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Abstract: To improve the performance of polar code parameter recognition in the fields of intelligent
communication, communication detection, and network countermeasures, we propose a new recog-
nition scheme for the additive white Gaussian noise (AWGN) channel. The scheme turns parameter
recognition problems into hypothetical tests and is effective due to the check relationship between
the received codeword and the dual space determined by the correct parameters. First, a sub-matrix
is obtained by removing the frozen-bit-index rows of the polar code generator matrix, and then its
dual matrix is calculated. To check the relationship of the dual matrix and codewords, the average
likelihood ratio of codewords is introduced as a test statistic, and then the corresponding decision
threshold is deduced. Next, the degree of conformity of polar code recognition is defined, and the
minimum code length and code rate corresponding to the highest degree of conformity are chosen
to calculate the index of information-bit positions by a Gaussian approximation (GA) construction
algorithm. Finally, the chosen code length, code rate, and corresponding index are provided as
the recognition results. Simulation results show that the algorithm can achieve effective parameter
recognition in both high-signal-to-noise (SNR) and low-SNR environments, and that the algorithm’s
recognition performance increases with decreasing code rate and code length. The parameter recog-
nition rate with a code length of 128 and code rate of 1/5 is close to 100% when the SNR is 4 dB, and
the algorithm complexity increases almost linearly with the decreasing code rate and the increasing
length of the intercepted data.

Keywords: channel coding; polar code; dual space; recognition

1. Introduction

To reduce interference in the communication process and enable a system to auto-
matically check or correct errors to improve the reliability of data transmission, channel
coding technology is widely used in various wireless communication systems. Currently,
commonly used coding techniques include Reed–Solomon (RS) codes, low-density parity
check (LDPC) codes, turbo codes, Bose–Chaudhuri–Hocquenghem (BCH) codes, convolu-
tional codes, and polar codes. Among these, polar codes have been proven to be able to
reach the Shannon limit under the binary discrete memoryless channel (B-DMC) and binary
erasure channel (BEC) when the code length tends to infinity [1]. Because of their excellent
short-code performance, polar codes became the control channel selection coding scheme
for 5G enhanced mobile broadband (eMBB) scenarios at the 3GPP RAN1#87 Conference in
2016 [2].

Channel coding parameter recognition is a key link in the fields of intelligent com-
munication, communication detection, and network confrontation, and thus has attracted
extensive attention from experts and scholars in related fields. Several conventional pa-
rameter recognition algorithms for convolutional codes were proposed in [3,4]. Some use
posterior probability to recognize code parameters. The synthetic posterior probability
proposed in [5] was used to recognize linear code parameters. Posterior probability was
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used in [6] to identify LDPC code parameters. On this basis, maximum likelihood based
on comprehensive posterior probability was proposed in [7]. In addition, there are many
other conventional parameter-recognition algorithms for BCH [8] and RSC [9] codes. With
the development of computer vision, machine learning has received increasingly more
attention. By applying machine learning to channel coding parameter recognition, scholars
in the field of communication have already achieved rich results. Machine learning was
used in [10,11] to realize blind recognition of convolutional codes. An improved deep
convolutional network was used in [12] to realize parameter recognition of convolutional
codes and turbo codes, but the experimental setting parameters are relatively simple and
complete parameter experiments were lacking. In [13], the test vector of the RS code was
determined by equivalence of the binary field, and a parameter joint recognition model was
established to avoid the calculation of high-order spectral components, which effectively
improves the recognition performance of the RS code. However, machine-learning algo-
rithms all face the test of robustness under different parameters and few studies exist on
the recognition of polar code parameters. Polar code parameter recognition under erasure
channel was studied in [14], in which a polar code supervision matrix was defined and the
product of the supervision matrix and the hard-decision-codeword matrix used as the check
standard to determine the coding parameters. Obviously, hard-decision codewords will
lose a significant amount of useful information compared with the soft-decision sequence,
and the recognition performance of the algorithm has substantial room for improvement.
The open-set recognition problem of polar code coding under a Gaussian channel was
studied in [15], in which the rows of the Kronecker power matrix were eliminated one by
one to obtain its dual vector, and parameter recognition was carried out row by row using
the test relationship between the dual vector and soft-decision codeword, which leads to a
large amount of calculation. Ref. [16] introduced the likelihood difference to deduce the
standard polar code parameter recognition and obtained improved performance, but the
algorithm failed in terms of unstructured polar code recognition.

To solve the problems encountered in the practical process of polar code parameter
recognition and further improve the performance of the algorithm, in this paper we study a
polar code parameter recognition algorithm based on dual space. Since the additive white
gaussian noise (AWGN) channel model is the first and most important stage of 5G channel
coding simulation, we study the problem of blind recognition of polar code parameters
under the AWGN channel.

The rest of this paper is organized as follows. The basic knowledge of polar codes
is reviewed in Section 2. In Section 3, we describe the principle of polar code parameter
recognition, the model system, and the calculation details of the decision threshold, and
propose the parameter recognition algorithm. Section 4 provides the simulation results of
algorithm effectiveness and influence of different parameters, followed by conclusions in
Section 5.

The main contributions of this paper are the following.

(1) The two basic principles of polar code parameter recognition are given and proven.
(2) The polar code parameter recognition problem is transformed into a hypothesis

testing problem, and a complete hypothesis-testing process is provided. The average
log-likelihood ratio (LLR) is introduced as a statistic, and the corresponding threshold
is derived in detail.

