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Abstract: Deep learning has achieved significant success in the field of hyperspectral image (HSI)
classification, but challenges are still faced when the number of training samples is small. Feature
fusing approaches based on multi-channel and multi-scale feature extractions are attractive for HSI
classification where few samples are available. In this paper, based on feature fusion, we proposed a
simple yet effective CNN-based Dual-channel Spectral Enhancement Network (DSEN) to fully exploit
the features of the small labeled HSI samples for HSI classification. We worked with the observation
that, in many HSI classification models, most of the incorrectly classified pixels of HSI are at the
border of different classes, which is caused by feature obfuscation. Hence, in DSEN, we specially
designed a spectral feature extraction channel to enhance the spectral feature representation of the
specific pixel. Moreover, a spatial–spectral channel was designed using small convolution kernels
to extract the spatial–spectral features of HSI. By adjusting the fusion proportion of the features
extracted from the two channels, the expression of spectral features was enhanced in terms of the
fused features for better HSI classification. The experimental results demonstrated that the overall
accuracy (OA) of HSI classification using the proposed DSEN reached 69.47%, 80.54%, and 93.24%
when only five training samples for each class were selected from the Indian Pines (IP), University
of Pavia (UP), and Salinas Scene (SA) datasets, respectively. The performance improved when the
number of training samples increased. Compared with several related methods, DSEN demonstrated
superior performance in HSI classification.

Keywords: HSI classification; small sample; CNN; dual channel network model; 3D–2D convolution

1. Introduction

Hyperspectral remote sensing is an important research field in remote sensing sci-
ence [1]. Typically, the number of spectral segments and the data size of HSI are much
greater than that of ordinary images, thereby presenting challenges to the storage and
analysis of HSI. However, due to the rich spatial and spectral information contained, HSI
plays an especially important role in a wide range of applications, such as vegetation
research [2], fine agriculture [3,4], agricultural product detection [5], and environmental
monitoring [6]. The classification and recognition of ground cover based on HSI represents
an important step in promoting the application of hyperspectral remote sensing technology.
HSI classification is used to determine the class of each pixel of HSI and has become a hot
research topic in the field of hyperspectral remote sensing [7].

The traditional HSI classification methods include support vector machine (SVM) [8],
random forest [9,10], etc. Due to the spectrum of HSI, the Hughes phenomenon easily
occurs in HSI classification. Therefore, researchers proposed various methods for the
dimensionality reduction of HSI, such as PCA [11], PPCA [12], and ICA [13]. Dimension-
ality reduction can effectively eliminate the redundancy of HSI data, thereby extracting
HSI features better. In the traditional HSI classification, the classification method and the
intermediate parameter setting depend on past experience, resulting in an unsatisfactory
classification result and robustness.
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At present, deep learning technology boasts significant successes in many tasks, such
as speech recognition [14], natural language processing [15], and computer vision [16].
It also has excellent performance in remote sensing applications such as optical remote
sensing, radar remote sensing, and aerial remote sensing [17]. Compared to traditional
methods, deep learning methods can automatically learn features from HSI, and use
gradient descent to update model parameters conveniently.

