A Systematic Review and IoMT Based Big Data Framework for COVID-19 Prevention and Detection
Abstract
:1. Introduction
1.1. Motivation
1.2. Contribution
- Contribution 1. We studied the existing work for remote patient monitoring and medical assistance for patients and presented a detailed SLR of around 76 research articles.
- Contribution 2. We proposed an IoMT-based framework ‘cov-AID’ that lays the foundation of layered approach towards developing IoMT-based solutions.
- Contribution 3. We discussed the major challenges in adoption of IoMT-based framework.
2. Research Methodology
- Identification of relevant literature sources.
- Data Extraction and Synthesis.
- Classification of the literature according to concepts.
2.1. Identification of Relevant Literature Sources
- TITLE-ABS-KEY: The keywords chosen are looked for in the research paper’s title, abstract, and keywords.
- AND: Both keywords in the searched item must be present, according to this operator.
- OR: One of the terms in the searched item must be present, according to the operator.
- Year: To select the range of topic timelines for the publication period.
2.2. Data Extraction and Synthesis
2.2.1. Inclusion Criteria
- IC1: presents a review or survey of the IoMT framework or applications.
- IC2: discusses the role of IoT or IoMT in the healthcare sector including COVID-19.
- IC3: proposed an IoMT framework.
- IC4: proposed the IoT or IoMT framework for COVID-19.
- IC5: discuss IoT or IoMT frameworks using big data analytics.
- IC6: discuss the IoMT challenges and issues.
- IC7: are published in peer-reviewed conferences, journals, or early access articles.
2.2.2. Exclusion Criteria
- EC1: does not propose the IoMT framework for COVID-19.
- EC2: were not published in peer-reviewed conferences, journals or early access articles.
- EC3: are not written in the English Language.
2.3. Classification of the Literature According to the Concept
- Review: IoMT framework or applications review.
- Review: IoT or IoMT, including COVID-19.
- Proposed IoMT framework.
- Proposed IoT or IoMT framework for COVID-19.
- Review: IoT or IoMT frameworks using big data analytics and their adaptation challenges.
3. Findings of Literature Review
3.1. Review: IoMT Framework or Applications Review
3.2. Review: IoT or IoMT including COVID-19
3.3. IoMT Framework
3.4. IoT or IoMT Framework for COVID-19
3.5. Review: IoT or IoMT Frameworks Using Big Data Analytics and Their Adoption Challenges
4. cov-AID—Proposed Framework
Algorithm 1. Methodology for cov-AID |
Step-1 Big Data Generation Layer; Step-2 Big Data Acquisition Layer; Step-3 Big Data Storage Layer; Step-4 Big Data Query and Processing Layer; Step-5 Big Data Analytics; Step-6 Big Data Application. |
4.1. Big Data Generation Layer
4.2. Big Data Acquisition and Storage Layers
4.3. Big Data Query and Processing Layer
4.4. Big Data Analytical Layer
4.5. Big Data Application Layer
4.5.1. COVID-19 Outbreak Analysis and Prediction Applications
4.5.2. COVID-19 Patient Monitoring Applications
4.5.3. COVID-19 Outbreak Analysis and Prediction Applications
5. Adoption Challenges for IoMT-Based Frameworks
6. Discussion and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qureshi, F.; Krishnan, S. Wearable Hardware Design for the Internet of Medical Things (IoMT). Sensors 2018, 18, 3812. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, A.; Puri, V.; Nguyen, N.G. BioSenHealth 1.0: A Novel Internet of Medical Things (IoMT)-Based Patient Health Monitoring System. Lect. Notes Netw. Syst. 2019, 55, 155–164. [Google Scholar]
- Syed, L.; Jabeen, S.; Manimala, S.; Alsaeedi, A. Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Futur. Gener. Comput. Syst. 2019, 101, 136–151. [Google Scholar] [CrossRef]
- Mohd Aman, A.H.; Hassan, W.H.; Sameen, S.; Attarbashi, Z.S.; Alizadeh, M.; Latiff, L.A. IoMT amid COVID-19 Pandemic: Application, Architecture, Technology, and Security. J. Netw. Comput. Appl. 2021, 174, 102886. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.A.; Mohamed, Y.A.-R.I. Big data framework for analytics in smart grids. Electr. Power Syst. Res. 2017, 151, 369–380. [Google Scholar] [CrossRef]
