showing an excellent power consumption reduction rate while

maintaining QoS.

We measured CPU/GPU frequency by phase, measuring power consumption and

FPS for workloads, and then changing CPU/GPU frequency for four workload bounces to

measure power consumption and FPS rate tables according to the reference CPU/GPU

frequency. In order to compare the cost-based and phase-based low-power techniques,

the default frequency governor was selected.

Table 7 shows the energy reduction rate and FPS increase rate of the cost-based low-

power technique and the phase-based low-power technique for the default frequency gov-

ernor. The “cost” used in other low-power method studies [7] is a value that simply de-

termines the CPU/GPU intensity of the workload. Additionally, the “phase” used in the

method proposed in this paper is the execution state classified according to the usage ratio

of various instructions in the processor occupied by the workload. Therefore, we com-

pared the cost-based method and the phase-based method, seeing that phase can classify

workloads more dynamically than cost. Additionally, through experiments, the phase-

based method showed a greater energy reduction and a smaller FPS increase than the

cost-based method, showing that using phase is more effective than cost.

Figure 11. Energy reduction rate and FPS increase rate of the proposed method for the default
frequency governor while running 15 workloads.

With the proposed low-power technique, the overall frequency is lower than that
of the default frequency governor. Therefore, using the proposed low-power technique
reduces the FPS along with the total energy consumption.

Using the low-power techniques proposed in Figure 11, compared to using the default
frequency governor of the Samsung Galaxy S7 smartphone, the total energy consumption
shows an average reduction rate of 18.11%, and the FPS shows an average reduction rate

Electronics 2022, 11, 2480 17 of 19

of 3.12%. The total energy consumption is greatly reduced while the FPS is only slightly
reduced, showing an excellent power consumption reduction rate while maintaining QoS.

We measured CPU/GPU frequency by phase, measuring power consumption and
FPS for workloads, and then changing CPU/GPU frequency for four workload bounces
to measure power consumption and FPS rate tables according to the reference CPU/GPU
frequency. In order to compare the cost-based and phase-based low-power techniques, the
default frequency governor was selected.

Table 7 shows the energy reduction rate and FPS increase rate of the cost-based low-
power technique and the phase-based low-power technique for the default frequency
governor. The “cost” used in other low-power method studies [7] is a value that simply
determines the CPU/GPU intensity of the workload. Additionally, the “phase” used in
the method proposed in this paper is the execution state classified according to the usage
ratio of various instructions in the processor occupied by the workload. Therefore, we
compared the cost-based method and the phase-based method, seeing that phase can
classify workloads more dynamically than cost. Additionally, through experiments, the
phase-based method showed a greater energy reduction and a smaller FPS increase than
the cost-based method, showing that using phase is more effective than cost.

Table 7. The energy reduction rate and FPS increase rate of the cost-based low-power technique and
the phase-based low-power technique for the default frequency governor.

Energy
FPS

CPU Little CPU Big GPU Display Total

Cost-based 1% 9% 10% 0% 10% 5%

Phase-based 1% 7% 23% 0% 18.11% 3.12%

According to Table 7, it can be seen that the cost-based low-power technique shows
an energy reduction rate of 9% and the phase-based low-power technique shows an
energy reduction rate of 7%, so the cost-based low-power technique is better. On the
other hand, in a GPU, the cost-based low-power technique shows a 10% reduction rate and
the phase-based low-power technique shows a 23% reduction rate, so the phase-based low-
power technique is better. However, comparing actual energy consumption, GPU energy
is generally larger than CPU energy, so in total, the phase-based low-power technique
reduction rate is 18.11%, which is greater than the cost-based low-power technique’s
reduction rate of 10%. In the case of FPS, the phase-based low-power technique is 3.12%,
which is less than 5% of the cost-based low-power technique. In the end, it could be
verified that the phase-based low-power technique is superior to the cost-based low-power
technique, both in energy consumption and in FPS.

6. Conclusions

In this paper, a novel phase-based CPU and GPU integrated low-power approach is
proposed for 3D game applications running on Android devices. Compared to the default
low-power techniques provided by the Linux kernel-based Android operating system
and the existing low-power technique [7] using the CPU/GPU normalized cost based
on utilization, the proposed method was found to achieve better power savings while
mitigating performance loss though extensive experiments.

The proposed method in this paper showed only 3.12% of the FPS reduction rate
compared to the interactive governor, one of the frequency governors provided in the
Samsung Galaxy S7 smartphone, while the energy consumption reduction rate was 18.11%.
In addition, its FPS reduction rate was 2% lower, and the energy consumption rate was
8% higher compared to when the normalized cost of HiCAP was used instead of phase
prediction in the workload classification method for the proposed technique.

As future work, we plan to study high-performance low-power techniques for mobile
devices for various high-performance applications, such as deep learning, virtual reality,

Electronics 2022, 11, 2480 18 of 19

and augmented reality. In addition, we intend to apply the proposed technique to various
Android platform devices such as head mounted display (HMD) devices.