1.1. Related Work

In 2006, Hinton et al. proposed the Deep Belief Network (DBN) [18], and Chen et al.
applied the deep learning model to HSI classification for the first time [19]. Auto-encoders
based on sparse constraint were used for the classification of hyperspectral data [20].
Zhong et al. proposed a variety of DBNs [21] and obtained good classification results.
Without the use of labeling samples, DBN was used for HSI spectral space classification.
However, these methods cannot effectively extract the spatial feature of HSI. Because
convolutional neural networks (CNNs) have the characteristics of local connection and
parameter sharing, the methods based on CNN not only significantly reduce the number
of parameters in the deep learning model, but also effectively extract the spectral and
spatial features contained in HSI samples [22,23]. Therefore, the CNN-based method has
excellent performance in HSI classification and is favored by many researchers. Recently,
2DCNN (two-dimension CNN) and 3DCNN (three-dimension CNN) were adopted for
HSI classification. The methods based on 2DCNN include DR-CNN [24], DC-CNN [25],
HSI-DeNet [26], CNNDH [27], MCMS+2DCNN [28], etc. 2DCNN can effectively extract
spatial features of HSI. M.E. Paoletti et al. proposed a novel 3D convolution method [29],
in which the depth of the convolution kernel is set to the same depth of the data cube
and the extracted feature dimensions can be determined by controlling the number of
convolution kernels. Sellami, Akrem et al. combined adaptive dimension reduction
(ADR) and 3DCNN for HSI classification [30]. Liu et al. proposed a central attention
network for HSI classification [31]. The 2DCNN and 3DCNN can also be combined to
build classification models. Roy S K proposed HybridSN [32], which consists of 3DCNN
and 2DCNN, to improve the performance of HSI classification. HSI classification can
also be implemented by utilizing image reconstruction technology [33–35]. Li et al. [33]
proposed an HSI reconstruction model based on deep CNN firstly, and then classified the
reconstructed HSI image by utilizing the efficient extreme learning machine. There also
exist some graph convolutional network methods that combine CNN and graphs for HSI
classification [36].

Moreover, researchers resorted to the feature fusion strategy for better HSI classifica-
tion. Feature fusion can provide more discriminative features from HSI and improve the
performance of HSI classification. Feature fusion based on multi-channel [37–39] generally
uses two or more convolutional channels to extract features, and then fuses them together
for HSI classification. Feature fusion based on multiple data sources [40–42], such as HSI
and LiDAR, is also widely adopted. In the category of multi-scale feature fusion [43,44],
HSI features are extracted using convolution kernels of different sizes firstly, which are
then fused together.

Typically, in the field of HSI classification, most of the traditional deep learning models
perform well with sufficient labeled training samples, but fail to achieve satisfactory results
when fewer samples are available. The similarity between HSI spectra under fewer samples
seriously affects the classification performance of the model. However, large HSI sample
acquisition is difficult and the cost of sample labeling is high. Moreover, overfitting is often
accompanied by deep learning, especially when the number of samples is low. Hence, how
to extract high discrimination features of HSI when only a few samples are available for
HSI classification is a problem that needs to be solved urgently. Researchers have proposed
various solutions to improve the performance of HSI classification in the case of fewer HSI
samples, such as using unsupervised methods to select the band with discrimination [45]
and extracting the features of HSI after dimensionality reduction [46]. Other methods, such
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as meta-learning [47], transform learning [48] and cross-scene classification [49], have been
implemented to solve the problem of HSI classification with fewer samples. By extracting
discriminative features, feature fusing approaches that are multi-channel and multi-scale
are also attractive for HSI classification when the number of training samples is low.

1.2. Contribution and Paper Organization

In order for HSI classification to perform well when there are only a few HSI samples,
in this paper, besides the channel design for extracting joint spatial–spectral features
using small convolution kernels, we focused on the spectral feature of specific pixels,
and designed a specific HSI spectral feature extraction channel using 1 × 1 3D and 2D
convolution to avoid the weakening of the pixel’s spectral feature representation. Moreover,
the joint spatial–spectral features and the spectral features extracted by the designed model
were fused with a plastic layer to enhance classification performance.

The rest of the paper is organized as follows. Section 2 presents features such as
hybrid convolution, Dropout, and Dropblock used in the proposed model. The details and
parameter settings of the proposed model are introduced in Section 3. Section 4 reports the
experimental setup and results. Section 5 provides some conclusions.

2. Methodology
2.1. 3D–2D Hybrid Convolution

Two dimensional convolution for HSI classification [50], as shown in Figure 1, is
generally divided into the following three steps: data dimension reduction (DR), feature
extraction, and classification. DR is performed to reduce the spectral dimension of original
HSI data. The main purpose is to reduce the number of HSI spectra, remove the redundancy
between spectra, and facilitate subsequent feature extraction. Feature extraction uses a
convolution operation to extract features from data. The 2D convolution operation for
reduced HSI is similar to that for the ordinary image, except the difference in the number of
channels. The number of channels in reduced HSI depends on the dimensionality reduction
operation. The 2D feature information of the reduced HSI can be obtained after several
runs of convolution operations. Classification refers to the classification function used,
such as SoftMax, to analyze the feature extracted from the convolution layer and to obtain
specific classes. The 2D convolution model is simple and the number of parameters is small,
but the extracted features lack the spectral dimension, thereby reducing the classification
performance for HSI.
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Figure 1. HSI Classification Based on 2DCNN.

