
����������
�������

Citation: Kandati, D.R.; Gadekallu,

T.R. Genetic Clustered Federated

Learning for COVID-19 Detection.

Electronics 2022, 11, 2714. https://

doi.org/10.3390/electronics11172714

Academic Editor: Kenji Suzuki

Received: 27 July 2022

Accepted: 26 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Genetic Clustered Federated Learning for COVID-19 Detection
Dasaradharami Reddy Kandati and Thippa Reddy Gadekallu *

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
* Correspondence: thippareddy.g@vit.ac.in

Abstract: Coronavirus (COVID-19) has caused a global disaster with adverse effects on global health
and the economy. Early detection of COVID-19 symptoms will help to reduce the severity of the
disease. As a result, establishing a method for the initial recognition of COVID-19 is much needed.
Artificial Intelligence (AI) plays a vital role in detection of COVID-19 cases. In the process of COVID-19
detection, AI requires access to patient personal records which are sensitive. The data shared can pose a
threat to the privacy of patients. This necessitates a technique that can accurately detect the COVID-19
patients in a privacy preserving manner. Federated Learning (FL) is a promising solution, which can
detect the COVID-19 disease at early stages without compromising the sensitive information of the
patients. In this paper, we propose a novel hybrid algorithm named genetic clustered FL (Genetic
CFL), that groups edge devices based on the hypertuned parameters and modifies the parameters
cluster wise genetically. The experimental results proved that the proposed Genetic CFL approach
performed better than conventional AI approaches.

Keywords: COVID-19 detection; artificial intelligence; federated learning; privacy; security

1. Introduction

The COVID-19 outbreak disturbed public health and human life [1]. The spread of
COVID-19 [2] is still ongoing, and researchers are trying to find effective ways in early
detection of the disease. The aim is to identify and isolate affected people, which results in
limiting the spread of COVID-19. AI plays a vital role in detection of COVID-19, allowing
researchers to identify it by analyzing symptoms such as throat infection, cold sweats,
difficulty in breathing, and also with the assistance of a X-ray [3]. AI, with help of historical
data related to COVID-19, can help in predicting and providing essential guidelines to
control the spread of the COVID-19 pandemic. The historical data used by AI requires
patient records, which are confidential. The patients will hesitate to share their sensitive
information as their privacy can be compromised. This creates a scarcity of data required
for predictions. A robust model cannot be developed due to this challenge [1]. A novel
strategy is required, that allows the development of models that can provide accurate
predictions without compromising the patients’ personal information.

FL was introduced as an innovative ML approach by Google in 2016 [4]. The goal of
FL is to create a ML method consisting of multiple datasets without gathering actual data
while preserving confidentiality, privacy, transparency, and security [5,6]. In every iteration
of the FL process, local system builds a classifier that uses native information and delivers
parameters to a global system without transmitting actual data.

FL provides collaborative environment among different healthcare organizations
in preparing a COVID-19 prediction framework while maintaining data privacy [7,8].
Researchers used FL to assess COVID-19 disease from computed tomography or X-ray
pictures [1,9]. Current FL studies focus on issues related to communication costs and
performance issues. In FL, communication costs increase with frequent updates in patient
data to the server. FL addresses the privacy and security issues in healthcare sector by
allowing data servers to classify their designs locally and distribute each other’s models
without compromising patient’s data privacy [10].

Electronics 2022, 11, 2714. https://doi.org/10.3390/electronics11172714 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11172714
https://doi.org/10.3390/electronics11172714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3978-9307
https://orcid.org/0000-0003-0097-801X
https://doi.org/10.3390/electronics11172714
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11172714?type=check_update&version=2

Electronics 2022, 11, 2714 2 of 12

Every iteration of an FL approach consists of client-server communication, native
mentoring, and prototype clustering [11–14]. The transmission of model from the server
to all the clients and vice versa can cause communication overhead. Each connectivity
session involves implementation issues due to poor data usage, network congestion, and
ethical concerns. Modified communication algorithms such as privacy-preserving and
communication efficient scheme for federated learning (PCFL) [15,16], minimize the model
dimensions and improve security with compression and encryption. The number of edge
devices also influence the communication load. The implementation of communication
sparsification [17] over clients is modeled to increase the convergence rate and reduce
network traffic on the server. The hierarchical clustering [18] approach is also used in many
models to summarize related customer strategies and minimize clustering difficulty.

In a heterogeneous environment, not only communication but also AI model train-
ing is more challenging [19]. Clients train on the server model using hyper-parameters
including client ratio (e.g., choosing 100 clients), epochs per round, batch size, learning
rate. Edge devices differ in computational power and data properties, making it diffi-
cult to integrate broadly developed client models. The optimization methods such as
FedMA and FedAvg [20] are more focused on integrating weights of model parameters.
Training and aggregation are both affected by integration rate and training intensity.
There are many new techniques for model clustering, such as combining new and existing
features [21] or identifying the standard client models [22] to improve the classification.
Several studies use various global models such as Federated Cloning-and-Deletion (FedCD)
to improve convergent analysis [23].