(3) An index of sub-channels transmitting information bits (also called information-bit
position) is directly constructed using a Gaussian approximation (GA) method, which
helps avoid errors involving correct information bit numbers but incorrect information
bit positions.

2. Preliminaries

Polar code is currently the only encoding method that enables channel capacity to
reach the Shannon Limit. Consider the B-DMC transition probability shown in Figure 1.
W : X → Y , X ∈ {0, 1}, P = W(y|x), x ∈ X, y ∈ Y.
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ity of the channel can be quantitatively described with the Bhattacharyya parameter, so 
the polarization effect of the channel—that is, the process of channel combining and sep-
arating—can be quantitatively described as well. The schematic of combining and sepa-
rating n  channels is presented in Figure 2. 
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Figure 1. Diagram of channel.

When X takes 0 and 1 according to the same probability, the information capacity is
defined as the mutual information of the input and output [17]:

C(W) = I(X; Y) = ∑
y∈Y

∑
x∈X

1
2

W(y|x) log2
W(y|x)

1
2 W(y|0) + 1

2 W(y|1)
(1)

At this time, 0 ≤ C(W) ≤ 1; when C(W) = 1, W is an excellent channel, and when
C(W) = 0, W is a useless channel. The channel polarization phenomenon is an important
guarantee for the realization of reliable information transmission, which turns most sub-
channels with 0 ≤ C(W) ≤ 1 into sub-channels for transmitting information bits with
C(W) = 1, or sub-channels for transmitting frozen bits with C(W) = 0. The B-DMC
channel capacity is measured by the Bhattacharyya parameter [17]:

Z(W) = ∑
y∈Y

√
W(y|0)W(y|1), (2)

log
2

1 + Z(W)
≤ C(W) ≤

√
1− Z(W) · Z(W). (3)

The larger the Bhattacharyya parameter, the smaller the channel capacity. The capacity
of the channel can be quantitatively described with the Bhattacharyya parameter, so the
polarization effect of the channel—that is, the process of channel combining and separating—
can be quantitatively described as well. The schematic of combining and separating n channels
is presented in Figure 2.
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2.1. Channel Combination

When n sub-channels W are combined into one Wn channel, the channel capacity of
Wn is

C(Wn) = I(U; Y) = I(X; Y), (4)

where U = [u1, u2, · · · , un], Y = [y1, y2, · · · , yn], and X = [x1, x2, · · · , xn]. Because sub-
channels are exactly the same, u1, u2, · · · , un ∈ {0, 1} are independent and identically
distributed when sub-channels are B-DMC channels, and thus

C(Wn) = n · I(X; Y) = n · C(W). (5)

After the channels are merged, the total capacity remains unchanged. At this time, the
channel transition probability is

Wn(yn
1 |un

1 ) = Wn(yn
1 |un

1 Gn), (6)
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where yn
1 ∈ Yn, un

1 ∈ Un, Gn = BnF⊗n, Bn is the bit flip sequence, F =

[
1 0
1 1

]
, and ⊗ is the

Kronecker product, which can be calculated as in [18].
The polar code, which completes channel combination and splitting through the

corresponding coding and decoding processes, uses the channel polarization effect to
realize reliable transmission. The process of channel combining is realized by polar
code coding, and the index corresponding to the excellent sub-channels used to trans-
mit information bits is called the information-bit position. Usually, k information bits
transmit through the first k sub-channels with the largest channel capacity (that is, the
smallest Bhattacharyya parameter). The index of the first k sub-channels is written
as A= {π(1),π(2), · · · , π(k)} ∈ {0, 1 , · · · , n}, and its complementary set is denoted as
Ac= {0, 1 , · · · , n}\A, so the codes with length n can be written as

xn
1 = uAGn(A)⊕ uAc Gn(Ac), (7)

where Gn(A) is a sub-matrix of Gn with index A, uA denoting information bits, and uAc

denoting frozen bits, which always takes 0, so (7) can be simplified as xn
1 = uAGn(A).

The goal of blind polar recognition is to obtain the right Gn(A), which is needed to
obtain the code length n, information-bit positions A, and number of information bits k.
Note that when n and k are determined, the rate code R can be calculated as R = k/n.

2.2. Polar Code Construction in Gaussian Channel

The calculation of the exact value of the Bhattacharyya parameter is only applicable
to the polar code construction of the BEC. It is difficult to obtain the specific value of the
Bhattacharyya parameter for other channels. Usually, a GA construction algorithm with
low complexity and high precision is used in AWGN; its basic idea is to approximate the
log likelihood ratio (LLR) of all sub-channels to a Gaussian distribution with the mean half
of the variance, gradually calculate the LLR mean of each sub-channel through the LLR
mean of the total channel, and then sort the reliabilities of subchannels from smallest to
largest. The LLR expressions for the channel transition probabilities are

L(2i−1)
2n (y2n

1 , u2i−2
1 ) = ln W(2i−1)

2n (y2n
1 ,u2i−2

1 |u2i−1=0)

W(2i−1)
2n (y2n

1 ,u2i−2
1 |u2i−1=1)

