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Abstract: Display color point defect detection is an important link in the display quality inspection
process. To improve the detection accuracy of color point defects, a color point defect detection
method based on color salient features is proposed. Color point defects that conform to the perception
of the human vision are used as the key point for detection. First, the human visual perception
constraint coefficient is used to correct the RGB three-channel image to obtain the color-channel-
transformed image. Then, the local contrast method is used to extract the point features of the color
channel, which achieves point defect enhancement, noise and background suppression. Finally,
the mean and standard deviation of the defect feature maps of R, G, and B channels are calculated.
The maximum mean and standard deviation are selected as thresholds using the maximum fusion
criterion to perform binarization segmentation of the defect feature maps of R, G, and B channels. An
OR operation was performed on the segmented images and the point defect segmentation results
were combined. The experimental results show that the average detection accuracy and recall of
the algorithm is higher than 94%, which is a significant improvement compared with mainstream
detection methods and meets the needs of industrial production.

Keywords: defect detection; liquid crystal display; color feature; local contrast; fusion

1. Introduction

The development of information technology has increased the demand for displays.
Especially with the advent of the 5G information era, smartphones, as terminal products,
can no longer fully meet the needs of people’s production and life. The new generation of
flexible displays and smart wearable devices bring new challenges and requirements to the
development of display technology. This has led to an upgrade in the production of existing
displays, in which machine vision technology is used to improve the productivity and
reduce the production costs of factories [1]. The factory quality inspection of the displays
is partially automated by automated optical inspection (AOI) equipment. However, the
defect detection algorithm of AOI equipment limits its application. The detection of display
defects in industrial production still relies on human eyes for detection, which hinders the
production efficiency [2]. Therefore, developing a more effective defect detection algorithm
to achieve machine vision instead of manual inspection is a pressing issue.

Display defect detection techniques have made great progress. The existing display
defect detection methods are divided into three main categories: image registration-based
methods [3–5], background reconstruction [6–12] and deep learning [13–19]. Zhu et al. [3]
proposed the use of Fourier-Mellin Transform for the coarse registration of images, the
use of accelerated robust features for precise registration of images, which improved the
accuracy of the registration method. However, the image registration-based method can-
not align images with simple backgrounds. Sun et al. [10] proposed a defect detection
method using cascade mean shift and level set algorithm, where mean shift was used
to detect defect candidate regions and solve the problem of the level set method being
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sensitive to contours. However, the method consumes a significant amount of time and
cannot meet the demands of real-time detection. Lin et al. [13] proposed a deep channel
attention-based classification network (DCAnet) as a defect image feature extractor, and
proposed an adversarial training algorithm based on convolutional neural network (CNN)
to achieve defect detection with sparse defect samples. Zhu et al. [14] proposed a hierarchi-
cal multifrequency-based channel attention network for effective scratch defects’ detection,
which utilizes an attention mechanism to solve the problem of large variation in aspect ratio
in defect samples. Zhu et al. [15] proposed a YoloV3 [20]-based defect detection scheme
deployed in an AOI device for display point defects, which can detect defects in multiple
backgrounds simultaneously. The deep learning approach requires the construction of a
large amount of sample data to achieve effective detection, and thus has poor performance
with small amounts of sample data.

Color point defects are common defects in the powered-on display. The size of the
point defect is not fixed, while the color and contrast of the point defect will also change
as the display changes. Therefore, this paper mainly addresses two problems: (1) the low
accuracy of point defect detection caused by the contrast variation of point defects; (2) the
problem of high false detection rate of the existing algorithm detection when the number of
point defects is large. The contrast of a point defect is determined by brightness and color.
The main goal of the existing conversion between color and grayscale images is to represent
the contrast information between different colors in the original color image with grayscale
information as best as possible. However, the implementation effect does not follow the
human eye’s perception of color for conversion. Therefore, the converted grayscale image
significantly differs from the original color image as perceived by the human eye, and
its use in defect detection can lead to a high false alarm rate. The research on the shape
features of point defects focuses on the detection of small targets, which provides a new
way of thinking for the implementation of point defect detection.