Author Contributions: Conceptualization, Y.-J.K.; software, S.-R.O.; validation, Y.K., Y.-J.K.; investi-
gation, S.-R.O., Y.-J.K.; writing—original draft preparation, S.-R.O.; writing—review and editing, Y.K.,
Y.-J.K.; visualization, S.-R.O.; supervision, Y.-J.K.; project administration, Y.K.; funding acquisition,
Y.-J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Future Combat System Network Technology Research
Center program of the Defense Acquisition Program Administration and Agency for Defense Devel-
opment (UD190033ED).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. How Many People Have Smartphones in 2021? Available online: https://www.oberlo.com/statistics/how-many-people-have-

smartphones (accessed on 15 June 2022).
2. Which Smartphone Features Really Matter to Consumers? Available online: https://blog.gwi.com/chart-of-the-week/

smartphone-features-consumers/ (accessed on 15 June 2022).
3. Is Smartphone Battery Capacity Growing or Staying the Same? Available online: https://c.mi.com/thread-2085983-1-0.html?

mobile=no (accessed on 15 June 2022).
4. Big Phone Batteries Don’t Guarantee Long Battery Life. Available online: https://www.androidauthority.com/what-is-mah-

smartphone-battery-life-1113391/ (accessed on 15 June 2022).
5. Lee, K.; Ohk, S.-R.; Lim, S.-G.; Kim, Y.-J. Phase-Based Accurate Power Modeling for Mobile Application Processors. Electronics

2021, 10, 1197. [CrossRef]
6. Brodowski, D. CPU Frequency and Voltage Scaling Code in the Linux (TM) Kernel. Available online: https://www.kernel.org/

doc/html/latest/cpu-freq/index.html (accessed on 15 June 2022).
7. Park, J.G.; Dutt, N.; Kim, H.; Lim, S.S. HiCAP: Hierarchical FSM-based Dynamic Integrated CPU-GPU Frequency Capping

Governor for Energy-Efficient Mobile Gaming. In Proceedings of the 2016 International Symposium on Low Power Electronics and
Design (ISLPED’16); Association for Computing Machinery: New York, NY, USA, 2016; pp. 218–223. [CrossRef]

8. Dietich, B.; Peters, N.; Park, S.; Chakraborty, S. Estimating the Limits of CPU Power Management for Mobile Games. In
Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston Area, MA, USA, 5–8 November 2017;
pp. 1–8. [CrossRef]

9. Han, S.; Yun, Y.; Kim, Y.H.; Kang, S. Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems.
IEEE Access 2020, 8, 69695–69711. [CrossRef]

10. Carvalho, S.A.L.D.; Cunha, D.C.D.; Silva-Filho, A.G.D. Autonomous Power Management for Embedded Systems Using a
Non-linear Power Predictor. In Proceedings of the 2017 Euromicro Conference on Digital System Design (DSD), Vienna, Austria,
30 August–1 September 2017; pp. 22–29. [CrossRef]

11. Kwon, E.; Han, S.; Park, Y.; Yoon, J.; Kang, S. Reinforcement Learning-Based Power Management Policy for Mobile Device
Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4156–4169. [CrossRef]

12. Hong, S.; Kim, S.; Kim, Y. LGC-DVS: Local Gamma Correction-Based Dynamic Voltage Scaling for Android Smartphones With
AMOLED Displays. IEEE J. Electron Devices Soc. 2017, 5, 432–444. [CrossRef]

13. Park, J.-G.; Hsieh, C.-Y.; Dutt, N.; Lim, S.-S. Co-Cap: Energy-efficient cooperative CPU-GPU frequency capping for mobile games.
In Proceedings of the 31st Annual ACM Symposium on Applied Computing; Association for Computing Machinery: New York, NY,
USA, 2016; pp. 1717–1723. [CrossRef]

14. Hong, S.; Kim, S.-W.; Kim, Y.-J. 3 channel dependency-based power model for mobile AMOLED displays. In Proceedings of the
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017; pp. 1–6. [CrossRef]

15. Monsoon Solutions. Power Monitor. Available online: https://www.msoon.com/LabEquipment/PowerMonitor/ (accessed on
15 June 2022).

16. Ibrahim, M.; Hamarash, I. Dynamic voltage frequency scaling (DVFS) for microprocessors power and energy reduction. In
Proceedings of the 4th International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 7–11 December 2005.

17. Jung, H.; Gil, A.; Kim, J. A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors. World Academy
of Science, Engineering and Technology, Open Science Index 108. Int. J. Electr. Comput. Eng. 2015, 9, 1523–1526.

18. Claypool, M.; Claypool, K.; Damaa, F. The Effects of Frame Rate and Resolution on Users Playing First Person Shooter Games.
Proc. SPIE Int. Soc. Opt. Eng. 2006, 6071, 607101. [CrossRef]

19. 3Dmark—The Gamer’s Benchmark. Available online: https://play.google.com/store/apps/details?id=com.futuremark.
dmandroid.application (accessed on 16 June 2022).