= ln
∑u2i

W(i)
n (yn

1 ,γ|u2i−1)β

∑u2i
W(i)

n (yn
1 ,γ|u2i−1⊕1)β

=

ln e
L(i)n (yn

1 ,γ)+L(i)n (y2n
n+1,u2i−2

1,e )
+1

eL(i)n (yn
1 ,γ)+e

L(i)n (y2n
n+1,u2i−2

1,e )
= 2tanh−1(tanh L(i)

n (yn
1 ,γ)

2 tanh
L(i)

n (y2n
n+1,u2i−2

1,e )

2 )

, (8)

L(2i)
2n (y2n

1 , u2i−1
1 ) = ln

W(2i)
2n (y2n

1 , u2i−1
1 |u2i = 0)

W(2i)
2n (y2n

1 , u2i−1
1 |u2i = 1)

= (−1)u2i−1 L(i)
n (yn

1 , γ) + L(i)
n (y2n

n+1, u2i−2
1,e ), (9)

where γ = u2i−2
1,o ⊕ u2i−2

1,e and β = W(i)
n (y2n

n+1, u2i−2
1,e |u2i)L(i)

1 (yi) = log W(yi |0)
W(yi |1)

. When all 0

codes are transmitted, L(i)
1 (yi) ∼ N( 2

σ2 , 4
σ2 ), the instantaneous values of formulas (8) and

(9) can be regarded as Gaussian random variables with a variance that is twice the mean
value; that is, D[L(i)

2n ] = 2E[L(i)
2n ]. E[·] denotes the mean of the variable and D[·] the variance

of the variable, and, according to the calculation rule of [19], the following formula can
be obtained:

E[L(2i−1)
2n ] = φ−1(1− (1− φ(E[L(i)

n ]))
2
), (10)

E[L(2i)
2n ] = 2E[L(i)

n ], (11)

where

φ(x) =

{
1− 1√

4πx

∫ +∞
−∞ tanh u

2 e−
(u−x)2

4x dx, x > 0
1, x = 0

. (12)
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The error probability for the ith sub-channel is given approximately as [20] Q(
√

E[L(i)
2n ]/2),

1 ≤ i ≤ 2n.

3. Principle and Method of Polar Code Parameter Recognition

As the first step of channel model simulation, the simulation of polar codes in the
AWGN channel has already attracted sufficient attention. According to the polar code
coding structure detailed in the preceding section, the parameters that must be determined
for polar code recognition under Gaussian channels include polar code length, code rate
(or the number of information bits), and index of information-bit-positions. When the code
length and rate are determined and the channel information known, the information-bit
positions can be determined by the GA method [21], so that the generator matrix can be
determined, and the channel parameters required by the GA construction method can be
easily estimated by the received signal [22,23].

3.1. Recognition Principle

Theorem 1. Denote the generator matrix of the polar code as Gn, the set of information-bit
positions as A = {π(1), π(2), · · · , π(k)}, and the new matrix G′ is obtained after removing the
(i, i + a, · · · , i + c)th row vector, and its dual space is Hn, if and only if i, i + a, · · · , i + c /∈ A; Hn
is orthogonal to the codeword space.

Proof. Let g1, g2, · · · , gn represent the row vector of Gn. After removing row vectors with
index i, i + a, · · · , i + c, G′ is obtained and the space formed by the row vector in G′ is
V1 =

{
g1, · · · , gi−1, gi+1, · · · , gi+a−1, gi+a+1, · · · , gi+c−1, gi+c+1, · · · , gn

}
. The dual space of

G′ is Hn= {hi, hi+a, · · · , hi+c}, and the space formed by all row vectors in Gn with row
label in A is V2 =

{
gπ(1), gπ(2), · · · , gπ(n)

}
. When i, i + a, · · · , i + c /∈ A, V2 ⊆ V1, and,

therefore, V⊥1 ⊆ V⊥2 ; that is, Hn ⊆ V⊥2 , so Hn⊥V2; that is, Hn is orthogonal to the polar code
word. If any of i, i + a, · · · , i + c belong to the set A, V2
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V1; that is, Hn is not orthogonal to
the polar code word. �

To explain the above theorem more understandably, a polar code length n′ is selected
to calculate generator matrix Gn′ ; then, some rows are removed according to certain rules
to obtain G′ = Gn′(A). If the real code length of the codeword and the positions set of all
the information bits is A, which can be obtained by the GA algorithm, the dual space Hn′

is orthogonal to the intercepted codeword. This is the basic principle we use to identify
polar parameters.

3.2. Model System

Assuming that N polar codewords c= [c1,1, c1,2, · · · , c1,n, · · · , cN,1, cN,2, · · · , cN,n] with
code length n are transmitted, after binary phase shift keying (BPSK) modulation and utilizing
the AWGN channel, its soft decision sequence r= [r1,1, r1,2, · · · , r1,n′ , · · · , rN,1, rN,2, · · · , rN,n

]
is intercepted, and then the constructed code word matrix is

R =


r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
...