Researchers have mainly focused on model aggregation to make FL concepts adaptable
to non-IID user information [24]. The local training model has a significant impact on
determining the model’s accuracy. In this study, a novel solution based on genetic algorithm
is proposed for hyper-parameter tuning for improved model aggregation in a cluster, as
illustrated in Figure 1. The proposed genetic CFL model involve the following steps:

• The clients are grouped based on the hyper-parameters thereby increasing the learning
efficiency per training unit.

• Genetic algorithm is used to tune the hyper-parameters and better model aggregation
in a cluster.

Client

Client Client

Client

Client Client

Client Client

Client

Client Client

Client

Receive Hyperparameters
(nm, Bm)

Crossover

Evolve

Mutation

Train clients on
Hyperparameters

Genetic Algorithm (Cluster Wise)

W0, Nm, bm

W0, Nm, bm

W0, Nm, bm

W0, Nm, bm

W0
m, lm

l-Loss
b-Batch Size

η-Learning Rate
Ci-ith Cluster

N-No. of Clusters
m-Size of ith Cluster

W0
m, lm

W0
m, lm

W0
m, lm

C0

C1

C2

CN

Figure 1. Genetic CFL Architecture.

Electronics 2022, 11, 2714 3 of 12

The genetically optimization FL approach is a novel method for enhancing COVID-19
detection and improve the AI model efficiency and performance. In this study, we create a ge-
netically optimization FL system architecture to detect COVID-19. When compared to basic
FL’s technique, the proposed technique is more accurate and ensures provacy preservation.

The rest of the article is organized as follows: Section 2 introduces the literature survey.
Section 3 provides details of the proposed framework and its methodology. Section 4
discusses the experimental results. The final section of the paper presents conclusion and
future research.

2. Literature Survey

This section presents a survey on the current literature on FL, clustering, and evolu-
tionary algorithms, respectively, in order to understand their limitations.

2.1. Federated Learning

Recent studies have focused on FL as a distributed and edge AI architecture [25,26]. In
a heterogeneous environment containing non-IID data, FL’s decentralized nature directly
contradicts traditional AI algorithms which are centralized. Many novel approaches have
tried to address the aggregation of non-IID data with various aggregation algorithms,
including FedMA [20], feature fusion [21], and grouping of similar client models [22] for
better personalized and accurate results. The clustering process makes use of client-model
similarity [27] and provides efficient communication to improve data generalization [28].

Clustering will help in optimizing the communication in FL. The convergence of
the model may be significantly reduced if there are thousands of nodes in a realistic
scenario. Algorithms for partitioning clusters, such as k-means clustering [29], require
a predetermined number of clusters which is not feasible. Clusters based on generative
adversarial networks and agglomerative hierarchical clustering [18] are examples of non-
definitive clusters.

2.2. Evolutionary Algorithms

A model’s hyper-parameters selection determine its ability to learn from datasets.
Many researchers are working on the optimization of AI models and parameters using
evolutionary algorithms [30], such as genetic algorithms [31] and whale optimization [32].

The ensemble models developed using evolutionary algorithms with deep learning
techniques have become increasingly popular for optimization tasks [33].

The use of evolutionary algorithms with FL is not yet fully realised. Due to the am-
biguity of data, hyper-parameter tuning is even more critical. Optimization algorithms
assist with tuning these parameters beyond manual capabilities. Genetic algorithm is used
to optimize learning rates and batch sizes for each of the individual end device models.
Agrawal et al., in [34] showed that FL is restricted by efficiency of client training, thus
involves selecting hyper-parameters effectively, model adjustment, and procedure stream-
lining. FedTune automatically tunes FL hyper-parameters during model training based
on application training preferences [35]. To achieve diverse training preferences, it can
be challenging to tune multiple hyper-parameters, particularly when several aspects of
the system have to be optimized. FedEx estimates gradients based on client-side hyper-
parameter distributions in federated settings [36]. This approach uses weight-sharing
methods for searching neural architectures. The training process for FL must not only
be aimed at high accuracy but also at reducing the training time and resource consump-
tion in practical environments, using low-capacity computing devices [37,38]. FL uses
best epoch algorithm to determine how many epochs are necessary per training round.
A summary of the key findings from the above discussion can be found in Table 1.

Electronics 2022, 11, 2714 4 of 12

Table 1. Summary of important surveys on FL and rvolutionary algorithms.

Ref. No Technologies Used Key Contributions Limitations

[20] Federated matched averaging
(FedMA) algorithm

FedMA builds the shared global model
layer by layer based on feature
extraction signatures of hidden

elements.