We propose a color point defect detection method for displays based on color-salient
features by analyzing the image characteristics of color point defects. For the morphological
characteristics of point defects, the local contrast method was used to calculate the features
of point defects and obtain the contrast feature maps in the three color channels that con-
form to the point morphology, achieving point defect enhancement, noise and background
suppression. For the color and contrast problems of color point defects, the color point
defects that match the human vision perception were used as the key point for detection.
The human vision perception constraint coefficients were used to correct the three RGB
channels and obtain the color-channel-transformed images. The mean values and stan-
dard deviations of the contrast feature maps of the three color channels were calculated
separately. The maximum mean and standard deviation were selected as thresholds using
the maximum fusion criterion, and the adaptive segmentation thresholds were selected to
perform a binarization segmentation of the defect feature maps with three color channels.
The ‘or’ operation was applied to combine the point defect segmentation results of the
three channels and obtain the color point defect results.

2. Related Works
2.1. Display Weak Contrast Defect Detection Method

In recent years, TFT-LCD display defect detection technology has rapidly developed,
with the low-contrast defect detection method becoming a research hotspot. Ngo et al. [6]
proposed using multiple background reconstruction methods to obtain a differential map
to solve the problem of low-contrast defects’ detection. Yang et al. [7] proposed a two-
stage defect detection method that uses polynomial background reconstruction to mark
anomalous regions as candidate regions for defects, and then uses a gradient-based level
set method to accurately segment the defects in the candidate regions, which is effective for
the detection of large, low-contrast defect regions. Jin et al. [21] proposed a two-segment
exponential transformation method to achieve the effective separation of defects from
the background and used Otsu’s method to achieve the accurate segmentation of defects.
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Cui et al. [22] proposed using Otsu’s method for defect candidate region selection under
various display screens, followed by the variance and grid division of the original image,
for defect detection. The above methods require the assumption that the detection target
cannot have both low-contrast and high-contrast defects, which means they are ineffective
in solving the point defect detection problem.

To find methods capable of detecting point targets with different contrasts, we were
inspired by the detection of small targets in infrared. The characteristics of infrared small
targets are more consistent with point defects. Various small object detection algorithms have
been proposed in the field of infrared small-object detection [23–25]. Inspired by human vision
mechanisms, Chen et al. [26] proposed a local contrast-based calculation method that can
effectively detect small objects in bright spots. However, it is not as effective with background
noise suppression. Wei et al. [27] proposed a multiscale patch-based contrast measure (MPCM)
method for the above problems, which uses the center surrounding characteristic of the
human eye, can effectively detect small targets in infrared rays (IR) images and can suppress
background noise. However, such methods mainly focus on small infrared objects and do
not use color information, so the detection of color point defects is not effective.

2.2. Multi-Scale Local Contrast Detection Method

The MPCM [27] method is a classical algorithm for infrared small object detection.
Since the morphological features of the infrared small target are consistent with the dis-
play point defect features, we adopted the local contrast and multi-scale feature fusion
calculation method proposed in the MPCM method.

First, a sliding window is used for local contrast detection on the input image. The
sliding window is divided into two parts: the center point T and the background, where
the background is further divided into eight parts. The definition between the center point
and the background is as follows:

D(T) =


d(T, B1)
d(T, B2)

. . .
d(T, B8)

, (1)

d(T, Bi) = mT −mBi , (2)

where d(T, Bi) represents the degree of difference between the target and the background,
mT represents the pixel mean value of the target area, and mBi represents the pixel mean
value of the background area. Based on Equation (2), the measurement method of local
contrast at a single scale is given. The calculation method of local contrast is as follows:

d̃i = d(T, Bi) ∗ d(T, Bi+4), (i = 1, 2, 3, 4) . . . (3)

S = min
i .=1,2,3,4

d̃i (4)

where d̃i represents the gray level difference between the central region and the surrounding
neighborhood in different directions, and S represents the single scale directional fusion
feature map. When the local contrast in the four directions of the center position has a large
value, the position is the target area and the target area is significantly enhanced. When
the local contrast in the four directions of the center position is not consistent, the center
position is noise interference and its value is calculated as negative.