. . .
...

rN,1 rN,2 · · · rN,n

, (13)

where
ri,j = 2ci,j − 1 + n′′i,j, n′′i,j ∼ N (0,σ2). (14)

The model system is shown in Figure 3.
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In the ideal state, T is an all-zero matrix—that is, the value of each element in the matrix T
is 0—but in an actual communication system, the codeword will be interfered with by noise,
so even if Hn is orthogonal to the original polar codeword, T will not be an all-zero matrix. To
measure whether Hn is orthogonal to the original polar codeword under the AWGN channel,
we consider the probability that the Kth column vector hK = [h1,K, h2,K, · · · , hn,K]

T in Hn is
orthogonal to the ith codeword vector ri = [ri,1, ri,2, · · · , ri,n]:

Pi,K = Pr(
n

∑
t=1
⊕ri,tht,K = 0|ri). (17)

Let li,t denote the LLR of ri,t:

li,t = ln(
Pr(ci,t = 0|ri,t)

Pr(ci,t = 1|ri,t)
) =
−2ri,t

σ2 . (18)

When the code weight of the Kth column vector hK is w and the position of 1 in hK is
t1, t2, · · · , tw, the LLR of Pi,K is

ALi,K= ln( Pi,K
1−Pi,K

)

≈
tw
Π

t=t1
sign(li,t) min

t=t1,··· ,tw
(|li,t|)

. (19)

Let the column numbers of Hn be Nl ; then, the average LLR of the orthogonal proba-
bilities of Nl column vectors and N codewords is defined as follows:

AL =
1
Nl

1
N

Nl

∑
K=1

N

∑
i=1

ALi,K. (20)

Let AL be the decision statistics of whether the dual space matrix Hn is orthogonal to
the codeword matrix R, and the following assumptions are made:
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H0: Hn is not orthogonal to the codeword matrix R.

H1: Hn is orthogonal to the codeword matrix R.

All possible dual matrices for the intercepted codeword will be constructed and tested
to ascertain whether any one of them satisfies the relationship between the decision statistic
and decision threshold in the hypothesis test to find the dual matrix that is orthogonal to
the codeword. When the correct dual matrix is found, the constructing code length and rate
are considered the real parameters of the intercepted codeword, and the information-bit
positions A can be calculated by the GA algorithm. Then, the generator matrix can be
uniquely determined, and the parameter recognition is finally realized.

Finally, the polar code parameter recognition problem is transformed into a hypothesis-
testing problem, and the key is to find the decision threshold.

3.3. Decision Threshold

Let Xi =
tw
Π

t=t1
sign(li,t) and Yi = min

t=t1,··· ,tw
(|li,t|).

Theorem 2. Suppose X1, X2, · · · , XJ are J independent random variables, and their distribution func-
tions (DFs) are FX1(x), FX2(x), · · · , FXJ (x), respectively; the DF for Z = min

{
X1, X2, · · · , XJ

}
is then

FZ(z) = 1−
J

Π
i=1

(1− FXi (z)). (21)

The probability density function (PDF) of Z = min
{

X1, X2, · · · , XJ
}

is

fZ(z) =
J

∑
j=1

fXj(z) ·
J

Π
i=1,i 6=j

(1− FXi (z)). (22)

Proof. From the definition of the DF, we know that

FZ(z) = Pr(Z ≤ z) = 1− Pr(Z > z). (23)

That is to say,

FZ(z) = 1− Pr(X1 > z)Pr(X2 > z) · · ·Pr(XJ > z) (24)

and, in turn,

FZ(z) = 1− (1− Pr(X1 ≤ z))(1− Pr(X2 ≤ z)) · · · (1− Pr(XJ ≤ z)) (25)

and

FZ(z) = 1−
J

Π
i=1

(1− FXi (z)). (26)

Taking the derivative of FZ(z) with respect to z, the PDF of the random variable Z is
obtained as

fZ(z) =
J

∑
j=1

fXj(z) ·
J

Π
i=1,i 6=j

(1− FXi (z)). (27)

�

Inference 1 can be easily obtained from Theorem 2 as follows.

Inference 1. When X1, X2, · · · , XJ are J independent and identically distributed random variables,
supposing they have the same DF FX(x) and PDF f1(x), then the PDF of Z = min

{
X1, X2, · · · , XJ

}
is

FZ(z) = 1− (1− FX(z))
J . (28)
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The PDF of Z = min
{

X1, X2, · · · , XJ
}

is

fZ(z) = J · fX(z) · (1− FX(z))
J−1. (29)

Let F(x) denote li,t’s DF, f (x) denote li,t’s PDF, F1(x) denote |li,t|’s DF, and f1(x)
denote |li,t|’s PDF, so

F1(x) = Pr(|li,t| ≤ x) = Pr(−x ≤ li,t ≤ x), (30)

where x > 0, so
F1(x) = F(x)− F(−x). (31)

Taking the derivative of x on both sides of (31), we obtain

f1(x) = f (x) + f (−x). (32)

It can be known from (14) that

li,j ∼ N(2/σ2, 4/σ2), ci,j = 0, (33)

li,j ∼ N(−2/σ2, 4/σ2), ci,j = 1. (34)

ci,j takes the same probability of 0 and 1 without prior information, and we obtain

f (x) =
1

2
√

2π · 2/σ
e−(x−2/σ2)

2/(8/σ2) +
1

2
√

2π · 2/σ
e−(x+2/σ2)

2/(8/σ2). (35)

Because f (x) = f (−x), when x > 0,

f1(x) =
σ

2
√

2π
e−σ2(x−2/σ2)

2/8 +
σ

2
√

2π
e−σ2(x+2/σ2)

2/8. (36)

When x ≤ 0, f1(x) = 0.
Let f2(x) be the PDF of Yi, and then it is known from Inference 1 that

f2(x) =
{

w · f1(x) · (1− F1(x))w−1 , x > 0
0 , x ≤ 0

. (37)