Privacy, data bias

[21] Feature fusion mechanism

The accuracy and generalization
abilities of FedFusion outperform

baselines while reducing
communication rounds by more than

60 percent.

The issue of high communication
costs must be addressed

immediately.

[22] Iterative Federated Clustering
Algorithm (IFCA)

The convergence rate of the population
loss function under proper initialization

ensures both convergences of the
training loss and generalization to test

data simultaneously.

Data heterogeneity is to be
addressed.

[27] Multi-center aggregation
mechanism

The proposed objective function is
optimized using the Federated

Stochastic Expectation Maximization
method (FeSEM).

Data heterogeneity is to be
addressed.

[31] Genetic algorithms
Convolutional neural networks can be

efficiently tuned by using a
variable-length genetic algorithm.

In the case of networks with fewer
layers, the size could be too small

for the problem, resulting in
underfitting.

[32] Whale optimization algorithm
(WOA)

For training multilayer perceptrons
(MLP), the WOA was applied because
of its high local optimization avoidance

and fast convergence speed.

Slow convergence speed and local
optima stagnation are the main
disadvantages of conventional

training algorithms.

[39] Clustered federated learning

It proposes a collaborative learning
framework to intelligently process
visual data at the edge device by

developing a multi-modal ML
algorithm that is capable of diagnosing

COVID-19 in both X-ray and
Ultrasound images.

The major challenge here is
regarding the performance of CFL
when the number of samples per

client varies.

[13] Clustered federated learning

It addresses the issue of suboptimal
results when the local clients’ data

distributions diverge by separating the
client population into different groups

based on the pairwise cosine
similarities.

The main cluster is separated from
some suspicious clients after a few

rounds, which poses a major
challenge.

This paper Genetic CFL algorithm

Genetic algorithms are used to
optimize the hyper-parameters such
as batch size, and learning rate of the

clustered FL models.

Client training has a significant
impact on FL efficiency.

3. Proposed Methodology

This section describes genetic CFL optimization technique using a comprehensive
statistical method. There are two sections in the workflow, the first round of broadcasting
is represented by Algorithm 1, which tells about the number of clusters and the federated
training which uses genetic algorithm is represented by Algorithm 2. This section mainly
describes the differential behavior of the algorithm with various hyper parameters that
includes number of iterations, client ratio(n), minimum samples, batch size, and learning
rate (η). The following Table 2 highlights most of the symbols used during the algorithm.

Electronics 2022, 11, 2714 5 of 12

Algorithm 1 Clustering and initial broadcasting
N = no. of clients
η: Learning Rate
ηm: Learning Rate List

1: procedure SERVER
2: w0: Initialization of the server model
3: Define ηm based on rates of learning [1e− 1, 1e− 5]
4: Broadcasting(w0, sampling(ηm, 3))
5: procedure CLIENT
6: i← 0
7: while i 6= N do
8: j← 0
9: while j 6= 3 do

10: Learn w0
j on ηj

11: losses← loss(w0
j)

12: return w0
min, ηmin, lossesmin

13: procedure SERVER

14: w0 ← ∑(w0
n)

n

Algorithm 2 FL-based genetic optimization for clustered data.
rounds: The number of loops required to train the decentralized approach

1: function MUTATE(η)
2: variable← sampling([−1, 0, 1])
3: η ← η + η×variable

10
4: return η

5: function CROSSOVER(ηN)
6: Generate a new array ηtemp to insert η
7: ηtemp[0, 1]← ηN [0, 1]
8: for k← 2 to size(ηN) do
9: parentA, parentB ← sampling(0, size(ηN))

10: ηtemp[k]← MUTATE(ηN [parentA]+ηN [parentB]
2)

11: return ηtemp

12: function EVOLVE(lossesN , ηN)
13: lossesN , order← sort(lossesN)
14: ηN ← sort(ηN , order)
15: return CROSSOVER(ηN)
16: procedure TRAIN
17: len← size(clusters)
18: ind← 0 to len
19: Assign ηglobal with structure (len, size(clusters[ind])
20: clustersunique = Identical(cluster)
21: for i← 0 to iterations do
22: for k← 0 to dimensions(clusters) do
23: ind = [clusters.index(cluster[i])]
24: ηglobal [k]← EVOLVE(losses[ind],ηN [ind)

25: Losses caused by empty arrays, ηN
26: for k← 0 to N do
27: w0

k [k], losses[k], ηN [k] = train(w0, ηglobal [clusters[k][clusters[k].nextIndex])

28: w0 ← ∑(w0
m)

N

Electronics 2022, 11, 2714 6 of 12

Table 2. Symbol representations.

