Intelligent Network Solution for Improved Efficiency in 6G-Enabled Expanded IoT Network
Abstract
:1. Introduction
1.1. Need and Motivation
1.2. Promising Technologies
1.3. Related Work
1.4. Contributions and Outcomes
- An energy-aware network design is proposed based on a cell-free approach where a large number of connected devices are served by a large number of APs deployed in a given coverage area.
- A power consumption model for the proposed network strategy is defined, and all the power components related to data transmission, circuitry associated with the front-end RF transceiver chains, signal processing, site-cooling and backhaul are computed for the considered design model.
- Using the proposed power consumption model, the energy efficiency analysis is carried out for different receive combining schemes and the dependency on various other parameters such as pilot reuse ratio and AP density is elaborated.
- The proposed system is also evaluated for average spectral efficiency, area throughput and total power consumed.
- In the end, the impact of tradeoff between energy efficiency and area throughput on the system performance is evaluated.
2. System Model
2.1. Uplink Training Phase
2.2. Uplink Payload Data Transmission
3. Power Consumption Model and Energy Efficiency Analysis
Power Consumption Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5G | Sixth Generation |
6G | Sixth Generation |
IoT | Internet-of-Things |
AP | Access Points |
BS | Base Station |
MIMO | Multiple Input Multiple Output |
mMIMO | Massive Multiple Input Multiple Output |
RF | Radio Frequency |
PPP | Poisson Point Process |
H-PPP | Homogenous Poisson Point Process |
CPU | Central Processing Unit |
IRS | Intelligent Reflecting Surfaces |
WIPT | Wireless Information and Power Transfer |
SWIPT | Simultaneous Wireless Information and Power Transfer |
IoE | Internet-of-Everything |
SE | Spectral Efficiency |
EE | Energy Efficiency |
SNR | Signal-to-noise Ratio |
SINR | Signal-to-noise-plus-interference ratio |
CSI | Channel State Information |
LSFD | Large Scale Fading Decoding |
MR | Maximal Ratio |
PMMSE | Partial Minimum Mean Square Error |
PRZF | Partial Regularized Zero Forcing |
References
- Cui, S.; Farha, F.; Ning, H.; Zhou, Z.; Shi, F.; Daneshmand, M. A Survey on the Bottleneck Between Applications Exploding and User Requirements in IoT. IEEE Internet Things J. 2022, 9, 261–273. [Google Scholar] [CrossRef]
- Moya Osorio, D.P.; Ahmad, I.; Sánchez, J.D.V.; Gurtov, A.; Scholliers, J.; Kutila, M.; Porambage, P. Towards 6G-Enabled Internet of Vehicles: Security and Privacy. IEEE Open J. Commun. Soc. 2022, 3, 82–105. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1117–1174. [Google Scholar] [CrossRef]
- Malik, U.M.; Javed, M.A.; Zeadally, S.; ul Islam, S. Energy efficient fog computing for 6G enabled massive IoT: Recent trends and future opportunities. IEEE Internet Things J. 2021, 9, 14572–14594. [Google Scholar] [CrossRef]
- Verma, S.; Kaur, S.; Khan, M.A.; Sehdev, P.S. Toward Green Communication in 6G-Enabled Massive Internet of Things. IEEE Internet Things J. 2021, 8, 5408–5415. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, K.; Hossain, E. Green Internet of Vehicles (IoV) in the 6G Era: Toward Sustainable Vehicular Communications and Networking. IEEE Trans. Green Commun. Netw. 2022, 6, 391–423. [Google Scholar] [CrossRef]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A Survey on Green 6G Network: Architecture and Technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Nguyen, V.M.; Kountouris, M. Performance Limits of Network Densification. IEEE J. Sel. Areas Commun. 2017, 35, 1294–1308. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.H.; Quek, T.Q.S.; Lee, J. Heterogeneous Cellular Networks with LoS and NLoS Transmissions—The Role of Massive MIMO and Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 7996–8010. [Google Scholar] [CrossRef]
- Albreem, M.A.; Juntti, M.; Shahabuddin, S. Massive MIMO Detection Techniques: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3109–3132. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO networks: Spectral, energy, and hardware efficiency. Found. Trends Signal Process. 2017, 11, 154–655. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Gong, J.; Zhou, S.; Zhou, Z. Networked MIMO with Fractional Joint Transmission in Energy Harvesting Systems. IEEE Trans. Commun. 2016, 64, 3323–3336. [Google Scholar] [CrossRef]