Thus, the expectation of Yi and Y2
i can be obtained, respectively, as

E(Yi) =
∫ +∞

0
w · x · f1(x) · (1− F1(x))w−1dx, (38)

E(Y2
i ) =

∫ +∞

0
w · x2 · f1(x) · (1− F1(x))w−1dx. (39)

Calculating integration by parts,

E(Yi) = −x · (1− F1(x))w∣∣+∞
0 +

∫ +∞

0
(1− F1(x))wdx, (40)

E(Y2
i ) = −x2 · (1− F1(x))w

∣∣∣+∞

0
+
∫ +∞

0
2x · (1− F1(x))wdx. (41)

According to the L’Hospital principle lim
x→+∞

x(1− F1(x)) = 0,

lim
x→+∞

x2(1− F1(x)) = 0, so (40) and (41) can be rewritten, respectively, as

E(Yi) =
∫ +∞

0
(1− F1(x))wdx, (42)
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E(Y2
i ) =

∫ +∞

0
2x · (1− F1(x))wdx, (43)

where F1(x) =
∫ x

0 f1(t)dt, so

F1(x) = 0.5(er f (
x + 2

σ2

2
√

2
σ

) + er f (
x− 2

σ2

2
√

2
σ

)), (44)

where er f (x) = 2√
π

∫ x
0 e−t2

.

It is easy to know that X2
i ·Y2

i = Y2
i and it has nothing to do with the assumptions, so

E(Y2
i ) = E(X2

i ·Y2
i |H0) = E(X2

i ·Y2
i |H1). (45)

If H0 is true, hK is not orthogonal to the codeword, so

E(Xi ·Yi|H0) = 0, (46)

Var(Xi ·Yi|H0) = E(X2
i ·Y2

i |H0) =
∫ +∞

0
2x · (1− F1(x))wdx. (47)

If H1 is true, and the judgment of ci,t is correct, let R1 denote the condition of ci,t = 0,
li,t > 0 and R2 denote the condition of ci,t = 1, li,t < 0; then, the PDFs of li,t are

f (x|R1) =

 σ·e−σ2 ·(x−2/σ2)
2

/8
√

2π(1+er f (1/(
√

2σ)))
, x > 0

0 , x ≤ 0
, (48)

f (x|R2) =

 σ·e−σ2 ·(x+2/σ2)
2

/8
√

2π(1+er f (1/(
√

2σ)))
, x < 0

0 , x ≥ 0
. (49)

Let F(x|R1) and F(x|R2) denote the cumulative functions (CFs) of f (x|R1) and f (x|R2),
respectively, so the CFs of Y = |li,t| are

FY(y|R1) =

{
F(y|R1)− F(−y|R1) , y > 0

0 , y ≤ 0
, (50)

FY(y|R2) = Pr(Y ≤ y|R2) =

{
F(y|R2)− F(−y|R2) , y > 0

0 , y ≤ 0
. (51)

When y > 0, F(−y|R1) = 0, and F(y|R2) = 1, so FY(y|R1) = F(y|R1) and FY(y|R2) =
1− F(−y|R2), and therefore the PDFs of Y are

fY(y|R1) =

{
f (y|R1) , y > 0

0 , y ≤ 0
, (52)

fY(y|R2) =

{
f (−y|R2) , y > 0

0 , y ≤ 0
. (53)

It can be obtained from (49), (50), (53), and (54) that, when y ≥ 0, fY(y|R1 ∪ R2)= 0,
and, when y < 0, that

fY(y|R1 ∪ R2) =
σ · e−σ2·(y−2/σ2)

2/8
√

2π(1 + er f (1/(
√

2σ)))
. (54)
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If H1 is true, and the judgment of ci,t is not correct, let R′1 denote the condition of
ci,t = 0, li,t < 0 and R′2 denote the condition of ci,t = 1, li,t > 0; then, the PDFs of li,t are

f (x|R′1) =

 σ·e−σ2 ·(x−2/σ2)
2

/8
√

2π(1−er f (1/(
√

2σ)))
, x > 0

0 , x ≤ 0
, (55)

f (x|R′2) =

 σ·e−σ2 ·(x+2/σ2)
2

/8
√

2π(1−er f (1/(
√

2σ)))
, x > 0

0 , x ≤ 0
, (56)

and the PDFs of Y are

fY(y|R′1) =
{

f (−y|R′1) , y > 0
0 , y ≤ 0

, (57)

fY(y|R′2) =
{

f (y|R′2) , y > 0
0 , y ≤ 0

. (58)

It can be obtained from (55)–(58) that, when y ≤ 0, fY(y|R′1 ∪ R′2)= 0, and, when y > 0, that

fY(y|R′1 ∪ R′2) =
σ · e−σ2·(y+2/σ2)

2/8
√

2π(1− er f (1/(
√

2σ)))
. (59)

Assuming that there is an error in the element at position {tv1 , tv2 , · · · , tvs} in
li,t1 , li,t2 , · · · , li,tw , it is easy to obtain the set of correct element positions as