- Mohamed, A.; Najafabadi, M.K.; Wah, Y.B.; Zaman, E.A.K.; Maskat, R. The state of the art and taxonomy of big data analytics: View from new big data framework. Artif. Intell. Rev. 2019, 53, 989–1037. [Google Scholar] [CrossRef]
- Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Dorodchi, M.; Valero, M.; Arabnia, H.R. Internet of Things for Current COVID-19 and Future Pandemics: An Exploratory Study. J. Health Inform. Res. 2020, 4, 325–364. [Google Scholar] [CrossRef]
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef]
- Venkatesh, R.; Balasubramanian, C.; Kaliappan, M. Development of Big Data Predictive Analytics Model for Disease Prediction using Machine learning Technique. J. Med. Syst. 2019, 43, 272. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, S.; Gao, D.; Lou, Y.; Yang, S.; Musa, S.S.; Wang, M.H.; Cai, Y.; Wang, W.; Yang, L.; et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 2020, 93, 211–216. [Google Scholar] [CrossRef]
- Varsavsky, T.; Graham, M.S.; Canas, L.S.; Ganesh, S.; Pujol, J.C.; Sudre, C.H.; Murray, B.; Modat, M.; Cardoso, M.J.; Astley, C.M.; et al. Detecting COVID-19 infection hotspots in England using large-scale self-reported data from a mobile application: A prospective, observational study. Lancet Public Health 2021, 6, e21–e29. [Google Scholar] [CrossRef]
- Subbarao, K.; Mahanty, S. Respiratory Virus Infections: Understanding COVID-19. Immunity 2020, 52, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Cimolai, N. Environmental and decontamination issues for human coronaviruses and their potential surrogates. J. Med. Virol. 2020, 92, 2498–2510. [Google Scholar] [CrossRef] [PubMed]
- Sicari, S.; Rizzardi, A.; Coen-Porisini, A. Home quarantine patient monitoring in the era of COVID-19 disease. Smart Health 2022, 23, 100222. [Google Scholar] [CrossRef]
- Li, F.; Valero, M.; Shahriar, H.; Khan, R.A.; Ahamed, S.I. Wi-COVID: A COVID-19 symptom detection and patient monitoring framework using WiFi. Smart Health 2021, 19, 100147. [Google Scholar] [CrossRef]
- Jia, Q.; Guo, Y.; Wang, G.; Barnes, S.J. Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework. Int. J. Environ. Res. Public Health 2020, 17, 6161. [Google Scholar] [CrossRef]
- Swayamsiddha, S.; Mohanty, C. Application of cognitive Internet of Medical Things for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 911–915. [Google Scholar] [CrossRef]
- Ashfaq, Z.; Rafay, A.; Mumtaz, R.; Zaidi, S.M.H.; Saleem, H.; Mumtaz, S.; Haque, A. A review of enabling technologies for Internet of Medical Things (IoMT) Ecosystem. Ain Shams Eng. J. 2022, 13, 101660. [Google Scholar] [CrossRef]
- Dwivedi, R.; Mehrotra, D.; Chandra, S. Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review. J. Oral Biol. Craniofacial Res. 2021, 12, 302–318. [Google Scholar] [CrossRef]
- Skolrood, L.; Wang, Y.; Zhang, S.; Wei, Q. Single-molecule and particle detection on true portable microscopy platforms. Sens. Actuators Rep. 2022, 4, 100063. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Bayramov, S.; Kalejahi, B.K. Internet of Things Applications: Opportunities and Threats. Wirel. Pers. Commun. 2022, 122, 451–476. [Google Scholar] [CrossRef] [PubMed]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Ngoc, L.A. Smart Healthcare IoT Applications Based on Fog Computing: Architecture, Applications and Challenges. Complex Intell. Syst. 2021, 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mbunge, E.; Muchemwa, B.; Jiyane, S.; Batani, J. Sensors and healthcare 5.0: Transformative shift in virtual care through emerging digital health technologies. Glob. Health J. 2021, 5, 169–177. [Google Scholar] [CrossRef]
- Sujith, A.; Sajja, G.S.; Mahalakshmi, V.; Nuhmani, S.; Prasanalakshmi, B. Systematic review of smart health monitoring using deep learning and Artificial intelligence. Neurosci. Inform. 2022, 2, 100028. [Google Scholar] [CrossRef]