- Björnson, E.; Zakhour, R.; Gesbert, D.; Ottersten, B. Cooperative Multicell Precoding: Rate Region Characterization and Distributed Strategies with Instantaneous and Statistical CSI. IEEE Trans. Signal Process. 2010, 58, 4298–4310. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison with the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [Google Scholar] [CrossRef]
- Ammar, H.A.; Adve, R.; Shahbazpanahi, S.; Boudreau, G.; Srinivas, K.V. User-Centric Cell-Free Massive MIMO Networks: A Survey of Opportunities, Challenges and Solutions. IEEE Commun. Surv. Tutor. 2022, 24, 611–652. [Google Scholar] [CrossRef]
- Balachandran, K.; Kang, J.H.; Karakayali, K.M.; Rege, K.M. Network-centric cooperation schemes for uplink interference management in cellular networks. Bell Labs Tech. J. 2013, 18, 23–36. [Google Scholar] [CrossRef]
- Chen, Z.; Björnson, E. Channel Hardening and Favorable Propagation in Cell-Free Massive MIMO with Stochastic Geometry. IEEE Trans. Commun. 2018, 66, 5205–5219. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef]
- Mai, T.C.; Ngo, H.Q.; Duong, T.Q. Downlink Spectral Efficiency of Cell-Free Massive MIMO Systems with Multi-Antenna Users. IEEE Trans. Commun. 2020, 68, 4803–4815. [Google Scholar] [CrossRef]
- Burr, A.; Islam, S.; Zhao, J.; Bashar, M. Cell-free Massive MIMO with multi-antenna access points and user terminals. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–4 November 2020; pp. 821–825. [Google Scholar] [CrossRef]
- Mai, T.C.; Quoc Ngo, H.; Duong, T.Q. CELL-FREE MASSIVE MIMO SYSTEMS WITH MULTI-ANTENNA USERS. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018; pp. 828–832. [Google Scholar] [CrossRef]
- Sanguinetti, L.; Björnson, E.; Hoydis, J. Toward Massive MIMO 2.0: Understanding Spatial Correlation, Interference Suppression, and Pilot Contamination. IEEE Trans. Commun. 2020, 68, 232–257. [Google Scholar] [CrossRef]
- Attarifar, M.; Abbasfar, A.; Lozano, A. Modified Conjugate Beamforming for Cell-Free Massive MIMO. IEEE Wirel. Commun. Lett. 2019, 8, 616–619. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. A New Look at Cell-Free Massive MIMO: Making It Practical with Dynamic Cooperation. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive with MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. Commun. 2020, 19, 77–90. [Google Scholar] [CrossRef]
- Yan, H.; Ashikhmin, A.; Yang, H. A Scalable and Energy-Efficient IoT System Supported by Cell-Free Massive MIMO. IEEE Internet Things J. 2021, 8, 14705–14718. [Google Scholar] [CrossRef]
- Interdonato, G.; Karlsson, M.; Björnson, E.; Larsson, E.G. Local Partial Zero-Forcing Precoding for Cell-Free Massive MIMO. IEEE Trans. Wirel. Commun. 2020, 19, 4758–4774. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Kourtessis, P.; Renzo, M.D.; Chatzinotas, S.; Senior, J.M. Performance Analysis of Cell-Free Massive MIMO Systems: A Stochastic Geometry Approach. IEEE Trans. Veh. Technol. 2020, 69, 3523–3537. [Google Scholar] [CrossRef]
- Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Rao, B.D. Performance of cell-free massive MIMO systems with MMSE and LSFD receivers. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 203–207. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Kountouris, M. Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO. IEEE J. Sel. Areas Commun. 2016, 34, 832–847. [Google Scholar] [CrossRef]
- Ren, H.; Liu, N.; Pan, C.; He, C. Energy Efficiency Optimization for MIMO Distributed Antenna Systems. IEEE Trans. Veh. Technol. 2017, 66, 2276–2288. [Google Scholar] [CrossRef]
- Pizzo, A.; Verenzuela, D.; Sanguinetti, L.; Björnson, E. Network Deployment for Maximal Energy Efficiency in Uplink with Multislope Path Loss. IEEE Trans. Green Commun. Netw. 2018, 2, 735–750. [Google Scholar] [CrossRef]
- Yang, H.; Marzetta, T.L. Energy Efficiency of Massive MIMO: Cell-Free vs. Cellular. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Tran, L.N.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Jin, Y.; Ai, B. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO. China Commun. 2020, 17, 92–109. [Google Scholar] [CrossRef]
- Mai, T.C.; Ngo, H.Q.; Tran, L.N. Energy Efficiency Maximization in Large-Scale Cell-Free Massive MIMO: A Projected Gradient Approach. IEEE Trans. Wirel. Commun. 2022, 21, 6357–6371. [Google Scholar] [CrossRef]
- Choi, T.; Ito, M.; Kanno, I.; Gomez-Ponce, J.; Bullard, C.; Ohseki, T.; Yamazaki, K.; Molisch, A.F. Energy Efficiency of Uplink Cell-Free Massive MIMO with Transmit Power Control in Measured Propagation Channel. IEEE Open J. Circuits Syst. 2021, 2, 792–804. [Google Scholar] [CrossRef]