A multi-scale feature map fusion needs to calculate the directional feature fusion maps
of different scales, and then perform scale fusion according to the following equation. The
scale fusion rules are as follows:

C(xic, yic) = max
i=1,2,3...

Si, (5)
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where C(xic, yic) represents the multi scale feature fusion map, and Si represents the multi
scale directional fusion feature map.

3. Methodology
3.1. Algorithm Architecture

We propose an algorithm architecture for color point defect detection based on color-
salient features, as shown in Figure 1.
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Figure 1. Algorithm framework.

As shown in Figure 1, our method consisted of three parts. The first part was the visual
perceptual conversion correction of color channel images to achieve the representation of
luminance information to color information. The second part was multi-scale local contrast
feature fusion to realize the extraction of point defect features. The third part was the fusion
feature segmentation to realize the color point defect segmentation results that match the
human eye’s perception.

3.2. Color Channel Transformation

The goal of the detection of colored point defects was to achieve point defect detection
that conforms to the human perception. When the RGB image was converted into a
single-channel grayscale image for detection, the color feature of the point was converted
into a mixed color and brightness feature, which led to detection results in a grayscale
image against the visual perception of the human eye. Therefore, to restore the perceptual
characteristics of the color image as the human eye in the gray channel, we performed color
channel transformation, and the calculation method was described as:

R′gray(x,y) = w1 × R(x, y),
G′gray(x,y) = w2 × G(x, y),
B′gray(x,y) = w3 × B(x, y),

(6)

where R′gray(x,y), G′gray(x,y) and B′gray(x,y) represent the image after R, G, B channel transfor-
mation. The w1 represents the constraint coefficient of human visual perception of red, w2
represents the constraint coefficient of human visual perception of green, and w3 represents
the constraint coefficient of human visual perception of blue.

3.3. Multi-Scale Local Contrast Feature Fusion

For the morphological features of point defects, we used the local contrast calculation
method proposed by [27] for the feature extraction of point defects.
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The transformed images of the three obtained color channels were mean filtered using
templates of different scales, and the mean filtering results of the three channels were obtained.
The mean-filtered images were computed according to Equations (1)–(3) for the local contrast.

The eight directional feature maps under single-pass and single-scale were fused into
four directional composite feature maps. The four directional composite feature maps were
fused according to the corresponding point minima to obtain the directional feature map
fusion under single scale, and the fusion criterion was performed with Equation (4).

For multi-scale feature map fusion, the directional fused feature maps under three
scales were calculated separately. Then, the scale fusion was performed using the scale
maximum fusion criterion in the form of (5) to achieve the scale feature map fusion under a
single channel. The multiscale feature fusion map of R, G and B channels were calculated.

3.4. Adaptive Threshold Map Segmentation

The statistical features of the local contrast feature maps of the three channels were ana-
lyzed, and their means and standard deviation were calculated using the following equation:

µ =
1

M× N

M

∑
i=1

N

∑
j=1

Ci,j, (7)

δ =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(Ci,j − µ)2, (8)

where µ represents the mean value and δ represents the standard deviation of the multi-
scale feature fusion map computed by the three channels R, G and B, while δ and Ci,j
represent the multi-scale feature fusion map.