Symbol Meaning

N no. of customers
η Learning Rate
b Batch Size
Ci ith customer
w0 Weights of models
w0

n Weights of models of nth customer

Dataset Description

The dataset used in this work is taken from the kaggle repository https://www.kaggle.
com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2021.csv
(accessed on 26 July 2022). There are 10 attributes, among which the attribute Corona
result indicates whether a person has a positive or negative Corona result. Table 3 displays
an overview of the information of each column that is used in our implementation.

Table 3. Dataset description.

Column Name Description

test date Date of arrival of the test in the laboratory. It should be noted that this is
the citizen’s first test, in the DD / MM / YYYY format.

cough Did cough symptoms appear before the test? 1—Yes, 0—No,
NULL—Unknown.

fever Did fever appear before the test? 1—Yes, 0—No, NULL—Unknown.

sore throat Did a sore throat appear before the test? 1—Yes, 0—No, NULL—Unknown.

shortness of breath Did breathing difficulties occur before the test? 1—Yes, 0—No,
NULL—Unknown.

headache Did a headache appear before the test? 1—Yes, 0—No, NULL—Unknown.

corona result

Results of the first corona test performed on the subject. Categorical
variable, 3 categories:

• Positive—Indicates carrier of the virus.
• Negative—No hands to carry the virus.
• Other—not performed, at work or uncertain.

age 60 and above Indicator 60 years or older (1) or under 60 years (0).

gender Sex of the subjects. Male / Female / Null (unknown).

test indication

What is the indication for testing?

• Abroad—arrival from abroad.
• contact with confirmed—contact with Verified patient.
• other—other indication or not specified.

The objective of Algorithm 1 is to identify the attribute values of an edge device
distinctly without violating its security. The server model(w0) is broadcasted to N all the
clients, C ⊆ {C0, C1, ..., Ctot}. Along with the distributed server models, three different
learning rates η are also broadcasted. The learning rates are selected from the array (ηm),
which ranges from [1e− 1, 1e− 5]. The sample size is also chosen randomly and a more
number of samples can also improve the training accuracy. Every edge device is offered
w0, which is duplicated for all η values and supervised independently for a full iteration.
Some data features such as complexity, size, ambiguity, and variance are unique to edge
devices. These data features will effect the training and thus the hyper-parameters η are
selected carefully. Out of the three models at the edge device only one model with least loss
w0

min is selected. Every edge device will return w0
min, ηmin, and lossesmin. These statistics

are important because of their ability to represent data on respective edge devices.

https://www.kaggle.com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2021.csv
https://www.kaggle.com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2021.csv

Electronics 2022, 11, 2714 7 of 12

The models {w0
0, w0

1, . . . , w0
n}, learning rates {η0, η1, . . . , ηn} and their respective losses

are obtained at the server. The server model is developed by integrating edge device models
using the model aggregation technique. The model weights (w0

n) are added iteratively
as follows:

n

∑
i=0

(w0
i) = w0

0 + w0
1 + w0

2 + · · ·+ w0
n. (1)

The output of the aggregation is divided by the number of clients, and the equation is
as follows:

w0 ← ∑(w0
n)

n
. (2)

In phase 2, we assign every edge device, a cluster-ID, as demonstrated by Algorithm 2.
This algorithm component has been restricted by the algorithm’s main control loop, which
continues for i iterations. Each i-th cycle,

1. genetic algorithms optimize hyper-parameters based on mutation, crossover, and evolution;
2. clients receive optimized hyper-parameters for cluster-based servers;
3. every client is prepared using a set of parameters;
4. combining client models produces the most effective server model.

Each cluster contains a unique range of hyper-parameters personalized towards the
edge devices which are a part of it. Training initiates the development of such aggregated
parameters every ith iteration. During genetic optimization, hyper-parameters interact
with the ideal range for each iteration. Every iteration changes the contents of ηglobal [k],
which stores the learning rates for every cluster. The shape of the data is < C, size(Ci) >,
where C shows the set of clusters, Ci shows the ith cluster and size(Ci) shows the wide
range of edge devices in every ith cluster. The losses of a cluster with the shape m0 are used
to sort the hyper-parameters.

lossesN , order ← sort(lossesN) (3)

ηN ← sort(ηN , order) (4)

After sorting, we achieve different users across crossover and mutation. The ideal
performers continue to pass on their genetic mutations to the next generation, while others
have developed by mating with previous transmission users as

ηnew = {η0, η1, . . . , ηsize(C[m])} (5)

The updated learning rates ηnew determine whether effectively or partially through
natural selection. The sum of η obtained from previous generations can differ slightly. The
modified parameters are derived from (5):

ηnew = {ηold[0], ηold[1], . . . ,
(

ηold[PA] + ηold[PB]

2

)(
1 +

f
10

)
}, (6)

There are two locations in which PA, PB ∈ [0, 9] and f ∈ [−1, 1].
All devices are configured according to their specific cluster hyper-parameters af-

ter genetic evolution. A training process involves repeating model aggregation, genetic
optimization, and training for i− 1 iterations before a new epoch is achieved.