3DCNN is used to extract the spatial–spectral joint features of HSI [51], as shown in
Figure 2. Unlike 2D, 3D convolution can be directly applied on the raw HSI data, and can
conduct convolution in both spatial and spectral dimensions. Compared to 2D convolution,
the features obtained from 3D convolution contain additional spectral dimension and
can be used to improve classification performance. However, the use of 3DCNN has the
problems of increased model computation, a large number of parameters, and difficult
training process.
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There are certain shortcomings in using 2D or 3D convolution alone. To solve this
problem, many researchers proposed the use of 3D–2D [52,53] hybrid convolution, as
shown in Figure 3. Firstly, 3DCNN is used to extract the spatial–spectral joint features.
Then, the last two dimensions of the features extracted by the 3D convolution layer are
combined to achieve dimension reduction. The data after dimension reduction are used as
the input of the 2D convolution layer to further extract more abstract spatial features. The
use of hybrid convolution not only ensures the feature extraction ability, but also reduces
the complexity and number of parameters of the model, which is easier for model training.
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2.2. Dropout and Dropblock

Overfitting is a problem that is encountered in deep learning. When the number
of training samples is low, the model learns the unique features from a few samples
and ignores more general features, resulting in good performance in training and poor
performance in testing. To solve this problem, researchers proposed some solutions, in
which Dropout [54] was widely used in the application of deep learning due to its simple
implementation and excellent results.

During forward propagation with Dropout, a neuron will stop working at a certain
probability (Figure 4), which can make the model more generalizable, because the model
does not heavily rely on specific local features. Dropout makes multiple neurons not
necessarily appear in a dropout-based network every time. In this way, the updating of
weights no longer depends on the joint action of hidden nodes with fixed relationships,
which prevents some features from being effective under other specific features. Dropout
forces the network to learn more robust features to achieve the purpose of enhancing the
generalizability of the model. Dropout is generally used for the full connection layer in the
deep learning model, rather than the convolution layer. This is because the convolution
kernel corresponds to a region. If only a few neurons are stopped, the convolution kernel
can learn information from the adjacent neurons, which does not improve the generalizabil-
ity of the model. Dropblock [55] omits multiple neurons in continuous regions, as shown
in Figure 5, the size of which are equal to that of the convolution kernel in the current
layer. When the convolution kernel extracts a feature, it will lose the feature information of
the relevant region. The network will focus on learning the features of other regions for
classification, so as to improve the generalizability of the model.
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The proposed model extracts the features of HSI using two convolution channels to
improve the performance of HSI classification, and uses Dropblock in the convolution
layer and Dropout in the full connection layer to manage the overfitting problem. The two
feature extraction channels first use 3D convolution to extract features, and then carry out
2D convolution on the extracted features to further extract deeper features, which not only
extracts discriminative features, but also enhances the generalizability of the model.

3. Proposed Model
3.1. The Design of DSEN

As shown in Figure 6, the designed DSEN has two convolution channels. The upper
channel is a spatial–spectral extraction channel, by which the spatial–spectral joint feature
of HSI can be extracted from the data cube after dimension reduction. The lower channel is
a spectral extraction channel focusing on the spectral feature representation of a specific
pixel, by which the spectral features can be extracted from HSI. By adjusting the fusion
proportion of the features extracted from the two feature extraction channels, the expression
of spectral features can be enhanced in the fused features for better HSI classification. The
model is mainly composed of the following four modules: data preprocessing, feature
extraction, feature fusion, and classification. These modules are described in detail below.