20. Madagascar 3D Benchmark. Available online: https://play.google.com/store/apps/details?id=app.ext2dev4me.m3db (accessed
on 16 June 2022).

https://www.oberlo.com/statistics/how-many-people-have-smartphones
https://www.oberlo.com/statistics/how-many-people-have-smartphones
https://blog.gwi.com/chart-of-the-week/smartphone-features-consumers/
https://blog.gwi.com/chart-of-the-week/smartphone-features-consumers/
https://c.mi.com/thread-2085983-1-0.html?mobile=no
https://c.mi.com/thread-2085983-1-0.html?mobile=no
https://www.androidauthority.com/what-is-mah-smartphone-battery-life-1113391/
https://www.androidauthority.com/what-is-mah-smartphone-battery-life-1113391/
http://doi.org/10.3390/electronics10101197
https://www.kernel.org/doc/html/latest/cpu-freq/index.html
https://www.kernel.org/doc/html/latest/cpu-freq/index.html
http://doi.org/10.1145/2934583.2934588
http://doi.org/10.1109/ICCD.2017.10
http://doi.org/10.1109/ACCESS.2020.2986214
http://doi.org/10.1109/DSD.2017.68
http://doi.org/10.1109/TCSI.2021.3103503
http://doi.org/10.1109/JEDS.2017.2745680
http://doi.org/10.1145/2851613.2851671
http://doi.org/10.1145/3061639.3062181
https://www.msoon.com/LabEquipment/PowerMonitor/
http://doi.org/10.1117/12.648609
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application
https://play.google.com/store/apps/details?id=app.ext2dev4me.m3db

Electronics 2022, 11, 2480 19 of 19

21. Benchmark 3D Kassja Graphics. Available online: https://play.google.com/store/apps/details?id=com.mkdesignmobile.
KassjaBenchmark (accessed on 16 June 2022).

22. Renderscript Benchmark. Available online: https://apkpure.com/kr/renderscript-benchmark/name.duzenko.farfaraway
(accessed on 16 June 2022).

23. NenaMark2. Available online: https://apkpure.com/nenamark2/se.nena.nenamark2 (accessed on 16 June 2022).
24. V1—GPU Benchmark Pro. Available online: https://apkpure.com/kr/v1-gpu-benchmark-pro/com.InventedGames.V1

Benchmark (accessed on 16 June 2022).
25. Seascape Benchmark—GPU Test. Available online: https://play.google.com/store/apps/details?id=com.nature.seascape (ac-

cessed on 16 June 2022).
26. Basemark GPU. Available online: https://play.google.com/store/apps/details?id=com.basemark.basemarkgpu.free (accessed

on 16 June 2022).
27. 3D Benchmark. Available online: https://apkpure.com/kr/3d-benchmark-android-gamers/com.cabodidev.threedbenchmark

(accessed on 16 June 2022).
28. Relative Benchmark. Available online: https://play.google.com/store/apps/details?id=com.re3.benchmark (accessed on 16

June 2022).
29. Nah, J.-H.; Suh, Y.; Lim, Y. L-Bench: An Android benchmark set for low-power mobile GPUs. Comput. Graph. 2016, 61, 40–49.

[CrossRef]
30. ARM-Software/Gator. Available online: https://github.com/ARM-software/gator (accessed on 16 June 2022).
31. LineageOS/Herolte. Available online: https://wiki.lineageos.org/devices/herolte/ (accessed on 25 July 2022).

https://play.google.com/store/apps/details?id=com.mkdesignmobile.KassjaBenchmark
https://play.google.com/store/apps/details?id=com.mkdesignmobile.KassjaBenchmark
https://apkpure.com/kr/renderscript-benchmark/name.duzenko.farfaraway
https://apkpure.com/nenamark2/se.nena.nenamark2
https://apkpure.com/kr/v1-gpu-benchmark-pro/com.InventedGames.V1Benchmark
https://apkpure.com/kr/v1-gpu-benchmark-pro/com.InventedGames.V1Benchmark
https://play.google.com/store/apps/details?id=com.nature.seascape
https://play.google.com/store/apps/details?id=com.basemark.basemarkgpu.free
https://apkpure.com/kr/3d-benchmark-android-gamers/com.cabodidev.threedbenchmark
https://play.google.com/store/apps/details?id=com.re3.benchmark
http://doi.org/10.1016/j.cag.2016.09.002
https://github.com/ARM-software/gator
https://wiki.lineageos.org/devices/herolte/

	Introduction
	Background and Related Work
	DVFS Techniques on Smartphones
	Related Work

	Motivational Studies
	Phase-Based CPU and GPU Low Power Approach
	Phase Classification
	Data Collection for Proposed Method
	Proposed Method

	Experimental Environment and Results
	Experimental Environment
	Experimental Results

	Conclusions
	References