Artificial Neural Networks (ANN) were used in this work for classification of the data
in each cluster. In this work, we used an ANN with three layers, input layer, a hidden layer,
and the output layer. The hyper-parameters used in the ANN are as follows: activation
function used in the hidden layer is relu, whereas sigmoid activation function is used in
the output layer. The optimization function used is adam.

Electronics 2022, 11, 2714 8 of 12

4. Results and Discussion

The objective of this section is to provide an overview of the experiments which were
conducted for the evaluation and assessment of the genetic CFL architecture. Section 4.1
examines how genetic CFL architecture performs on the COVID dataset and how they
compare with generic FL architecture. The genetic CFL architecture’s performance analysis
is discussed in Section 4.2.

4.1. COVID Dataset Performance for Genetic CFL Architecture

This subsection discusses the models’ training and performance evaluation. COVID-19
dataset samples are first used to train the server model. In turn, clients are allocated the
model based on their client ratio. For this experiment, 100 clients are randomly selected,
and three client ratios are tested: 0.1, 0.15, and 0.3. Models’ performance is generally
evaluated using 10, 15, and 30 clients, respectively. Observations are chosen at random
for each client device in the dataset. The purpose is to ensure that its observations are
non-IID and replicate the key features of an actual situation. Section III discusses how the
hyper-parameters are genetically modified after two training epochs. Tables 4 and 5 shows
all such iterations, and Figure 2 plots the most successful performance against each round.

Table 4. Comparison of the performance of FL on various hyper-parameters on the COVID test data.

Client Ratio Rounds
FL

Accuracy Loss Precision Recall F1-Score

0.1

3 0.9148 0.2609 0.9132 0.9146 0.9145

6 0.9212 0.2524 0.9203 0.9211 0.9210

10 0.9367 0.2115 0.9362 0.9366 0.9365

0.15

3 0.9156 0.2608 0.9151 0.9155 0.9154

6 0.9197 0.2560 0.9192 0.9196 0.9195

10 0.9224 0.2554 0.9216 0.9221 0.9220

0.3

3 0.9068 0.2758 0.9059 0.9064 0.9063

6 0.9166 0.2648 0.9158 0.9164 0.9163

10 0.9187 0.2629 0.9179 0.9185 0.9184

Table 5. Comparison of the performance of genetic CFL on various hyper-parameters on the COVID
test data.

Client Ratio Rounds
Genetic CFL

Accuracy Loss Precision Recall F1-Score

0.1

3 0.9271 0.2469 0.9267 0.9269 0.9268

6 0.9271 0.2467 0.9268 0.9270 0.9269

10 0.9271 0.2460 0.9270 0.9269 0.9268

0.15

3 0.9223 0.2552 0.9218 0.9221 0.9220

6 0.9223 0.2551 0.9220 0.9222 0.9221

10 0.9223 0.2549 0.9222 0.9221 0.9220

0.3

3 0.9208 0.2627 0.9199 0.9206 0.9205

6 0.9208 0.2625 0.9205 0.9207 0.9206

10 0.9208 0.2621 0.9207 0.9206 0.9205

Electronics 2022, 11, 2714 9 of 12

0 2 4 6 8
Rounds

0.26

0.27

0.28

0.29

0.30

Lo
ss

Genetic CFL
FL

0 2 4 6 8
Rounds

0.910

0.912

0.914

0.916

0.918

0.920

0.922

0.924

Ac
cu

ra
cy

Genetic CFL
FL

Figure 2. Evaluation of Loss and Accuracy on COVID-19 dataset- FL vs Genetic CFL.

As the training hyper-parameters cannot be determined earlier, the training and
performance of the model are locally optimized, and the training is said to be more person-
alized [24,40]. Server models learn smoothly and converge faster than typical FL models
after training. Tables 4 and 5 and Figure 2 illustrate the performance of the models for both
the architectures in terms of accuracy, loss, precision, recall, and F1-Score. Each iteration
shows how genetic CFL outperforms generic FL. The accuracy and loss are higher and
lower in genetic CFL architecture than in the generic FL architecture. The accuracy and
loss indicates that useful information is aggregated at the server. The loss value is used to
train the ANN. However, accuracy or other metrics such as precision, recall, and F1-Score
are also used to assess the training outcome. Table 6 depicts the training accuracy, training
loss, validation accuracy and validation loss of the proposed genetic CFL algorithm on the
COVID-19 dataset. From the table, it can be observed that in the first round, the maximum
training and validation accuracy and minimum training and validation loss is attained
after 1st epoch. After 1st epoch, the performance is reduced, indicating that genetic CFL
algorithm has encountered overfitting problem. Similar performance can be noted in
rounds 2, 3, 4 and 5. Hence, we can conclude that, in order to reduce the training time and
the resource consumption (CPU and memory consumption) in the proposed genetic CFL
approach, 1 epoch is sufficient for all the rounds.