3.2. Data Preprocessing

The raw HSI cannot be directly used as the input of the proposed model, and needs to
be processed first, as shown in Figure 7. It was assumed that the size of raw HSI data is
W × H × B, where W and H are the length and width of the HSI, and B is the number of
spectral bands.
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For the spatial-spectral extraction channel, the size of input data is S× S× L, where
L is much smaller than B, S is the length/width of the cube, L is the number of spectral
segments. The classification refers to obtain the class of the central pixel of the data cube.
In order to avoid the Hughes effect, PCA is used to reduce the dimension of the raw
data. Assuming that L spectral bands are retained from the raw HSI, and hence the size
of reduced HSI is W × H × L. In order to make full use of the data, mirror padding is
firstly carried out on the four sides of the reduced HSI to obtain a data cube with size of
(W +

⌊
S
2

⌋
)× (H +

⌊
S
2

⌋
)× L, and then the data are divided into cubes with size of S× S× L.

Finally, the number of cubes is equal to the number of original pixels, and a total number
of W × H data cubes are obtained.

For the spectral extraction channel, the input data size was 1× 1× B. Because only
spectral features were extracted from the spectral channel, the original data were stan-
dardized based on the spectral dimension, rather than global standardization. The pur-
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pose of this was to maximize the spectral dimension features. The standardized formula
(Equation (1)) is:

x′ =
x− µ

δ
(1)

where x represents the original data, µ is the average, and δ is the standard deviation. The
standardized data were divided into W × H blocks with a size of 1× 1× B.

3.3. Feature Extraction

As shown in Figure 6, two extraction channels of the proposed model were imple-
mented based on 3D–2D hybrid convolution, with similar structural settings as shown in
Figure 8. Each extraction channel consists of five convolution modules, including three
3D convolution modules and two 2D convolution modules. Each 3D convolution module
contains a convolution layer, Batch Normalization layer [56], RELU activation function
layer, and 3D pooling layer. The Batch Normalization layer and RELU function effectively
alleviate the problem of gradient disappearance, and accelerate the convergence speed of
the model. The pooling layer retains the main features and reduces the calculation cost. The
spatial–spectral extraction channel is similar to other CNN-based methods, using multiple
convolutional layers to extract features [32]. In this paper, a 3D convolution kernel of size
3 × 3 instead of a larger size was used in the spatial–spectral extraction channel. Compared
to a large convolution kernel, multiple small convolution kernels have a stronger feature
extraction ability and lower computation cost.
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Figure 8. Feature extraction.

It should be noted that in the design of the spectral channel, multiple 1 × 1 3D
convolution kernels were adopted to extract the spectral features of HSI. The reason is
that spectral features of neighbor pixels will be introduced when using large convolution
kernels to extract HSI spectral features. When the number of samples is sufficient, the
unrelated features brought by neighboring pixels is insignificant. However, if the number
of samples is scarce, these will interfere with the expression of the spectral features of the
specific pixel, thereby affecting classification performance. Using a convolution kernel
with size 1 × 1 makes the model only focus on the specific pixel when extracting spectral
features, which can solve the problem of introducing unrelated information and enhance
the classification performance of the model.

As shown in Figure 8, there a reshape operation occurs after the last 3D convolution
module. The purpose is to transform the output calculated by the 3D convolution module
into the format that conforms to the subsequent 2D convolution module. The last two
dimensions of the features extracted by 3D convolution are merged. The 2D convolution
module contains a 2D convolution layer, batch normalization layer, and RELU function.
The reason for removing the pooling layer is that the feature size is small after multiple
downsampling operations. In the 2D convolution module, the size of the convolution
kernel is 1 × 1, which can effectively integrate feature information. After the previous
reshape operation, the number of channels is large, and the number of feature channels can
be reduced by controlling the number of 2D convolution kernels.

3.4. Feature Fusion and Classification

The features extracted by the two extraction channels can be turned into a one-
dimensional vector after flattening the layer. In order to obtain better classification results,
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the features extracted from the two extraction channels need to be fused. The method for
this is to splice the two one-dimensional features into a new one-dimensional vector, and
the dimension number of the new feature vector is the sum of the two feature dimensions.