- Bashar, M.; Ngo, H.Q.; Cumanan, K.; Burr, A.G.; Xiao, P.; Björnson, E.; Larsson, E.G. Uplink Spectral and Energy Efficiency of Cell-Free Massive MIMO with Optimal Uniform Quantization. IEEE Trans. Commun. 2021, 69, 223–245. [Google Scholar] [CrossRef]
- Van Chien, T.; Björnson, E.; Larsson, E.G. Joint Power Allocation and Load Balancing Optimization for Energy-Efficient Cell-Free Massive MIMO Networks. IEEE Trans. Wirel. Commun. 2020, 19, 6798–6812. [Google Scholar] [CrossRef]
- Alonzo, M.; Buzzi, S.; Zappone, A.; D’Elia, C. Energy-Efficient Power Control in Cell-Free and User-Centric Massive MIMO at Millimeter Wave. IEEE Trans. Green Commun. Netw. 2019, 3, 651–663. [Google Scholar] [CrossRef]
- Izadi, A.; Razavizadeh, S.M.; Saatlou, O. Power Allocation for Downlink Training in Cell-Free Massive MIMO Networks. In Proceedings of the 2020 10th International Symposium onTelecommunications (IST), Tehran, Iran, 15–17 December 2020; pp. 111–115. [Google Scholar] [CrossRef]
- Chakraborty, S.; Demir, Ö.T.; Björnson, E.; Giselsson, P. Efficient Downlink Power Allocation Algorithms for Cell-Free Massive MIMO Systems. IEEE Open J. Commun. Soc. 2021, 2, 168–186. [Google Scholar] [CrossRef]
- Bashar, M.; Cumanan, K.; Burr, A.G.; Ngo, H.Q.; Larsson, E.G.; Xiao, P. Energy Efficiency of the Cell-Free Massive MIMO Uplink with Optimal Uniform Quantization. IEEE Trans. Green Commun. Netw. 2019, 3, 971–987. [Google Scholar] [CrossRef]
- Liu, B.; Luo, J.; Su, X. The Framework of 6G Self-Evolving Networks and the Decision-Making Scheme for Massive IoT. Appl. Sci. 2021, 11, 9363. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Ngo, H.Q.; Kourtessis, P.; Chatzinotas, S.; Senior, J.M. Towards Optimal Energy Efficiency in Cell-Free Massive MIMO Systems. IEEE Trans. Green Commun. Netw. 2021, 5, 816–831. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Ngo, H.Q.; Kourtessis, P.; Chatzinotas, S.; Senior, J.M. Optimal Energy Efficiency in Cell-Free Massive MIMO Systems: A Stochastic Geometry Approach. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August 2020–3 September 2020; pp. 1–7. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
K | Number of users |
N | Number of APs |
M | Number of antennas at each AP |
B | System bandwidth |
Path loss exponent | |
Length of coherence block | |
Coherence bandwidth | |
Number of samples in a coherence block | |
Length of training signals | |
Length of uplink payload data | |
Length of downlink payload data | |
Uplink payload fraction | |
A set of pilot sequences | |
f | Pilot reuse factor |
Signal estimates in the uplink | |
Additive white Gaussian noise | |
Distance between user node k and AP n | |
Channel vector between user node k and AP n | |
Estimates of channel vector between user node k and AP n | |
Access points density | |
Average pilot transmit power | |
Average data transmit power of uesr k | |
Spatial correlation matrix | |
Correlation matrix of the received signal | |
Error correlation matrix | |
Receive combiner vector | |
Maximal ratio receive combiner vector | |
PMMSE receive combiner vector | |
Partial zero-forcing receive combiner vector |
Parameters | Value | Parameters | Value |
---|---|---|---|
K | 10 | M | 20 |
10–100 | 1–10 | ||
200 | 100 mW | ||
B | 20 MHz | dBm | |
1 ms | |||
100 KHz | 5 W | ||
4 | W/(Gbit/s) | ||
W/(Gbit/s) | |||
100 mW | W | ||
W | W | ||
750 Gflops/W | W/(Gbit/s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, A.; Taneja, A.; Saluja, N.; Rani, S.; Singh, A.; Alharithi, F.S.; Aldossary, S.M. Intelligent Network Solution for Improved Efficiency in 6G-Enabled Expanded IoT Network. Electronics 2022, 11, 2569. https://doi.org/10.3390/electronics11162569
Rana A, Taneja A, Saluja N, Rani S, Singh A, Alharithi FS, Aldossary SM. Intelligent Network Solution for Improved Efficiency in 6G-Enabled Expanded IoT Network. Electronics. 2022; 11(16):2569. https://doi.org/10.3390/electronics11162569
Chicago/Turabian StyleRana, Ankita, Ashu Taneja, Nitin Saluja, Shalli Rani, Aman Singh, Fahd S. Alharithi, and Sultan Mesfer Aldossary. 2022. "Intelligent Network Solution for Improved Efficiency in 6G-Enabled Expanded IoT Network" Electronics 11, no. 16: 2569. https://doi.org/10.3390/electronics11162569
APA StyleRana, A., Taneja, A., Saluja, N., Rani, S., Singh, A., Alharithi, F. S., & Aldossary, S. M. (2022). Intelligent Network Solution for Improved Efficiency in 6G-Enabled Expanded IoT Network. Electronics, 11(16), 2569. https://doi.org/10.3390/electronics11162569