{
tj1 , tj2 , · · · , tjw−s

}
=

{t1, t2, · · · , tw}/{tv1 , tv2 , · · · , tvs}. Letting Ts
1 = min

{
|li,tv1
|, |li,tv2

|, · · · , |li,tvs
|
}

and

Ts
2 = min

{
|li,tj1
|, |li,tj2

|, · · · , |li,tjw−s
|
}

, it can be obtained from Inference 2-1 that, when y ≤ 0,
fTs

1
(y) = 0 and fTs

2
(y) = 0, and, when y > 0, that

fTs
1
(y) = s · fY(y|R′1 ∪ R′2)(1− FY(y|R′1 ∪ R′2))

s−1, (60)

fTs
2
(y) = (w− s) · fY(y|R1 ∪ R2)(1− FY(y|R1 ∪ R2))

w−s−1, (61)

where FY(y|R′1 ∪ R′2) and FY(y|R1 ∪ R2) are the CFs of fY(y|R′1 ∪ R′2) and fY(y|R1 ∪ R2),
respectively, so that, when y > 0,

FY(y|R′1 ∪ R′2) =
∫ y

0 fY(t|R′1 ∪ R′2)dt =
1

1−er f (1/(
√

2σ))
·(er f ( yσ

2
√

2
+ 1√

2σ
) + er f ( 1√

2σ
)) , (62)

FY(y|R1 ∪ R2) =
∫ y

0 fY(t|R1 ∪ R2)dt =
1

1+er f (1/(
√

2σ))
(er f ( yσ

2
√

2
− 1√

2σ
) + er f ( 1√

2σ
)) . (63)

Letting Ts = min
{

Ts
1 , Ts

2
}

, from Theorem 2 we can obtain

fTs(y) = fTs
1
(y) · (1− FTs

2
(y)) + fTs

2
(y) · (1− FTs

1
(y)), (64)

where FTs
1
(y) and FTs

2
(y) are the CFs of fTs

1
(y) and fTs

2
(y), respectively; that is,

FTs
1
(y) =

{
1− (1− FY(y|R′1 ∪ R′2))

s , y > 0
0 , y ≤ 0

, (65)

FTs
2
(y) =

{
1− (1− FY(y|R1 ∪ R2))

w−s , y > 0
0 , y ≤ 0

. (66)
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When Xi = 1, the number of error symbols is even and the check relationship is still
established, so

E(Xi ·Yi, Xi = 1|H1) =
bw/2c

∑
i=0

C2i
w p2i

e (1− pe)
w−2i

+∞∫
0

x fT2i (x)dx, (67)

where pe is the theoretical bit error rate of the codewords modulated by BPSK, and the
expression is

pe = 0.5er f c(
√

1/(2σ2)), (68)

where σ2 is noise variance, er f c(x) = 2√
π

x∫
−∞

e−t2
dt.

Similarly, when Xi = −1, an odd number of errors occurs:

E(Xi ·Yi, Xi = −1|H1) = −
bw/2c−1

∑
i=0

C2i+1
w p2i+1

e (1− pe)
w−2i−1·

+∞∫
0

x fT2i+1(x)dx. (69)

It can be obtained from (67) and (69) that

E(Xi ·Yi|H1) = E(Xi ·Yi, Xi = 1|H1) + E(Xi ·Yi, Xi = −1|H1), (70)

Var(Xi ·Yi|H1) = E(Y2
i )− E(Xi ·Yi|H1)

2. (71)

It is easy to obtain the mean and variance of ALi,k under the two assumptions:

E(ALi,k|H0) = E(Xi ·Yi|H0) = 0, (72)

E(ALi,k|H1) = E(Xi ·Yi|H1), (73)

Var(ALi,k|H0) = Var(Xi ·Yi|H0), (74)

Var(ALi,k|H1) = Var(Xi ·Yi|H1). (75)

According to the statistical properties of random variables,

µ0 = E(AL|H0) = E(ALi,k|H0) = 0, (76)

µ1 = E(AL|H1) = E(ALi,k|H1), (77)

σ2
0 = Var(AL|H0) = Var(ALi,k|H0)/N/Nl , (78)

σ2
1 = Var(AL|H1) = Var(ALi,k|H1)/N/Nl . (79)

Then, the false alarm probability is

Pf =
∫ +∞

Λ

1√
2πσ0

e
−(x−µ0)

2

2σ2
0 dx. (80)

The probability of a false alarm is

Pa =
∫ Λ

−∞

1√
2πσ1

e
−(x−µ1)

2

2σ2
1 dx. (81)

It does not have any prior knowledge under non-cooperative conditions, so Pf = Pa,
and the average incorrect decision probability is

Per = 0.5Pf + 0.5Pa =
∫ +∞

Λ

1√
2πσ0

e
−(x−µ0)

2

2σ2
0 dx+

∫ Λ

−∞

1√
2πσ1

e
−(x−µ1)

2

2σ2
1 dx. (82)
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The minimum error decision threshold for solving (82) is

Λopt =
(σ2

0 · µ1 − σ2
1 · µ0)− σ0σ1 · ζ

(σ2
0 − σ2

1 )
, (83)

where ζ =
√
(µ0 − µ1)

2 + (σ2
1 − σ2

0 ) · ln(σ1/σ0). When AL > Λopt, H1 is true.