Since the input data of the two extraction channels are different and the size of the
convolution kernel is different, the feature dimensions obtained by the convolution layer
are quite different, and the dimension of the feature extracted by the spatial–spectral
channel is much larger than that of the spectral channel. If the features extracted from
two extraction channels are directly fused, the feature expression of the spectral channel is
weakened. In order to avoid this problem, this paper adopted the method described below.
The features extracted by the two extraction channels are, respectively, passed through
a fully connected layer first, and the output of the fully connected layer is then fused.
Therefore, the dimension of the features extracted by the two channels can be determined
by controlling the number of neurons in the fully connected layer. In this paper, this layer
is referred to as the plastic layer. The features are further fused after passing through the
plastic layer (Figure 9), and then are used to obtain the classification result by using the
SoftMax function.
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3.5. Parameter Setting

Table 1 shows the basic parameters of the two feature extraction channels and the fully
connected layers of the model, in which C represents the number of classes.

Table 1. Parameters of Spatial–Spectral channel, Spectral channel, and Fully connected layers.

Spatial–Spectral Channel Spectral Channel Fully Connected Layers

Layer Channels/P Size Layer Channels/P Size Layer Type Parameter

3DConv_1 16 1 × 1 × 5 3DConv_1 32 3 × 3 × 3 Dropout Dropout 0.2

AvgPool_1 / 1 × 1 × 2 AvgPool_1 / 2 × 2 × 2 Dense_1 Fullyconnected +
ReLU 128

DropBlock_1 0.15 1 × 1 × 3 DropBlock_1 0.25 3 × 3 × 3 Dropout Dropout 0.2

3DConv_2 32 1 × 1 × 3 3DConv_2 32 3 × 3 × 5 Output Fullyconnected +
softmax C

AvgPool_2 / 1 × 1 × 2 AvgPool_2 / 2 × 2 × 2
DropBlock_2 0.15 1 × 1 × 3 DropBlock_2 0.25 3 × 3 × 3
3DConv_3 64 1 × 1 × 1 3DConv_3 64 3 × 3 × 3
Dropout 0.2 / Dropout 0.2 /

2DConv_1 256 1 × 1 2DConv_1 128 1 × 1
2DConv_2 128 1 × 1 2DConv_2 64 1 × 1

Flatten / / Flatten / /
Dropout 0.2 / Dropout 0.2 /
Plastic / 256 Plastic / 256



Electronics 2022, 11, 2540 9 of 19

4. Experiments and Discussion
4.1. Experimental Data Sets

This paper used three public hyperspectral image datasets to test the classification
performance of the proposed model, which are Indian Pines, University of Pavia and
Salinas Scene, and are shown in Table 2 in detail.

Table 2. Details of Indian Pines, University of Pavia, and Salinas Scene.

Indian Pines Dataset University of Pavia Dataset Salinas Scene Dataset

Land Cover Type Samples Land Cover Type Samples Land Cover Type Samples

Alfalfa 46 Asphalt 6631 Brocoli_green_weeds_1 2009
Corn-notill 1428 Meadows 18,649 Brocoli_green_weeds_2 3726
Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow_rough_plow 1394
Grass/Pasture 483 Painted metal sheets 1345 Fallow_smooth 2678

Grass/Trees 730 Bare Soil 5029 Stubble 3959
Grass/Pasture-mowed 28 Bitumen 1330 Celery 3579

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes_untrained 11,271
Oats 20 Shadows 947 Soil_vinyard_develop 6203

Soybeans-notill 972 Corn_senesced_green_weeds 3278
Soybeans-min 2455 Lettuce_romaine_4wk 1068

Soybeans-clean 693 Lettuce_romaine_5wk 1927
Wheat 205 Lettuce_romaine_6wk 916
Woods 1265 Lettuce_romaine_7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard_untrained 7268
Stone-steel towers 93 Vinyard_vertical_trellis 1807

Total 10,349 Total 42,776 Total 54,129

The Indian Pines (IP) dataset was collected using the AVIRIS sensor in the Indian
Pines experimental field in northwest Indiana. The size of pixels is 145 × 145, and there are
224 spectral bands. The wavelength range is 400–2500 nm. This dataset mainly includes
about two-thirds agriculture, one-third forest, and a small part natural vegetation. The data
excluding crops with coverage less than 5% contain two roads, one railway, low-density
houses and buildings, and are divided into 16 classes. The number of bands is reduced to
200 by removing 24 bands in water coverage area.