- Rahman, J.; Morshed, B.I.; Harmon, B.; Rahman, M. A pilot study towards a smart-health framework to collect and analyze biomarkers with low-cost and flexible wearables. Smart Health 2022, 23, 100249. [Google Scholar] [CrossRef]
- Mamdouh, M.; Awad, A.I.; Khalaf, A.A.M.; Hamed, H.F.A. Authentication and Identity Management of IoHT Devices: Achievements, Challenges, and Future Directions. Comput. Secur. 2021, 111, 102491. [Google Scholar] [CrossRef]
- Campos-Ferreira, D.; Visani, V.; Córdula, C.; Nascimento, G.A.; Montenegro, L.M.L.; Schindler, H.C.; Cavalcanti, I.M.F. COVID-19 Challenges: From SARS-CoV-2 Infection to Effective Point-of-Care Diagnosis by Electrochemical Biosensing Platforms. Biochem. Eng. J. 2021, 176, 108200. [Google Scholar]
- Kashani, M.H.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A systematic review of IoT in healthcare: Applications, techniques, and trends. J. Netw. Comput. Appl. 2021, 192, 103164. [Google Scholar] [CrossRef]
- Ding, W.; Nayak, J.; Swapnarekha, H.; Abraham, A.; Naik, B.; Pelusi, D. Fusion of Intelligent Learning for COVID-19: A State-of-the-Art Review and Analysis on Real Medical Data. Neurocomputing 2021, 457, 40–66. [Google Scholar] [CrossRef]
- Li, X.; Tao, B.; Dai, H.N.; Imran, M.; Wan, D.; Li, D. Is Blockchain for Internet of Medical Things a Panacea for COVID-19 Pandemic? Pervasive Mobobile Comput. 2021, 75, 101434. [Google Scholar] [CrossRef]
- Hajiheydari, N.; Delgosha, M.S.; Olya, H. Scepticism and resistance to IoMT in healthcare: Application of behavioural reasoning theory with configurational perspective. Technol. Forecast. Soc. Change 2021, 169, 120807. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Tian, S.; Liu, K.; Ni, J.; Zhao, M.; Kang, Y.; Ma, X.; Guo, J. 5G-enabled ultra-sensitive fluorescence sensor for proactive prognosis of COVID-19. Biosens. Bioelectron. 2021, 181, 113160. [Google Scholar] [CrossRef] [PubMed]
- Bayin, Q.; Huang, L.; Ren, C.; Fu, Y.; Ma, X.; Guo, J. Anti-SARS-CoV-2 IgG and IgM Detection with a GMR Based LFIA System. Talanta 2021, 227, 122207. [Google Scholar] [CrossRef] [PubMed]
- Intawong, K.; Olson, D.; Chariyalertsak, S. Application technology to fight the COVID-19 pandemic: Lessons learned in Thailand. Biochem. Biophys. Res. Commun. 2021, 538, 231–237. [Google Scholar] [CrossRef]
- Jain, H.; Chamola, V.; Jain, Y.; Naren. 5G network slice for digital real-time healthcare system powered by network data analytics. Internet Things Cyber-Phys. Syst. 2021, 1, 14–21. [Google Scholar] [CrossRef]
- Greco, L.; Percannella, G.; Ritrovato, P.; Tortorella, F.; Vento, M. Trends in IoT based solutions for health care: Moving AI to the edge. Pattern Recognit. Lett. 2020, 135, 346–353. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 521–524. [Google Scholar] [CrossRef]
- Lim, S.; Rahmani, R. Toward Semantic IoT Load Inference Attention Management for Facilitating Healthcare and Public Health Collaboration: A Survey. Procedia Comput. Sci. 2020, 177, 371–378. [Google Scholar] [CrossRef]
- Volkov, I.; Radchenko, G.; Tchernykh, A. Digital Twins, Internet of Things and Mobile Medicine: A Review of Current Platforms to Support Smart Healthcare. Program. Comput. Softw. 2021, 47, 578–590. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, D. Application of convolutional neural network-based biosensor and electroencephalogram signal in sleep staging. J. Ambient Intell. Humaniz. Comput. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Alharbi, A.; Rahman, A. Review of Recent Technologies for Tackling COVID-19. SN Comput. Sci. 2021, 2, 460. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.; Pasha, M.F.; Ghani, I.; Jeong, S.R. Emerging technologies and their roles during the COVID-19 pandemic and safety challenges of frontline medical staff: A rapid review. Res. Biomed. Eng. 2021, 38, 279–291. [Google Scholar] [CrossRef]
