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Abstract: Due to the high automaticity and efficiency of image-based residential area extraction, it
has become one of the research hotspots in surveying, mapping, and computer vision, etc. For the
application of mapping residential area, the extracted contour is required to be regular. However,
the contour results of existing deep-learning-based residential area extraction methods are assigned
accurately according to the actual range of residential areas in imagery, which are difficult to directly
apply to mapping due to the extractions being messy and irregular. Most of the existing ground object
extraction datasets based on optical satellite images mainly promote the research of semantic segmen-
tation, thereby ignoring the requirements of mapping applications. In this paper, we introduce an
optical satellite images dataset named RERB (Residential area Extraction with Regularized Boundary)
to support and advance end-to-end learning of residential area mapping. The characteristic of RERB
is that it embeds the prior knowledge of regularized contour in the dataset. In detail, the RERB dataset
contains 13,892 high-quality satellite images with a spatial resolution of 2 m acquired from different
cities in China, and the size of each image is approximately 256 × 256 pixels, which covers an area of
more than 3640 square kilometers. The novel published RERB dataset encompasses four superiorities:
(1) Large-scale and high-resolution; (2) well annotated and regular label contour; (3) rich background;
and (4) class imbalance. Therefore, the RERB dataset is suitable for both semantic segmentation
and mapping application tasks. Furthermore, to validate the effectiveness of the RERB, a novel
end-to-end regularization extraction algorithm of residential areas based on contour cross-entropy
constraints is designed and implemented, which can significantly improve the regularization degree
of extraction for the mapping of residential areas. The comparative experimental results demonstrate
the preponderance and practicability of our public dataset and can further facilitate future research.

Keywords: residential area extraction; mapping requirement; contour regularization; end-to-end
deep model; Tian-Hui 1 satellite images

1. Introduction

Topographic map data with 1:50,000 scale are one of the most basic geographic infor-
mation data, which play a significant and strategic role in national economy and national
defense construction [1,2]. With the rapid development of society, users have increasingly
higher requirements for the current situation of topographic maps, and the updating of to-
pographic maps [3,4] has become the primary and urgent work. The content of topographic
maps mainly includes ground objects and the undulating form of terrain. Because the
changes in terrain data are generally relatively small, the updated objects of topographic
map mainly consist of ground objects.

Optical remote sensing imagery is one of the main data sources for updating ground
objects in topographic maps. Ground object mapping mainly refers to the acquisition of
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object information in remote sensing imagery according to the corresponding scale graphic
specification [1]. At present, ground object mapping using remote sensing imagery is
mainly completed manually, with high precision but low efficiency, making this kind of
fashion tedious, expensive, and labor intensive, so it is difficult to meet the needs of rapid
applications, such as land planning and automatic driving. According to official statis-
tics [5], it takes at least 40 days and 10 thousand RMB to produce 1:50,000 topographical
map data. The number of global 1:50,000 topographical maps is about 400 thousand, and
each update requires an investment of about 4 billion RMB.

With the launch of Zi-Yuan 3 (ZY-3) and Tian-Hui 1 (TH-1) stereo mapping satel-
lites [6,7], China has the capability of measuring and updating 1:50,000 topographic maps
with satellite remote sensing imagery. Among the ground feature elements, residential
areas are one of the most important elements in topographic map content. A survey demon-
strated that in most areas, the workload of extracting residential areas accounts for more
than 60% of all the work of extracting ground features [2]. Therefore, studying the auto-
matic extraction method of residential areas for mapping applications is of considerable
significance to improving the efficiency of mapping work.

With the development of this automatic extraction technology, many institutions
around the world have developed digital mapping systems integrated with automatic
technology for recognizing ground feature elements [2]. For examples, both the eCogni-
tion [8] of Definiens and the EasyFeature [9] of Handleray have integrated the ground
feature recognition technology. Specifically, this kind of method mainly includes two steps:
extraction and post-processing.