The University of Pavia (UP) dataset was obtained using an ROSIS sensor during flight
over Pavia, northern Italy. The Pavia University scene is composed of 610 × 340 pixels
with 103 spectral bands located in the wavelength range of 430–860 nm. The ground cover
is divided into 9 urban land cover classes.

Salinas Scene (SA) dataset was captured by AVIRIS sensor at Salinas Valley, California.
The data contains 512 × 217 pixels with a spatial resolution of 3.7 m and a total of 224 spec-
tral bands. The data has 204 spectral bands after removing 20 water absorption bands. This
dataset is divided into 16 classes, mainly composed of crops.

4.2. Experimental Setup

The training and testing of network models in this paper were carried out on the same
server. The server hardware configuration was as follows: Intel (R) Xeon(R) Silver 4114 CPU
@ 2.20GHz, 64GB RAM, and RTX2060 GPU with 6GB memory. Software configuration was
as follows: Windows 10 [57], Python 3.7.0 [58], Tensorflow 2.3.0 [59], and Cuda 10.1 [60].

In order to verify the effectiveness of the proposed model, this paper used the overall
accuracy (OA), average accuracy (AA) and Kappa coefficient to evaluate the HSI classifi-
cation performance. OA is the ratio of the number of correctly classified samples to the
total test sample. AA represents the mean classification accuracy of all classes. The Kappa
co-efficient is used to test consistency and measure classification accuracy. DSEN was
compared with HybridSN [32], MAPC [10], MFFN [44] and DC-CNN [39]. The dataset
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was randomly divided into 70% for training and 30% for testing first, and then the upper
limit samples for each class were set to 5, 10 and 15, respectively, when selecting training
samples. In other words, the number of training samples for each class was less than or
equal to 5, 10 and 15 in the experiments. In the training process, the optimizer was Adam,
the learning rate was 0.001, the decay rate was 0.000001, and the batch size was 16.

The plastic layer in the model controls the proportion of feature fusion of the two
channels, and different fusion ratios have different effects on the classification performance.
In order to clarify the influence, a series of experiments were conducted on different
fusion ratios of the spatial–spectral channel (window size of input data: 25 × 25) and the
spectral channel. The experimental results of model testing are presented in Table 3. The
experimental result for the classification performance was optimum when the proportion
was 1:1. When changing the fusion proportion of the two categories of features, the
performance experienced different degrees of decline, so we selected 1:1 as the fusion rate,
and this setting was used in all subsequent experiments.

Table 3. Classification performance of different fusion ratios (OA, Training sample = 10).

Dataset 4:1 3:1 2:1 1:1 1:2 1:3 1:4

IP 75.31 76.49 77.02 77.94 76.61 75.15 74.61
UP 85.19 86.66 87.51 88.53 86.18 85.35 84.02
SA 94.45 95.41 95.98 96.35 95.45 94.13 93.06

In order to confirm the influence of the window size S of the input data for the spatial–
spectral channel, experiments were carried out with different values of S. The number
of training samples in the experiment was 10. The classification results of model testing
are listed in Table 4. The time consumed with different S is shown in Table 5. With the
increase in S, the performance of the model improved. The performance improvement
is obvious with S from 21 × 21 to 27 × 27, but it also increases the complexity of the
model, the amount of calculation required, and the time consumed. When S = 27 × 27,
compared to S = 25 × 25, the performance is slightly improved, but the time consumption
is obviously increased. Therefore, in the subsequent experiments, the window size for the
spatial–spectral channel is set to 25 × 25.