3.4. Parameter Recognition Steps

Since 3GPP stipulates that the maximum mother code length of the polar code in the
downlink control information is 512, that in the uplink control information is 1024 [24].
Considering the code length and code-rate range of polar codes in practical applications,
the code length is selected as n′′ = [32, 64, 128, 256, 512, 1024] and the algorithm code rate
is selected as R′′ = [ 1

5 , 1
3 , 2

5 , 1
2 , 2

3 , 3
4 , 5

6 , 8
9 ] for the polar code simulation in this paper. The

range of the signal-to-noise (SNR) ratio is −4 ≤ SNR ≤ 6. Denoting the total number of
program executions as L, and the times of AL > Λopt under a certain code length, code
rate, information-bit position, and signal-to-noise ratio during the execution process as
Num, we then define the polar code recognition conformity η as follows:

η =
Num

L
. (84)

According to the definition of η, when the code length, code rate, and information-bit
positions used in constructing Hn are completely consistent with the transmitted code-
word, η takes the maximum value. The specific algorithm is shown as Algorithm 1.

Algorithm 1: Polar code parameter recognition

Input : n′′ ; R′′ ; soft decision sequence r; numbers of code length, Nn; numbers of code rate, Nr;
execution numbers L

Output : n̂, R̂, Â
Initialization : Num = zeros(Nn, Nr), j = 0

1 for n′ = n′′ do
2 Construct codeword matrix R;
3 for R′ = R′′ do
4 j = j + 1;
5 construct A′ by GA algorithm with n′, R′;
6 construct Gn′ (A′) with n′, R′, and A′; calculate Hn′ ;
7 get statistics AL and threshold Λopt;
8 if AL < Λopt then
9 Num(j) = Num(j) + 1;
10 η(j) = Num(j)/L;
11 end if
12 end for
13 end for
14 Find all j that make η take the maximum value; number of j is lenj;
15 for i = 1 to i = lenj do
16 p1 = mod(j, Nr), p2 = f ix(j, Nr);
17 if p1 = 0 then
18 R′(i) = 8/9;
19 else
20 R′(i) = R(p2);
21 end if
22 n′(i) = n(p1 + 1);
23 end for
24 n̂ = min(n′), R̂= min(R′), construct Â by GA with n̂, R̂;
25 return n̂, R̂, Â
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4. Numerical Simulation

We first examined the algorithm validity and then executed the recognition algorithm
presented in Section 3.4 to examine the influence of different factors. Then, the performance
and complexity were compared with that of the algorithm presented in [15,16]. Unless
otherwise stated, the simulation takes the same parameters as in Section 3.4. Since this
paper examines the problem of polar code parameter recognition under the AWGN channel,
the simulations here were confined to the AWGN channel.

4.1. Algorithm-Validity Verification

Algorithm validity was evaluated in two cases: (1) with polar code length 256, code
rate 1/2, and SNR = 30 dB, and (2) with polar code length 256, code rate 2/3, and number
of transmitted codewords 2000. The results of the average likelihood ratio (LLR) and
threshold are presented in Figures 4 and 5.
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As shown in both figures, the abscissa “Oder” corresponds to j in Algorithm 1, so
the code length and rate corresponding to each abscissa can be calculated according to
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Section 3.4. For example, when the abscissa is 38, the average LLR exceeds the threshold
for the third time and the total number of code rates is 8. It is easy to calculate that
38÷ 8 = 4 · · · · · · 6, so the corresponding code rate is the sixth R′′ , 3

4 , and the code length is
the 4 + 1, or fifth, n′′ , 256. It can be seen from the figures that when the code length and
rate are not lower than the real code length and rate, respectively, the code length and rate
will be mistakenly identified as the real polar code parameters. This is due to the channel
polarization effect, which guarantees a certain structural relationship between a polar code
and polar codes in which the code length and rate are not lower than this code. Therefore,
we selected the minimum code length and rate corresponding to the maximum η as the
final result.

4.2. Influence of Code Rate

A recognition rate with lengths of 128, 256, and 512 is simulated when the code rate is
different. The number of codewords was 2000, the recognition rate was output every 0.5 dB,
and 2000 Monte Carlo calculations were performed. The results are shown in Figures 6–8.
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As shown in the figures, when the code rate decreases, the recognition performance is
improved, but this performance improvement decreases with increasing code length. This
is because when the code length is constant, the dimension of the dual space increases as
the code rate decreases, and the calculation of the statistic is closer to the theoretical value,
so the recognition performance is improved. Otherwise, the increase in the code length
will increase the total code weight of the dual-space vector, making the calculation of the
statistic more susceptible to bit errors. This slowly offsets the performance improvement
brought about by the reduction of the code rate. The longer the code length, the more
obvious the offset, and the recognition performance curves of different code rates become
increasingly closer.

4.3. Influence of Intercepted Codewords

Recognition rate curves under different numbers of codewords were simulated with
code rate 1/2, code length 64, and SNR range −2–4 dB. The recognition rate was output
once every 0.5 dB and 1000 Monte Carlo calculations performed. The results are shown in
Figure 9.
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As shown in the figure, with the increasing number of codewords, the recognition
performance of the algorithm continues to improve, but the degree of improvement is
increasingly lower. This is because the continuous increase in the number of codewords
makes the statistic approach the theoretical value gradually; the closer to the theoretical
value, the less the performance improvement.

4.4. Influence of Code Length

The recognition rate curve of the proposed algorithm was simulated under different
code lengths with 1/3 code rate, 2000 codewords, the SNR range of −2–8 dB, and the
recognition rate output every 0.5 dB. The results of 2000 simulations are shown in Figure 10.
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As shown in the figure, as the code length increases, the recognition performance of
the algorithm deteriorates. This is because the longer the code length and the larger the
code weight, the more easily the accuracy of the statistic calculation is affected by bit errors,
and thus the recognition performance decreases.