- Islam, M.; Mahmud, S.; Muhammad, L.J.; Islam, R.; Nooruddin, S.; Ayon, S.I. Wearable Technology to Assist the Patients Infected with Novel Coronavirus (COVID-19). SN Comput. Sci. 2020, 1, 320. [Google Scholar] [CrossRef] [PubMed]
- Vafea, M.T.; Atalla, E.; Georgakas, J.; Shehadeh, F.; Mylona, E.K.; Kalligeros, M.; Mylonakis, E. Emerging Technologies for Use in the Study, Diagnosis, and Treatment of Patients with COVID-19. Cell. Mol. Bioeng. 2020, 13, 249–257. [Google Scholar] [CrossRef]
- Monaghesh, E.; Hajizadeh, A. The role of telehealth during COVID-19 outbreak: A systematic review based on current evidence. BMC Public Health 2020, 20, 1193. [Google Scholar] [CrossRef]
- Mbunge, E.; Akinnuwesi, B.; Fashoto, S.G.; Metfula, A.S.; Mashwama, P. A critical review of emerging technologies for tackling COVID-19 pandemic. Hum. Behav. Emerg. Technol. 2020, 3, 25–39. [Google Scholar] [CrossRef]
- Anand, R.; Sindhwani, N.; Saini, A.; Shubham. Emerging Technologies for COVID-19. In Enabling Healthcare 4.0 Pandemics; Wiley: New York, NY, USA, 2021; pp. 163–188. [Google Scholar]
- Puri, V.; Kataria, A.; Sharma, V. Artificial intelligence-powered decentralized framework for Internet of Things in Healthcare 4.0. Trans. Emerg. Telecommun. Technol. 2021, 32, e4245. [Google Scholar] [CrossRef]
- Juneja, S.; Juneja, A.; Dhankhar, A.; Jain, V. IoT-Enabled Effective Healthcare Monitoring System Using Semantic Web. In Semantic Web for Effective Healthcare; Wiley: New York, NY, USA, 2021; pp. 175–189. [Google Scholar]
- Bera, B.; Mitra, A.; Das, A.K.; Puthal, D.; Park, Y. Private Blockchain-Based AI-Envisioned Home Monitoring Framework in IoMT-Enabled COVID-19 Environment. IEEE Consum. Electron. Mag. 2021, 1. [Google Scholar] [CrossRef]
- Alam, M.; Rahmani, R. Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application. Sensors 2021, 21, 5025. [Google Scholar] [CrossRef]
- Mbunge, E.; Jiyane, S.; Muchemwa, B. Towards emotive sensory Web in virtual health care: Trends, technologies, challenges and ethical issues. Sens. Int. 2022, 3, 100134. [Google Scholar] [CrossRef]
- Ismael, M.H.; Maolood, A.T. Developing Modern System in Healthcare to Detect Covid 19 Based on Internet of Things. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Yadav, A.K.; Verma, D.; Kumar, A.; Kumar, P.; Solanki, P.R. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. Mater. Today Chem. 2021, 20, 100443. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Nehra, M.; Kumar, R.; Dilbaghi, N.; Hu, T.Y.; Kumar, S.; Kaushik, A.; Li, C.Z. Internet of Medical Things (IoMT)-Integrated Biosensors for Point-of-Care Testing of Infectious Diseases. Biosens. Bioelectron. 2021, 179, 113074. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Ahmad, M.; Jeon, G.; Piccialli, F. A Framework for Pandemic Prediction Using Big Data Analytics. Big Data Res. 2021, 25, 100190. [Google Scholar] [CrossRef]
- Fagroud, F.Z.; Toumi, H.; Ben Lahmar, E.H.; Talhaoui, M.A.; Achtaich, K.; El Filali, S. Impact of IoT devices in E-Health: A Review on IoT in the context of COVID-19 and its variants. Procedia Comput. Sci. 2021, 191, 343–348. [Google Scholar] [CrossRef]
- Al Bassam, N.; Hussain, S.A.; Al Qaraghuli, A.; Khan, J.; Sumesh, E.P.; Lavanya, V. IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Inform. Med. Unlocked 2021, 24, 100588. [Google Scholar] [CrossRef]
- Saba, T.; Haseeb, K.; Ahmed, I.; Rehman, A. Secure and energy-efficient framework using Internet of Medical Things for e-healthcare. J. Infect. Public Health 2020, 13, 1567–1575. [Google Scholar] [CrossRef]
- Mishra, L.; Vikash; Varma, S. Seamless Health Monitoring Using 5G NR for Internet of Medical Things. Wirel. Pers. Commun. 2021, 120, 2259–2289. [Google Scholar] [CrossRef]
- Viswanadham, N. Ecosystem model for healthcare platform. Sadhana 2021, 46, 188. [Google Scholar] [CrossRef]
- Al-Dhaen, F.; Hou, J.; Rana, N.P.; Weerakkody, V. Advancing the Understanding of the Role of Responsible AI in the Continued Use of IoMT in Healthcare. Inf. Syst. Front. 2021, 23, 1–20. [Google Scholar] [CrossRef]