As shown in Figure 2, there was a large difference in the mean and standard deviation of
the obtained feature maps for the three channels. This is because the target region was enhanced
and the background region was suppressed in the feature maps. We used the maximum feature
fusion method to fuse the features of the image. The fusion rules were as follows:

µmax = max(µi) =


µr, i = 1,
µg, i = 2,
µb, i = 3,

(9)

δmax = max(δi) =


δr, i = 1,
δg, i = 2,
δb, i = 3,

(10)

where µmax represents the maximum mean value obtained by fusion, and δmax represents
the result obtained by fusion of the maximum standard deviation.
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Therefore, the threshold segmentation in this paper was implemented by the follow-
ing formula:

th = µmax + Kδmax (11)

The mean and standard deviation calculated for the three channels retain the maximum
value as the standard for segmentation, where K is the empirical value. Finally, the three-
channel segmented images were ORed to obtain the defect detection result.

4. Experimental Results
4.1. Experimental Setup

To verify the point defect detection capability of the proposed method in multiple
backgrounds, we used grayscale transition, cross test and solid color (including red, green
and blue) backgrounds for evaluation. The defect-free test screen image, shown in Figure 3,
was 687 × 1107 and had 100 images of each type. All images had corresponding ground-
truth (GT) maps, in which defect areas were set to 1 and non-defective areas were set to 0.
All experiments were run under MATLABR2018b with Intel Core I7-7700CPU@3, 60 GHz,
16 G RAM and Windows 7 64-bit operating system.
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4.2. Algorithm Parameter Design

In our proposed method, it was necessary to determine the human eye’ perception
coefficient of the color channel and the number of scales. Therefore, we experimentally
compared the effects of different parameters on our detection results.

TDR is defined as the sum of correctly detected pixels in the test image divided by the
sum of true cross-defect pixels, and FDR is defined as the ratio of falsely detected pixels
to total detected pixels. We used TDR and FDR metrics for the algorithms in this paper to
evaluate the defect detection results of our method.

TDR =
|S ∩ GT|
|S| , (12)

FDR =
|S ∩ GT|
|GT| , (13)
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where S is the threshold segmentation binary image, and GT is the ground truth image.

4.2.1. Constraint Coefficient Optimization

The coefficients for human eye perception in color-to-grayscale images were proposed
to be 0.299, 0.587 and 0.114. However, this is the perception coefficients of reflected light
in natural scenes, which is different from the human eye perception of LCD autolumi-
nescence. Therefore, we conducted experiments on the above coefficients to obtain the
following results.

First, we fixed the coefficient of B channel to 0.114, and kept the sum of the coefficients
of the three channels as 1, while changing the coefficients of the R channel and the G
channel to obtain the defect detection values as follows.

Figure 4 shows that as the R-channel coefficient increases, the TDR reaches its peak
(92.86%) and then decreases rapidly, and the inflection point of the FDR (100%) also
appears in the peak part of the TDR, where the parameters of the peak are 0.499, 0.387 and
0.114, respectively.
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Figure 4. R channel coefficient and detection accuracy graph.

We fixed the coefficient of the R channel as 0.299, kept the sum of the coefficients of
the three channels as 1 and changed the coefficients of the G and B channels to obtain the
following defect detection values.

Figure 5 shows that as the G-channel coefficient increased, the TDR reached its peak
and then decreased rapidly and the peak of the FDR also appeared at the same time as TDR.
The peak TDR and FDR values were 91.83% and 100% respectively, where the coefficients
at the peak were 0.299, 0.387 and 0.314.

The coefficient of the G channel was set to 0.587, while keeping the sum of the coef-
ficients of the three channels as 1, and the coefficients of the rest channels were varied to
obtain the following values of defect detection.
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Figure 6 shows that as the B-channel coefficient increased, the accuracy of the TDR
decreased somewhat, roughly between 40% and 60%, but the recall was always 100%,
which indicates that changing the value of the B-channel would result in a larger false
detection rate.
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Through the above experiments, we determined the optimal parameters to be 0.499 for
the red channel, 0.387 for the green channel and 0.114 for the blue channel, which helped
achieve maximum accuracy and recall.