Table 4. Performance of different window sizes (OA).

Dataset 21 × 21 23 × 23 25 × 25 27 × 27

IP 71.80 75.23 77.75 77.89
UP 79.41 84.50 88.05 88.84
SA 92.18 94.06 96.31 96.01

Table 5. The total training and testing time of different window sizes (s).

Dataset 21 × 21 23 × 23 25 × 25 27 × 27

IP 87.03 93.04 99.12 120.68
UP 52.18 52.75 57.00 73.56
SA 74.47 79.41 85.70 98.31

4.3. Experimental Results and Analysis
4.3.1. Experimental Result

Figure 10 shows the influence of a different number of training samples on classifica-
tion accuracy for each dataset. Figure 11 shows the training process of DSEN in a different
number of training samples. The model begins to converge when epoch = 50, which proves
that DSEN has the ability of rapid convergence. When epoch = 100, the loss and accuracy
of the model tend to remain stable without obvious fluctuations. With the increase in the
number of training samples, the fluctuation of loss is lower, and the convergence is faster.
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Due to the 3D–2D convolution used by DSEN, the number of parameters also reduced.
Table 6 shows the total training (10 training samples) and testing time per model. Compared
with MAPC, the time consumption of the model based on CNN significantly reduced. The
time consumption of DC-CNN was lowest because it only uses 2D convolution and 1D
convolution. Compared with HybridSN, DSEN has fewer parameters, but increased time
consumption. This is because DSEN has more network layers and a more complex model
structure.
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Although MFFN also uses 3D convolution to extract features, there is no approach to
reduce overfitting. The model performs well when the number of samples is sufficient, but
will aggravate the overfitting phenomenon when few samples are available. Therefore, the
final performance of MFFN is weakened.

Table 6. Total Model Training and Testing Time (s).

Model Indian Pines University of Pavia Salinas Scene

HybridSN 90.20 34.18 54.43
MAPC 706.67 1541.16 1469.79
MFFN 171.88 102.36 136.21

DC-CNN 32.33 30.44 30.46
DSEN 98.10 58.12 87.32

DC-CNN is also a dual-channel design, which is divided into two channels of 2D
convolution and 1D convolution. Its performance is stronger than HybridSN and MFFN,
which also proves that, when the sample number is lower, enhancing the expression of
spectral features can improve the classification performance.

4.3.2. Comparison and Analysis

To investigate the role of spatial–spectral and spectral channels in DSEN, this paper
conducted experiments relying on a single channel. In the experiment, only one channel
was used to extract features for classification. The experimental results were compared
with that of Dual-channel, as shown in Table 7.

Table 7. Experimental results using spatial–spectral channel, spectrum channel, and dual-channel
under 5, 10, and 15 training samples per class from IP, UP, and SA, respectively (OA).

Sample
Spatial-Spectral Spectral Dual-Channel

IP UP SA IP UP SA IP UP SA

5 61.59 75.77 91.87 45.21 61.27 72.31 69.47 80.54 93.24
10 71.01 83.80 94.17 50.19 68.35 75.51 77.94 88.53 96.35
15 78.55 87.69 95.71 54.03 72.91 84.51 83.94 90.64 97.61

Spatial–spectral joint features are extracted using the spatial–spectral channel. The
joint features are very effective for HSI classification. So, the performance gap between the
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spatial–spectral channel and dual-channel is significantly smaller than that between the
spectral channel and dual-channel.

Although the classification performance of the feature extracted by the spectral channel
is not satisfactory when the number of HSI samples is low, spectral features can be combined
with other features to enhance the expression of spectral features, which can significantly
improve the classification performance of the model. It also proves that fully exploiting the
spectral information of pixels is effective in HSI classification under scarce samples.