- Asghari, P. A diagnostic prediction model for colorectal cancer in elderlies via internet of medical things. Int. J. Inf. Technol. 2021, 13, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Uslu, B.Ç.; Okay, E.; Dursun, E. Analysis of Factors Affecting IoT-Based Smart Hospital Design. J. Cloud Comput. 2020, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Mangla, M.; Mohanty, S.N.; Gupta, D.; Tiwari, P.; Shorfuzzaman, M.; Rawashdeh, M. A smart ontology-based IoT framework for remote patient monitoring. Biomed. Signal Process. Control 2021, 68, 102717. [Google Scholar] [CrossRef]
- Renugadevi, N.; Saravanan, S.; Sudha, C.N. Revolution of Smart Healthcare Materials in Big Data Analytics. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Savaşcı Şen, S.; Cicioğlu, M.; Çalhan, A. IoT-Based GPS Assisted Surveillance System with Inter-WBAN Geographic Routing for Pandemic Situations. J. Biomed. Inform. 2021, 116, 103731. [Google Scholar] [CrossRef] [PubMed]
- Ben Arfi, W.; Ben Nasr, I.; Kondrateva, G.; Hikkerova, L. The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technol. Forecast. Soc. Change 2021, 167, 120688. [Google Scholar] [CrossRef]
- Gupta, D.; Bhatt, S.; Gupta, M.; Tosun, A.S. Future Smart Connected Communities to Fight COVID-19 Outbreak. Internet Things 2021, 13, 100342. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Nabeeh, N.A. An intelligent framework using disruptive technologies for COVID-19 analysis. Technol. Forecast. Soc. Change 2021, 163, 120431. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Singh, H.; Naugriya, S.G.; Gill, S.S.; Buyya, R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Futur. Gener. Comput. Syst. 2021, 115, 1–19. [Google Scholar] [CrossRef]
- Otoom, M.; Otoum, N.; Alzubaidi, M.A.; Etoom, Y.; Banihani, R. An IoT-Based Framework for Early Identification and Monitoring of COVID-19 Cases. Biomed. Signal Process. Control 2020, 62, 102149. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Haleem, A.; Vaishya, R.; Ali, S. Internet of Medical Things (IoMT) for orthopaedic in COVID-19 pandemic: Roles, challenges, and applications. J. Clin. Orthop. Trauma 2020, 11, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kaur, R. An integrated fog and Artificial Intelligence smart health framework to predict and prevent COVID-19. Glob. Transit. 2020, 2, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Kallel, A.; Rekik, M.; Khemakhem, M. Hybrid-based framework for COVID-19 prediction via federated machine learning models. J. Supercomput. 2021, 78, 7078–7105. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Khuwaja, P.; Dev, K.; D’Aniello, G. VIRFIM: An AI and Internet of Medical Things-driven framework for healthcare using smart sensors. Neural Comput. Appl. 2021, 34, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Poongodi, M.; Nguyen, T.N.; Hamdi, M.; Cengiz, K. A Measurement Approach Using Smart-IoT Based Architecture for Detecting the COVID-19. Neural Process. Lett. 2021, 1–15. [Google Scholar] [CrossRef]
- Rahman, A.; Chakraborty, C.; Anwar, A.; Karim, M.R.; Islam, M.J.; Kundu, D.; Rahman, Z.; Band, S.S. SDN–IoT Empowered Intelligent Framework for Industry 4.0 Applications during COVID-19 Pandemic. Clust. Comput. 2021, 3, 2351–2368. [Google Scholar] [CrossRef]
- Madhavan, M.V.; Khamparia, A.; Gupta, D.; Pande, S.; Tiwari, P.; Hossain, M.S. Res-CovNet: An Internet of Medical Health Things Driven COVID-19 Framework Using Transfer Learning. Neural Comput. Appl. 2021, 1–14. [Google Scholar] [CrossRef]
- Akhbarifar, S.; Javadi, H.H.S.; Rahmani, A.M.; Hosseinzadeh, M. A secure remote health monitoring model for early disease diagnosis in cloud-based IoT environment. Pers. Ubiquitous Comput. 2020, 24, 1–17. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shamim Hossain, M. An Internet-of-Medical-Things-Enabled Edge Computing Framework for Tackling COVID-19. IEEE Internet Things J. 2021, 8, 15847–15854. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, M.; Yuan, T.; Al-Nabhan, N. Emotion-Aware and Intelligent Internet of Medical Things Toward Emotion Recognition During COVID-19 Pandemic. IEEE Internet Things J. 2021, 8, 16002–16013. [Google Scholar] [CrossRef]