Table 6. Accuracy and loss of genetic CFL in several rounds.

Round No Epochs
Genetic CFL

Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

1

1 0.6276 0.9126 0.6172 0.9126

2 0.6090 0.9109 0.5986 0.9125

3 0.5906 0.9109 0.5803 0.9125

2

1 0.4883 0.9109 0.4787 0.9125

2 0.4726 0.9109 0.4636 0.9125

3 0.4580 0.9109 0.4494 0.9125

3

1 0.3857 0.9109 0.3791 0.9125

2 0.3754 0.9109 0.3694 0.9125

3 0.3663 0.9109 0.3609 0.9125

Electronics 2022, 11, 2714 10 of 12

Table 6. Cont.

Round No Epochs
Genetic CFL

Training
Loss

Training
Accuracy

Validation
Loss

Validation
Accuracy

4

1 0.3262 0.9109 0.3220 0.9125

2 0.3204 0.9109 0.3165 0.9125

3 0.3153 0.9109 0.3116 0.9125

5

1 0.2926 0.9109 0.2892 0.9125

2 0.2895 0.9109 0.2863 0.9125

3 0.2868 0.9109 0.2836 0.9125

4.2. Genetic CFL Performance Analysis

The Genetic CFL method appears to perform better with a larger data set. As a
result, improving the quality of test results for every sample might help overall hyper-
parameter optimization. Considering several datasets that differ in data characteristics
and data points, an ideal grouping of similar scenarios leads to higher model accuracy.
There needs to be a balance between cluster size and cluster number. In the given instance, a
perfect combination could verify that the performance of such methods as in decentralized
design produces better results. In a practical application, the predicted number of edge
devices is more than in an artificial environment. Increasing the number of clients results in
improved performance. Genetic CFL optimizes hyper-parameters to increase throughput
for a relatively small set of optimization iterations.

The proposed genetic CFL architecture performance is better than regular CFL archi-
tecture while using fewer iterations. According to COVID data, our architecture is more
efficient and iterative in clustering. It provides that the proposed genetic CFL is flexible
and adjustable method for optimizing hyper-parameters. The proposed architecture has
the advantage of adaptability over other methods by allowing it to be tailored to meet the
dataset and the necessary situation. The majority of other architectures require a lot of
manual effort to adjust hyper-parameters. It resets the mechanism and loads a new set
of parameters for data analysis and applications. There are both time and resource costs
associated with the conventional mechanism. Furthermore, each client is tested separately,
which affects server and client performance. The proposed genetic CFL model ensures
service delivery for all client devices while increasing the server model’s performance.

5. Conclusions and Future Directions

In this paper, we used the genetic algorithm to optimize the rate at which hyper-
parameters are learned and the batch size for clustering through FL. To evaluate the
performance of the proposed genetic CFL algorithm, we used the COVID-19 dataset. In
addition, we discussed the best deployment conditions and limitations of the algorithm. In
future, we would like to test the genetic CFL model on scalable and real-time datasets. The
refinement of model parameters becomes accurate when the sample size increases, resulting
in higher performance in the real-time scenario. We would also like to test the proposed
model on several applications such as recommendation systems, image classification, and
natural language processing. Furthermore, time-sensitive techniques could be combined
with genetic CFL.

Author Contributions: Conceptualization, D.R.K.; Data curation, D.R.K. and T.R.G.; Formal analysis,
D.R.K.; Methodology, D.R.K.; Resources, T.R.G.; Software, D.R.K.; Supervision, T.R.G.; Validation,
T.R.G.; Visualization, T.R.G.; Writing—original draft, D.R.K. and T.R.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Electronics 2022, 11, 2714 11 of 12

Data Availability Statement: The dataset used in this work is taken from the kaggle repository https:
//www.kaggle.com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2
021.csv(accessed on 4 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

COVID-19 Coronavirus
AI Artificial Intelligence
ML Machine Learning
FL Federated Learning
GCFL Genetic Clustered Federated Learning
PCFL Privacy-preserving and Communication efficient scheme for Federated Learning
FedCD Federated Cloning-and-Deletion
FedMA Federated Matched Averaging
IFCA Iterative Federated Clustering Algorithm
FeSEM Federated Stochastic Expectation Maximization method
WOA Whale Optimization Algorithm
MLP Multilayer Perceptrons
ANN Artificial Neural Networks