4.5. Comparison of Recognition Performance

In this section, we compared the recognition performance of the proposed algorithm
with that of algorithms in [15,16], which also studied polar code parameter recognition
under the AWGN channel in recent years. All the algorithms are executed with structured
and unstructured polar codes with a code length of 256 and a code rate of 1/3 and 2000
codewords, and the results are shown as follows. The curves of the algorithm proposed in
this study are marked as DS, and those of the algorithms advanced in [15,16] are marked
as [15,16] in Figures 11–13.
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As shown in the figures, when the parameters of structured polar codes are recognized,
the recognition performance of the algorithm proposed in this paper is better than that of
the algorithm advanced in [15] and worse than that in [16]. This is because the algorithm
advanced in [15] identifies the information bit positions one by one, which makes it
insensitive to the coding structure, and it suffers from errors involving correct information
bit numbers but incorrect bit positions. The algorithm proposed in this paper directly uses
the GA construction method to determine the number and distribution of the information-
bit index, which means that when the code length and rate are correctly identified, the
information-bit index must be correct. This helps avoid the recognition error with a
correct information-bit number with an incorrect index, while at the same time avoiding
calculating the judgment statistic row by row and reducing the number of calculations.
The computation comparison is analyzed in detail in the following subsection, and the
introduction of likelihood difference in [16] did boost performance.
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However, the algorithms advanced in [15,16] are invalid when recognizing the pa-
rameters of structured polar codes. This is because the recognition criteria of algorithms
advanced in [15,16] are only designed for structured polar codes, so they failed in terms of
unstructured polar code recognition.

4.6. Algorithm Complexity

Setting the amount of intercepted data as Len, when the traversal calculation reaches
the code length n′(nmin ≤ n′ ≤ nmax) and the code rate R′(Rmin ≤ R′ ≤ Rmax), the dual
matrix H is calculated after removing the n′(1− R′) rows in the construction matrix Gn′ ;
then, the statistics AL and thresholds Λopt of bLen/n′c codewords are calculated. The
dual matrix with fixed code length and rate is fixed, so it can be generated in advance and
read directly when needed. The calculation of statistics requires bLen/n′c · n′(1 − R′)
vector additions, bLen/n′c · n′(1 − R′) comparisons, and bLen/n′c · n′(1 − R′) vector
multiplications. For simplicity, one comparison is equivalent to one vector addition,
so the number of addition computations of the parameter recognition algorithm pro-

posed in this paper is
R′=Rmax

∑
R′=Rmin

n′=nmax
∑

n′=nmin

2bLen/n′c · n′(1− R′) and the number of multiplica-

tions is
R′=Rmax

∑
R′=Rmin

n′=nmax
∑

n′=nmin

bLen/n′c · n′(1− R′). Therefore, the complexity of the algorithm

proposed in this paper approximately increases linearly with increasing length of the
intercepted data and decreasing code rate. Regarding the algorithm proposed in [15],

the number of multiplications is
n′=nmax

∑
n′=nmin

20 · n′, the number of additions is
n′=nmax

∑
n′=nmin

Len · n′,

and the calculation amount increases approximately linearly with increasing length of
the intercepted data and code length. The algorithm proposed in [16] requires at most
5 ·Len+ 10 · n′+ (2 · n′− 1) ·Len multiplications and (Len/(2 · n′)− 1) · (2 · n′)2 additions.
Let the sum of the number of multiplications and additions be the complexity, and we show
how code length, code rate, and the received sequence length influence the complexity in
what follows. When the influence of code length and code rate on complexity is considered,
the length of the received sequence length is set to 10,000. When the influence of sequence
length on complexity is considered, a code length of 512 and a code rate of 1/2 are chosen.

As is shown in Figure 12, the complexities of the algorithms proposed in [15,16] are
not affected by code rate so they just have one curve, but the complexity of the algorithm
proposed in this paper is affected by code rate, so the complexity with every code rate
has a curve. All the complexities increase as the code length increases from 32 to 1024,
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but the complexity of the algorithm proposed in this paper increases only when the code
rate increases from 1/5 to 8/9. As shown in Figure 13, all the complexities increase as the
sequence length increases from 2000 to 10,000. Regardless, the complexity of the algorithm
proposed in this paper is the lowest.

5. Conclusions

To reduce the complexity and improve the performance of a polar code parameter
recognition algorithm, a traditional recognition scheme suitable for blind recognition of
polar code parameters in AWGN channels is proposed in this paper. The hypothesis test
of the empirical relationship is studied, the specific calculation process of statistics and
decision thresholds is given, and the effectiveness of the proposed algorithm and the
conditions of different code lengths, code rates, and number of received codewords are
simulated. Simulation results show that the recognition performance of the algorithm
proposed in this paper increases with the decreasing code length, increasing number of
intercepted codewords, and decreasing code rate.

Compared with the existing algorithms for AWGN channel simulation, the algorithm
proposed in this paper not only has the lowest simulation complexity, but also has good
recognition performance. More importantly, it is valid for unstructured polar codes, making
it outperform other algorithms. The research results in this paper can be applied to
simulation implementations in the fields of intelligent communication, communication
reconnaissance, and network countermeasures. In the future, we will study the problem
of polar code parameter recognition under other channels and consider adding machine-
learning algorithms to our studies.
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