Semantic segmentation [10,11] is a typical and an efficient technology to accomplish
the extraction step, which indicates, dividing the image into pixel groups with specific
semantics and recognizing each region’s category. In recent years, the development of deep
learning techniques, such as convolution neural network (CNN), has injected new vitality
into the study of semantic segmentation. However, due to the complexity of ground features
and background in remote sensing imagery, the classification results of residential areas
extracted by semantic segmentation method are usually not perfect, especially at residential
area boundaries [12], which are irregular contours. Consequently, these classification results
cannot be directly employed in mapping applications. In addition, the post-processing
technology is exploited to obtain the regularized object boundary contour. The popular
operations used to identify the boundary of a raster dot group include smoothing, line
segment fitting, denudation under complex constraints, and conditional random field
(CRF) method, etc. In addition, there are also some methods using an end-to-end network
to process the boundary of objects. The abovementioned innovative works focus on
improving extraction accuracy but without consideration of the matching degree between
the extraction results and the mapping requirement.

Obviously, the mapping method with two steps is cumbersome, and the post-processing
step also greatly reduces the overall intelligence of the mapping method. End-to-end fashion
can realize intelligent mapping without manual intervention. To promote the end-to-end
mapping method, we present and introduce an optical satellite images dataset named RERB
(Residential area Extraction with Regularized Boundary). To the best of the authors’ knowl-
edge, there is no dataset released for the application of mapping residential area, which
limits the research of end-to-end residential area regularization extraction. Compared to
existing datasets, the contour of label image in RERB dataset consists of regular line seg-
ments. Given this point, it can facilitate the research for end-to-end training of residential
area regularized extraction. Specifically, the public RERB dataset consists of 13,892 satellite
images in 256 × 256 size, covering an area of more than 3640 square kilometers.

To summarize, our contributions are as follows:

(1) According to the specifications for cartographic symbols of 1:50,000 topographic map,
our work summarizes the requirements of regular extraction in the residential area
mapping application.
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(2) We construct a residential area mapping dataset called RERB with regular contour
labels based on TH-1 [7] satellite images, which is the first dataset released for the
residential feature mapping application. Furthermore, in order to measuring the
compliance of the extraction results with the mapping requirements when using
RERB dataset, we design a special evaluation index named CMI (contour matching
index) based on contour matching. Extensive experiments demonstrate the superiority
of RERB dataset.

(3) We sufficiently explore the contour constraint with regular contours in label images
by integrating the contour cross-entropy constraint and the original loss function into
an end-to-end network, which can significantly improve the regularization degree of
extraction results for the mapping of residential areas.

The remainder of this paper is organized as follows: Section 2 introduces the related
works. Section 3 presents the constructed RERB dataset in detail. Section 4 details the exper-
imental results along with in-depth analysis. Section 5 finishes the paper with conclusions
and our future perspective.

2. Related Works

In this section, we first describe the development of datasets for ground object extrac-
tion based on optical image and then introduce semantic segmentation methods. Finally,
we introduce post-processing technology.

2.1. Datasets for Ground Object Extraction

Recently, with the advancement of deep learning technology, datasets have played an
important part in ground object extraction. Any effective deep learning model is obtained
by training with many original images and their corresponding labels. As shown in Table 1,
the widely used open-source datasets with optical image pixel level annotation include
WHU [13], LandCoverNet [14], GID [15], LoveDA [16], SSD [17], etc.

Table 1. Overall comparison of some satellite image datasets.

Year Resolution (m) Image Size Samples Categories Task-Semantic
Segmentation Task-Mapping

WHU

2019 0.45 512 × 512 17,388 2
√ √

(building)

2019 0.3–2.3 512 × 512 204 2
√ √

(building)

LandCoverNet 2020 10 256 × 256 1980 7
√

GID 2020 4 7200 × 6800 150 6
√

LoveDA 2021 0.3 1024 × 1024 5987 7
√

SSD 2021 2 7400 × 4950 23 5
√

RERB
(ours) 2022 2 256 × 256 13,892 2

√ √

WHU dataset is released by Wuhan University, and it includes one land-cover category,
namely, buildings. WHU dataset can be used to construct a building extraction model
in a topographic map with a scale of 1:10,000 or larger and cannot be directly applied to
residential area mapping in 1:50,000 scale topographic maps.