References
1. Liu, B.; Yan, B.; Zhou, Y.; Yang, Y.; Zhang, Y. Experiments of federated learning for covid-19 chest X-ray images. arXiv 2020,

arXiv:2007.05592.
2. Hageman, J.R. The coronavirus disease 2019 (COVID-19). Pediatr. Ann. 2020, 49, 99–100. [CrossRef] [PubMed]
3. Saleem, K.; Saleem, M.; Zeeshan, R.; Javed, A.R.; Alazab, M.; Gadekallu, T.R.; Suleman, A. Situation-aware BDI reasoning

to detect early symptoms of covid 19 using smartwatch. IEEE Sens. J. 2022. [CrossRef]
4. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy

of federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [CrossRef]
5. Zhang, W.; Zhou, T.; Lu, Q.; Wang, X.; Zhu, C.; Sun, H.; Wang, Z.; Lo, S.K.; Wang, F.Y. Dynamic-Fusion-Based Federated Learning

for COVID-19 Detection. IEEE Internet Things J. 2021, 8, 15884–15891. [CrossRef]
6. Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.J.; Zhang, W.; Liu, J. Can decentralized algorithms outperform centralized algorithms?

A case study for decentralized parallel stochastic gradient descent. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11
7. Manoj, M.; Srivastava, G.; Somayaji, S.R.K.; Gadekallu, T.R.; Maddikunta, P.K.R.; Bhattacharya, S. An incentive based approach

for COVID-19 planning using blockchain technology. In Proceedings of the 2020 IEEE Globecom Workshops GC Wkshps, Taipei,
Taiwan, 7–11 December 2020; pp. 1–6.

8. Alazab, M.; Tang, M. Deep Learning Applications for Cyber Security; Springer: Berlin/Heidelberg, Germany, 2019.
9. Kumar, R.; Khan, A.A.; Kumar, J.; Golilarz, N.A.; Zhang, S.; Ting, Y.; Zheng, C.; Wang, W. Blockchain-federated-learning and

deep learning models for covid-19 detection using ct imaging. IEEE Sens. J. 2021, 21, 16301–16314. [CrossRef]
10. Yarradoddi, S.; Gadekallu, T.R. Federated learning role in big data, jot services and applications security, privacy and trust in jot

a survey. In Trust, Security and Privacy for Big Data; CRC Press: Boca Raton, FL, USA, 2022; pp. 28–49.
11. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. In

Proceedings of the Second Workshop on Distributed Infrastructures for dEep Learning, Rennes, France, 10 December 2018;
pp. 1–8.

12. Victor, N.; Alazab, M.; Bhattacharya, S.; Magnusson, S.; Maddikunta, P.K.R.; Ramana, K.; Gadekallu, T.R. Federated Learning for
IoUT: Concepts, Applications, Challenges and Opportunities. arXiv 2022, arXiv:2207.13976.

13. Sattler, F.; Müller, K.R.; Wiegand, T.; Samek, W. On the byzantine robustness of clustered federated learning. In Proceedings
of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual, 4–8 May
2020; pp. 8861–8865.

14. Malekijoo, A.; Fadaeieslam, M.J.; Malekijou, H.; Homayounfar, M.; Alizadeh-Shabdiz, F.; Rawassizadeh, R. Fedzip: A compression
framework for communication-efficient federated learning. arXiv 2021, arXiv:2102.01593.

15. Fang, C.; Guo, Y.; Hu, Y.; Ma, B.; Feng, L.; Yin, A. Privacy-preserving and communication-efficient federated learning in internet
of things. Comput. Secur. 2021, 103, 102199. [CrossRef]

16. Alazab, M.; Huda, S.; Abawajy, J.; Islam, R.; Yearwood, J.; Venkatraman, S.; Broadhurst, R. A hybrid wrapper-filter approach for
malware detection. J. Netw. 2014, 9, 1–14. [CrossRef]

https://www.kaggle.com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2021.csv
https://www.kaggle.com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2021.csv
https://www.kaggle.com/datasets/mykeysid10/covid19-dataset-for-year-2020?select=covid_data_2020-2021.csv
http://doi.org/10.3928/19382359-20200219-01
http://www.ncbi.nlm.nih.gov/pubmed/32155273
http://dx.doi.org/10.1109/JSEN.2022.3156819
http://dx.doi.org/10.1016/j.future.2020.10.007
http://dx.doi.org/10.1109/JIOT.2021.3056185
http://dx.doi.org/10.1109/JSEN.2021.3076767
http://dx.doi.org/10.1016/j.cose.2021.102199
http://dx.doi.org/10.4304/jnw.9.11.2878-2891

Electronics 2022, 11, 2714 12 of 12

17. Ozfatura, E.; Ozfatura, K.; Gündüz, D. Time-correlated sparsification for communication-efficient federated learning. In
Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, VI, Australia, 12–20 July 2021;
pp. 461–466.

18. Briggs, C.; Fan, Z.; Andras, P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data.
In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–9.

19. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
20. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020,

arXiv:2002.06440.
21. Yao, X.; Huang, T.; Wu, C.; Zhang, R.; Sun, L. Towards faster and better federated learning: A feature fusion approach. In

Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–29 September 2019;
pp. 175–179.

22. Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An efficient framework for clustered federated learning. Adv. Neural Inf. Process.
Syst. 2020, 33, 19586–19597. [CrossRef]

23. Kopparapu, K.; Lin, E.; Zhao, J. Fedcd: Improving performance in non-iid federated learning. arXiv 2020, arXiv:2006.09637.
24. Gadekallu, T.R.; Pham, Q.V.; Huynh-The, T.; Bhattacharya, S.; Maddikunta, P.K.R.; Liyanage, M. Federated learning for big data:

A survey on opportunities, applications, and future directions. arXiv 2021, arXiv:2110.04160.
25. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [CrossRef]
26. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan,

B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388.
27. Xie, M.; Long, G.; Shen, T.; Zhou, T.; Wang, X.; Jiang, J.; Zhang, C. Multi-center federated learning. arXiv 2020, arXiv:2005.01026.
28. Chai, Z.; Ali, A.; Zawad, S.; Truex, S.; Anwar, A.; Baracaldo, N.; Zhou, Y.; Ludwig, H.; Yan, F.; Cheng, Y. Tifl: A tier-based

federated learning system. In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed
Computing, Stockholm, Sweden, 23–26 June 2020; pp. 125–136.

29. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
30. Kim, J.Y.; Cho, S.B. Evolutionary optimization of hyperparameters in deep learning models. In Proceedings of the 2019 IEEE

Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 831–837.
31. Xiao, X.; Yan, M.; Basodi, S.; Ji, C.; Pan, Y. Efficient hyperparameter optimization in deep learning using a variable length genetic

algorithm. arXiv 2020, arXiv:2006.12703.
32. Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft

Comput. 2018, 22, 1–15. [CrossRef]
33. Beruvides, G.; Quiza, R.; Rivas, M.; Casta no, F.; Haber, R.E. Online detection of run out in microdrilling of tungsten and titanium

alloys. Int. J. Adv. Manuf. Technol. 2014, 74, 1567–1575. [CrossRef]
34. Agrawal, S.; Sarkar, S.; Alazab, M.; Maddikunta, P.K.R.; Gadekallu, T.R.; Pham, Q.V. Genetic CFL: Hyperparameter optimization

in clustered federated learning. Comput. Intell. Neurosci. 2021, 2021, 7156420. [CrossRef] [PubMed]
35. Zhang, H.; Zhang, M.; Liu, X.; Mohapatra, P.; DeLucia, M. FedTune: Automatic Tuning of Federated Learning Hyper-Parameters

from System Perspective. arXiv 2021, arXiv:2110.03061.
36. Khodak, M.; Tu, R.; Li, T.; Li, L.; Balcan, M.F.F.; Smith, V.; Talwalkar, A. Federated hyperparameter tuning: Challenges, baselines,

and connections to weight-sharing. Adv. Neural Inf. Process. Syst. 2021, 34, 19184–19197.
37. Ibraimi, L.; Selimi, M.; Freitag, F. BePOCH: Improving federated learning performance in resource-constrained computing

devices. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December
2021; pp. 1–6.

38. Taheri, R.; Shojafar, M.; Alazab, M.; Tafazolli, R. FED-IIoT: A robust federated malware detection architecture in industrial IoT.
IEEE Trans. Ind. Inform. 2020, 17, 8442–8452. [CrossRef]

39. Qayyum, A.; Ahmad, K.; Ahsan, M.A.; Al-Fuqaha, A.; Qadir, J. Collaborative federated learning for healthcare: Multi-modal
covid-19 diagnosis at the edge. arXiv 2021, arXiv:2101.07511.

40. Arikumar, K.; Prathiba, S.B.; Alazab, M.; Gadekallu, T.R.; Pandya, S.; Khan, J.M.; Moorthy, R.S. FL-PMI: Federated learning-based
person movement identification through wearable devices in smart healthcare systems. Sensors 2022, 22, 1377. [CrossRef]

http://dx.doi.org/10.1109/TIT.2022.3192506
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1007/s00500-016-2442-1
http://dx.doi.org/10.1007/s00170-014-6091-1
http://dx.doi.org/10.1155/2021/7156420
http://www.ncbi.nlm.nih.gov/pubmed/34840562
http://dx.doi.org/10.1109/TII.2020.3043458
http://dx.doi.org/10.3390/s22041377

	Introduction
	Literature Survey
	Federated Learning
	Evolutionary Algorithms

	Proposed Methodology
	Results and Discussion
	COVID Dataset Performance for Genetic CFL Architecture
	Genetic CFL Performance Analysis

	Conclusions and Future Directions
	References