- Liu, J.; Miao, F.; Yin, L.; Pang, Z.; Li, Y. A Noncontact Ballistocardiography-Based IoMT System for Cardiopulmonary Health Monitoring of Discharged COVID-19 Patients. IEEE Internet Things J. 2021, 8, 15807–15817. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.; Gutierrez, S.; Reyes, B.A.; Rosas, V.; Rubio, M.V.S.; Rodriguez, A.M.; Jimenez, R.M.; Olvera, F.J.H.; Hernandez, O.S. IoMT: Rinku’s Clinical Kit Applied to Collect Information Related to COVID-19 Through Medical Sensors. IEEE Lat. Am. Trans. 2021, 19, 1002–1009. [Google Scholar] [CrossRef]
- Tai, Y.; Gao, B.; Li, Q.; Yu, Z.; Zhu, C.; Chang, V. Trustworthy and Intelligent COVID-19 Diagnostic IoMT Through XR and Deep-Learning-Based Clinic Data Access. IEEE Internet Things J. 2021, 8, 15965–15976. [Google Scholar] [CrossRef]
- Zhang, M.; Dai, D.; Hou, S.; Liu, W.; Gao, F.; Xu, D.; Hu, Y. Thinking on the informatization development of China’s healthcare system in the post-COVID-19 era. Intell. Med. 2021, 1, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Baran, K. Stress detection and monitoring based on low-cost mobile thermography. Procedia Comput. Sci. 2021, 192, 1102–1110. [Google Scholar] [CrossRef]
- Nagarajan, S.M.; Deverajan, G.G.; Chatterjee, P.; Alnumay, W.; Ghosh, U. Effective task scheduling algorithm with deep learning for Internet of Health Things (IoHT) in sustainable smart cities. Sustain. Cities Soc. 2021, 71, 102945. [Google Scholar] [CrossRef]
- Elagan, S.K.; Abdelwahab, S.F.; Zanaty, E.A.; Alkinani, M.H.; Alotaibi, H.; Zanaty, M.E.A. Remote diagnostic and detection of coronavirus disease (COVID-19) system based on intelligent healthcare and internet of things. Results Phys. 2021, 22, 103910. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; Kumar, N. Sensors for internet of medical things: State-of-the-art, security and privacy issues, challenges and future directions. Comput. Commun. 2020, 160, 111–131. [Google Scholar] [CrossRef]
- Jauregi, I.; Solar, H.; Beriain, A.; Zalbide, I.; Jimenez, A.; Galarraga, I.; Berenguer, R. UHF RFID Temperature Sensor Assisted with Body-Heat Dissipation Energy Harvesting. IEEE Sens. J. 2017, 17, 1471–1478. [Google Scholar] [CrossRef]
- Masao, C.; Hirozumi, Y.; Teruo, H.; Yoshiyuki, S. Human Thermal Comfort Estimation in Indoor Space by Crowd Sensing. In Proceedings of the 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW, Australia, 6–9 November 2016; pp. 45–50. [Google Scholar]
- Shorfuzzaman, M.; Hossain, M.S.; Alhamid, M.F. Towards the sustainable development of smart cities through mass video surveillance: A response to the COVID-19 pandemic. Sustain. Cities Soc. 2021, 64, 102582. [Google Scholar] [CrossRef]
- Khan, S.; Saultry, B.; Adams, S.; Kouzani, A.Z.; Decker, K.; Digby, R.; Bucknall, T. Comparative accuracy testing of non-contact infrared thermometers and temporal artery thermometers in an adult hospital setting. Am. J. Infect. Control 2021, 49, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, J. Electrocardiogram Classification Using Long Short-Term Memory Networks. In Advances in Computer Vision and Computational Biology; Springer: Cham, Switzerland, 2021; pp. 855–862. [Google Scholar] [CrossRef]
- Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Sadek, I.; Biswas, J. Nonintrusive heart rate measurement using ballistocardiogram signals: A comparative study. Signal Image Video Process. 2018, 13, 475–482. [Google Scholar] [CrossRef]
- Lokharan, M.; Kumar, K.C.L.; Kumar, V.H.; Kayalvizhi, N.; Aryalekshmi, R. Measurement of Pulse Transit Time (PTT) Using Photoplethysmography. In Proceedings of the 16th International Conference on Biomedical Engineering, Singapore, 7–10 December 2017; pp. 130–134. [Google Scholar] [CrossRef]
- Zamanifar, A. Remote Patient Monitoring: Health Status Detection and Prediction in IoT-Based Health Care. In IoT in Healthcare and Ambient Assisted Living; Springer: Singapore, 2021; pp. 89–102. [Google Scholar]