The Gaofen image dataset (GID) contains 150 high-quality GF-2 images from more than
60 cities in China, with a spatial resolution of 4 m. The size of each image is approximately
7200 × 6800 pixels, and it includes six land cover categories, namely, built-up, farmland,
forest, meadow, water, and others, which represents all categories other than the former
five categories. Similarly, LandCoverNet, LoveDA, and SSD are also constructed for land
use and land cover (LULC) classification. If they are used for topographic mapping,
post-processing steps still need to be added after model inference.
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To study end-to-end regularized extraction technology of residential area, we propose
the RERB dataset in this paper.

2.2. Semantic Segmentation

Semantic segmentation is a long-standing research topic that assigns a label to each
pixel, known as pixel-level classification. In 2015, Long et al. [18] proposed full connected
networks (FCNs), whose excellent performance led researchers to change their understand-
ing of semantic segmentation from regional clustering to pixel classification. At present,
CNN-based methods have completely exceeded the segmentation accuracy of traditional
methods. However, the training steps of FCNs are complex, and it is easy to lose pixel
position information during up-sampling. After that, U-Net [19], SegNet [20], PSPNet [21],
the DeepLab family [22–24], and FastFCN [25] were developed. U-Net can effectively fuse
multilevel feature maps, and small objects and large objects are processed by using shallow
and deep information, respectively. U-Net is essentially a structure based on multiscale
context and multilevel feature fusion. SegNet improves the segmentation accuracy by
recording the position of pooled values in the original feature map and accurately mapping
the relevant values to the corresponding positions in the up-sampling step. However,
SegNet still fails to recover the object boundary very well. PSPNet integrates the multiscale
background information with a pyramid pooling module. To obtain a larger receptive field,
PSPNet improves the backbone network by using dilated convolutions [26]. Furthermore,
additional losses can provide the intermediate supervision information in PSPNet. The
DeepLab series leads research on semantic segmentation. DeepLab v3+ [24], which inte-
grates more local information in low-level features and replaces the feature extractor with a
more complex Xception network [27], performs well on several public datasets. In addition,
the atrous spatial pyramid pooling (ASPP) structure proposed by the DeepLab network
has been widely employed in semantic segmentation research literature. FastFCN uses the
joint pyramid up-sampling (JPU) module to improve the dilated convolution and obtains
faster speed and higher accuracy.

Especially, semantic segmentation technology has been applied to remote sensing im-
agery and medical image [28,29] in recent years, which has greatly improved the research
level of methods used to automatically extract ground feature elements. For example,
Ying Sun et al. [30] used optical images and light detection and ranging (LiDAR) data
to construct multichannel input data and designed a convolution neural network (CNN)
model with multiscale encoder–decoder architecture to achieve enhanced segmentation
results. Cui et al. [31] also improved the accuracy of building extraction by using the
multiscale information of images. Y. Liu et al. [32] jointly used LiDAR data and intro-
duced a higher-order CRF to increase the accuracy of ground object segmentation. In
addition, several researchers designed two-stage training approaches [33], modified loss
function [34], self-attention modules [35,36], edge information [37], or both self-attention
and edge enhancement modules [17] to fully exploit the context information of remote
sensing imagery from a larger perspective.

2.3. Post-Processing Technology

The processing object of post-processing technology is the raster dot group, which is
obtained by semantic segmentation. Traditional operations used to identify the boundary
of a raster dot group include smoothing, line segment fitting, and denudation under
complex constraints [38,39]. Most of these methods belong to the field of traditional image
processing, and the degree of automation and intelligence is low.

Moreover, CRF [40–42] methods are also widely used in post-processing of semantic
segmentation results. Using CRF, the segmentation results can be corrected, especially
at ground object borders. However, these CRF methods require the introduction of sam-
ples to the CRF control process, and this operation cause the CRF methods to lose their
end-to-end characteristics. For mapping tasks based on automatic extraction technology,
when the end-to-end characteristics are lost, the ground object mapping work must add
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an additional manual post-processing operation, which greatly reduces the overall intel-
ligence of mapping tasks. Hence, new end-to-end methods must be introduced to solve
this problem.