4.2.2. Scale Parameter Design

The number of layers of local contrast was related to the size of the defect, and we
needed to set different scales to accurately detect point defects. Because we determined
the optimal number of stacked layers by analyzing the defect detection accuracy, the
dimensions of the layers were set as shown in Table 1.
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Table 1. Contrast Layer Dimensions.

Layer A1 A2 A3 A4

Size 3×3 5×5 7×7 9× 9

The calculated TDR and FDR results of different sizes and combinations are shown in
Table 2.

Table 2. Detection results for layer combinations.

Combinations TDR (%) FDR (%)

A1 0 0
A1A2 57.14 100

A1A2A3 92.86 100
A1A2A3A4 92.85 100

A2 92.85 18.57
A2A3 100 15.21

A2A3A4 100 15.38
A3 100 19.44

A3A4 100 16.86
A4 100 15.73

Table 2 shows the detection ability of different layers, where the recall rate is lower
when the size is larger. The fused features of different layers effectively reduced the false
detection rate and improved the accuracy rate. The fusion manner A1A2A3 achieved the
best defect detection results.

4.3. Result Analysis

All original images in Figure 7 are defective displays collected in actual production. In
the GT image and the result image, black indicates no defects and white indicates defects.
Figure 7 demonstrates the point defect detection ability of the proposed algorithm. The
point defects included mainly single bright, dark and colored points against a solid-color
background, while the number of point defects greatly increased against a gray background.

As shown in Figure 7, our method could accurately detect the dot defects on solid-color
background with a small number of dots. One of the dot features was salient in the contrast
map of the corresponding channel, which shows that the contrast detection algorithm was
effective. On gray backgrounds, multicolor point defects with different contrast levels were
also detected, and the detection results matched human vision well.

As shown in Table 3, we evaluated the detection ability of our proposed algorithm
with quantitative metrics. For single-point defect detection, 100% accurate detection can be
achieved, and the algorithm reaches 94% for multi-point defect detection.

Table 3. Metrics of our proposed method.

TDR (%) FDR (%)

Single point defect 100 100
Multi-point defects 94.6 98.1
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4.4. Comparison of Different Methods

We compared the following algorithms with ours: method 1 with a polynomial-based
background reconstruction [12], method 2 with a background reconstruction based on
discrete cosine transform (DCT) [21] and MPCM [27] for comparative experiments on
multi-color point detection.

As shown in Figure 8, both the DCT-based background reconstruction method and
the polynomial fitting method were unable to detect the point defects against such a
background. Both DCT and polynomial fitting methods were not able to obtain defect-free
feature maps and effectively separate background and defect information, among which
the polynomial fitting method was not effective at suppressing the information in the edge
part of the cross-test image. To summarize, the performance of such methods is poor for
the detection of color point defects.
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As shown in Table 4, the MPCM method has a considerable ability to detect point
defects, which overcomes the interference of brightness uneven background and other
noises. However, it mainly targets the detection of small infrared targets and does not
use the color perception information as the human vision, so its recall rate was low. Our
proposed method introduces the information on human vision perception of color and uses
a unified segmentation criterion with fused features, so that the detected color dot defects
conform to the detection results of human eye perception and achieve a high accuracy rate.

Table 4. Comparative evaluation of different methods.

Detection Method TDR (%) FDR (%)

DCT 35.7 26.8
Polynomial Fitting 19.6 19.7

MPCM 90.2 69.8
Ours 94.6 98.1
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5. Conclusions

We propose a color point defect detection method based on color-salient features. The
use of color features for point defects is achieved by introducing color channel constraint
coefficients that match the visual perception of the human eye. The extraction of point
features and enhancement of point defect information are achieved using a multi-scale local
contrast approach. The effective detection of color point defects is achieved using a feature
fusion segmentation method. Our method can detect point defects against a variety of
display backgrounds. For a single point defect, our accuracy is close to 100%. For multiple
point defects, the accuracy can still reach more than 94% and the detection results can be
consistent with human eye perception. In future work, we need to improve the accuracy of
multi-point defects.
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