- Bonnevie, T.; Gravier, F.-E.; Elkins, M.; Dupuis, J.; Prieur, G.; Combret, Y.; Viacroze, C.; Debeaumont, D.; Robleda-Quesada, A.; Quieffin, J.; et al. People undertaking pulmonary rehabilitation are willing and able to provide accurate data via a remote pulse oximetry system: A multicentre observational study. J. Physiother. 2019, 65, 28–36. [Google Scholar] [CrossRef]
- Chakkor, S.; Baghouri, M.; El Oualkadi, A.; El Hangouche, J.A.; Laamech, J.; Belfkih, R. Intelligent Monitoring System to Aid in the Proactive and Early Detection of People Infected by COVID-19. In Artificial Intelligence for COVID-19; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Grech, V.; Borg, M. Influenza vaccination in the COVID-19 era. Early Hum. Dev. 2020, 148, 105116. [Google Scholar] [CrossRef] [PubMed]
- Balusamy, B.; Abirami, R.N.; Kadry, S.; Gandomi, A.H. Driving Big Data with Hadoop Tools and Technologies. Big Data 2021, 1, 111–160. [Google Scholar] [CrossRef]
- Indrakumari, R.; Poongodi, T.; Suresh, P.; Balamurugan, B. The growing role of integrated and insightful big and real-time data analytics platforms. Adv. Comput. 2019, 117, 165–186. [Google Scholar] [CrossRef]
- Manogaran, G.; Varatharajan, R.; Lopez, D.; Kumar, P.M.; Sundarasekar, R.; Thota, C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Futur. Gener. Comput. Syst. 2018, 82, 375–387. [Google Scholar] [CrossRef]
- Hoelscher, J.; Mortimer, A. Using Tableau to visualize data and drive decision-making. J. Account. Educ. 2018, 44, 49–59. [Google Scholar] [CrossRef]
- Prajapati, M.; Patel, S. A Review on Big Data with Data Mining. Lect. Notes Data Eng. Commun. Technol. 2021, 52, 155–160. [Google Scholar] [CrossRef]
- Goswami, P.K.; Sharma, A. Realtime analysis and visualization of data for instant decisions: A futuristic requirement of the digital world. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Lunn, P.D.; Timmons, S.; Belton, C.A.; Barjaková, M.; Julienne, H.; Lavin, C. Motivating social distancing during the COVID-19 pandemic: An online experiment. Soc. Sci. Med. 2020, 265, 113478. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO|World Health Organization. Available online: https://www.who.int/ (accessed on 15 August 2021).
- Alhasan, M.; Hasaneen, M. Digital imaging, technologies and artificial intelligence applications during COVID-19 pandemic. Comput. Med. Imaging Graph. 2021, 91, 101933. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Chakraborty, C.; Kumar, A.; Biswas, D. Emerging trends in IoT and big data analytics for biomedical and health care technologies. In Handbook of Data Science Approaches for Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–152. [Google Scholar] [CrossRef]
- Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T.H. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf. Fusion 2021, 76, 355–375. [Google Scholar] [CrossRef]
- Pandey, S.; Barik, R.K.; Gupta, S.; Arthi, R. Pandemic Drone with Thermal Imaging and Crowd Monitoring System (DRISHYA). In Technical Advancements of Machine Learning in Healthcare; Springer: Singapore, 2021; pp. 307–325. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Periñán-Pascual, C.; Muñoz, A.; Martínez-España, R.; Hernández-Orallo, E.; Cecilia, J.M. COVIDSensing: Social Sensing Strategy for the Management of the COVID-19 Crisis. Electronics 2021, 10, 3157. [Google Scholar] [CrossRef]
- Levashenko, V.; Rabcan, J.; Zaitseva, E. Reliability Evaluation of the Factors That Influenced COVID-19 Patients’ Condition. Appl. Sci. 2021, 11, 2589. [Google Scholar] [CrossRef]
- Mastoi, Q.-U.; Memon, M.S.; Lakhan, A.; Mohammed, M.A.; Qabulio, M.; Al-Turjman, F.; Abdulkareem, K.H. Machine learning-data mining integrated approach for premature ventricular contraction prediction. Neural Comput. Appl. 2021, 33, 11703–11719. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.; Rashid, A.; Kadry, S.; Panityakul, T.; Abdulkareem, K.; Thinnukool, O. Smart-Contract Aware Ethereum and Client-Fog-Cloud Healthcare System. Sensors 2021, 21, 4093. [Google Scholar] [CrossRef]