Table 8 provides the classification performance of model testing. Among the methods,
MAPC is based on random forest and the rest are based on CNN. Among the CNN-based
methods, DSEN demonstrated the best integrated classification performance and MFFN
had the worst performance. The multi-channel based DSEN and DC-CNN performed better
than the single-channel based HybridSN and MFFN, which indicates that the multi-channel
design can improve the classification performance of the model. Compared with HybridSN
and MFFN, MAPC and DSEN have a significant lead regardless of the number of training
samples. Compared with MAPC, DSEN leads in terms of performance when the samples
are extremely small, such as when sample = 5 or 10. When the number of samples increases
to 15 for each class, the performance gap between the two methods is very small, but DSEN
still has a marginal advantage.

Table 8. Classification results of models.

Training
Sample Model

Indian Pines University of Pavia Salinas Scene

OA (%) AA (%) Kappa OA (%) AA (%) Kappa OA (%) AA (%) Kappa

5

HybridSN 57.25 72.54 0.53 71.38 72.24 0.67 86.93 89.06 0.86
MAPC 67.27 78.32 0.63 76.20 79.33 0.69 92.57 94.84 0.89
MFFN 44.44 57.75 0.39 56.94 59.97 0.51 59.25 59.43 0.56

DC-
CNN 60.33 72.77 0.54 73.52 74.76 67.59 89.70 90.72 0.88

DSEN 69.47 81.11 0.66 80.54 83.63 0.78 93.24 94.09 0.93

10

HybridSN 65.50 76.49 0.61 77.72 79.86 0.75 94.18 94.87 0.94
MAPC 76.14 80.59 0.75 83.58 86.65 0.81 96.04 97.01 0.96
MFFN 58.24 73.06 0.54 58.22 64.34 0.53 80.15 82.80 0.79

DC-
CNN 77.88 85.61 0.75 82.14 85.20 0.80 95.42 93.51 0.92

DSEN 77.94 86.82 0.75 88.53 90.00 0.87 96.35 97.10 0.96

15

HybridSN 66.06 79.24 0.62 86.88 89.05 0.85 95.31 95.98 0.95
MAPC 82.71 90.06 0.80 89.78 92.35 0.89 97.24 97.09 0.96
MFFN 68.32 79.67 0.65 70.08 75.89 0.66 88.87 90.32 0.88

DC-
CNN 79.94 90.12 0.78 87.57 89.58 0.86 96.28 96.95 0.96

DSEN 83.94 91.55 0.82 90.64 91.45 0.89 97.61 97.96 0.97

Figures 12–14 show the classification results of DSEN trained by different sample
numbers on three datasets, respectively. The overall classification accuracy improves signif-
icantly as the number of training samples increases, and the correct rate for the individual
class also improves. In some of the datasets, there is a large number of classification errors
for one category with a training sample size of 5. This situation improves significantly as
the training sample size increases. It is worth noting that most of the incorrectly classified
pixel points are at the border of the classes, which is because the spatial neighborhood
information of the pixel points is used in the classification, thereby the feature information
of other classes is mixed in the feature extraction of the specific pixels, and affects the
correct classification rate of the pixels by the model.
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(a) Sample = 5; (b) Sample = 10; (c) Sample = 15.

Figures 15–17 show the classification results of each model on three datasets with
training sample = 10, respectively. From the results, it can be seen that DSEN is superior
to other methods in terms of overall classification accuracy, but it is worth noting that the
accuracy of each method varies significantly between different classes. For example, on
the UP dataset, DSEN is weaker than HybridSN and DC-CNN for the classification of Bare
Soil, but the overall accuracy is better. The experimental results show that although the
proposed method is relatively weak in a few cases, the overall classification performance is
superior to the compared methods in almost all cases.
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5. Conclusions

This paper designed a novel dual-channel network model including two convolutional
channels, in which one channel utilized 3D–2D hybrid convolution to extract the joint
spatial–spectral features and the other channel used 1 × 1 3D and 2D convolution to
extract the spectral features. The performance of the model for HSI classification with few
samples improved after enhancing the expression of spectral features based on feature
fusion. Through the experiments performed on three public datasets, the results revealed
that DSEN has significant advantages in HSI classification performance compared with
several other deep learning methods, thereby proving the effectiveness of our method.
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