- Lakhan, A.; Mastoi, Q.-U.; Elhoseny, M.; Memon, M.S.; Mohammed, M.A. Deep neural network-based application partitioning and scheduling for hospitals and medical enterprises using IoT assisted mobile fog cloud. Enterp. Inf. Syst. 2022, 16, 1883122. [Google Scholar] [CrossRef]
- Mutlag, A.A.; Ghani, M.K.A.; Mohammed, M.A.; Lakhan, A.; Mohd, O.; Abdulkareem, K.H.; Garcia-Zapirain, B. Multi-Agent Systems in Fog–Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring. Sensors 2021, 21, 6923. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Kozlov, S.; Rodrigues, J.J. Mobile-fog-cloud assisted deep reinforcement learning and blockchain-enable IoMT system for healthcare workflows. Trans. Emerg. Telecommun. Technol. 2021, e4363. [Google Scholar] [CrossRef]
- Lakhan, A.; Mastoi, Q.-U.; Dootio, M.A.; Alqahtani, F.; Alzahrani, I.R.; Baothman, F.; Shah, S.Y.; Shah, S.A.; Anjum, N.; Abbasi, Q.H.; et al. Hybrid Workload Enabled and Secure Healthcare Monitoring Sensing Framework in Distributed Fog-Cloud Network. Electronics 2021, 10, 1974. [Google Scholar] [CrossRef]
- Lakhan, A.; Dootio, M.A.; Sodhro, A.H.; Pirbhulal, S.; Groenli, T.M.; Khokhar, M.S.; Wang, L. Cost-efficient service selection and execution and blockchain-enabled serverless network for internet of medical things. Math. Biosci. Eng. 2021, 18, 7344–7362. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Kadry, S.; AlQahtani, S.A.; Maashi, M.S.; Abdulkareem, K.H. Federated Learning-Aware Multi-Objective Modeling and blockchain-enable system for IIoT applications. Comput. Electr. Eng. 2022, 100, 107839. [Google Scholar] [CrossRef]
- Lakhan, A.; Sajnani, D.K.; Tahir, M.; Aamir, M.; Lodhi, R. Delay Sensitive Application Partitioning and Task Scheduling in Mobile Edge Cloud Prototyping. In Proceedings of the International Conference on 5G for Ubiquitous Connectivity, Nanjing, China, 4–5 December 2018; pp. 59–80. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Elhoseny, M.; Alshehri, M.D.; Abdulkareem, K.H. Blockchain multi-objective optimization approach-enabled secure and cost-efficient scheduling for the Internet of Medical Things (IoMT) in fog-cloud system. Soft Comput. 2022, 26, 6429–6442. [Google Scholar] [CrossRef]
- Lakhan, A.; Khoso, F.H.; Arain, A.A.; Kanwar, K. Serverless based functions aware framework for healthcare application. Int. J. Emerg. Trends Eng. Res. 2021, 9. [Google Scholar] [CrossRef]
Electronic Database | Search String |
---|---|
ScienceDirect | ((“IOMT” OR “Internet of Medical Things”) AND “COVID-19”) |
IEEE | (“IoMT”) AND (“COVID-19”) OR (“Internet of Medical Things”) AND (“COVID-19”) |
Springer | ‘“COVID-19” AND “IoMT” OR “Internet of Medical Things”’ |
MDPI | ((“IOMT” OR “Internet of Medical Things”) AND “COVID-19”) |
Wiley | “IoMT” AND “COVID-19” OR “Internet of Medical Things” AND “COVID-19” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, S.; Bawany, N.Z.; Sodhro, A.H.; Lakhan, A.; Ahmed, S. A Systematic Review and IoMT Based Big Data Framework for COVID-19 Prevention and Detection. Electronics 2022, 11, 2777. https://doi.org/10.3390/electronics11172777
Hamid S, Bawany NZ, Sodhro AH, Lakhan A, Ahmed S. A Systematic Review and IoMT Based Big Data Framework for COVID-19 Prevention and Detection. Electronics. 2022; 11(17):2777. https://doi.org/10.3390/electronics11172777
Chicago/Turabian StyleHamid, Soomaiya, Narmeen Zakaria Bawany, Ali Hassan Sodhro, Abdullah Lakhan, and Saleem Ahmed. 2022. "A Systematic Review and IoMT Based Big Data Framework for COVID-19 Prevention and Detection" Electronics 11, no. 17: 2777. https://doi.org/10.3390/electronics11172777
APA StyleHamid, S., Bawany, N. Z., Sodhro, A. H., Lakhan, A., & Ahmed, S. (2022). A Systematic Review and IoMT Based Big Data Framework for COVID-19 Prevention and Detection. Electronics, 11(17), 2777. https://doi.org/10.3390/electronics11172777