Ying Sun et al. [43] first constructed multichannel input data using optical images
and LiDAR data and then achieved a better result than SegNet by designing an end-
to-end encoding–decoding structure. Meanwhile, the object boundary is strengthened.
There are also some methods using an end-to-end network to process the boundary of
objects, such as ACE2P [44], Gated-SCNN [45], and EaNet [46]. The ACE2P model realizes
end-to-end high-precision training by fully integrating the bottom characteristics, global
contextual information, and edge details in the human body parsing task. Gated-SCNN
is a double branch structure, in which the target shape information is embedded into
the semantic segmentation network by a shape branch. Except for traditional semantic
segmentation labels, image boundary labels are also needed in Gated-SCNN. To effectively
separate confusing objects with sharp contours, EaNet is constructed based on a large
kernel pyramid pooling (LKPP) module and a dice-based edge-aware loss function.

3. The RERB Dataset and Model Construction

This section first describes the contour requirements for mapping applications and
then introduces the RERB dataset. Finally, we analyze the statistics for RERB dataset and
describe the construction of a residential area regularized extraction model.

3.1. Contour Requirements for Mapping Applications

Different topographic maps are distinguished by scale and commonly used scales
generally include 1:2000, 1:5000, 1:10,000, and 1:50,000. The 1:50,000 topographic map data
are one of the most basic geographic information data. At present, ground object mapping
using remote sensing imagery is mainly completed manually, with high precision but low
efficiency, making this kind of fashion tedious, expensive, and labor intensive [5]. As a
result, it is very important to analyze the mapping requirements and build a mapping
dataset to improve the intelligence of mapping work.

Topographic maps of different scales are constrained by corresponding graphic spec-
ifications, which mainly stipulates the symbols, annotations, and contour decoration of
various ground objects and geomorphic elements represented on topographic maps, as
well as the methods and basic requirements of using these symbols. This paper mainly
focuses on 1:50,000 scale, and its corresponding current national standard [1] was issued
on 14 October 2017 and implemented on 1 May 2018.

Ground object mapping in surveying and mapping field mainly refers to the collection
of the ground object information from remote sensing imagery according to the correspond-
ing specification for cartographic symbols [1]. Figure 1 is an example of residential area
extraction and mapping based on optical images. Figure 1b is an illustration of a residential
area in the 1:50,000 topographic map corresponding to the original image in Figure 1a.
Mapping is to obtain the contour of ground objects that meet the requirements of graphic
specifications from remote sensing imagery.

Residential areas [2] refer to houses that are contiguous to each other in cities, towns,
and villages. There are obvious outer contours and primary and secondary streets in
residential areas. The graphic specification [1] stipulates that the convex and concave parts
should be comprehensively represented when their length is less than 0.5–1 mm on the
maps. In the 1:50,000 topographic map, 1 mm on the map represents the actual 50 m, and
the length of 50 m is 25 pixels in the image with a resolution of 2 m. Therefore, the graphic
specification requires that the convex and concave parts should be smoothed when their
length is less than 12.5–25 pixels.

Figure 1c is a direct extraction result of residential areas based on semantic segmenta-
tion algorithms. The contour line is messy and has a high degree of border redundancy.
Figure 1b shows an illustration of the residential area layer in a topographic map, and it is
a standard representation corresponding to the cartographic symbols used in topographic
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mapping. Its outer contour is multiple straight-line segments. The comparison indicated
that the results of traditional semantic segmentation algorithms are different from the
requirements of the cartographic symbols, and the contour of the extracted results must be
regularized as much as possible.
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Figure 1. An example of residential area mapping based on images: (a) Original image; (b) the
residential area layer in topographic map; and (c) direct extraction results of residential areas.

To sum up, the extracted contour is required to be regular when images are used for
residential area mapping. Each segment of extracted contour is generally a straight-line
segment, which is relatively regular. Therefore, when building a dataset that supports the
end-to-end regularization extraction of residential areas, it is necessary to ensure that the
label image contour meets the regularization requirements.

3.2. Overview and Data Properties

In order to create RERB dataset, we collected 13,892 high-resolution TH-1 images [7],
and the size of each image is approximately 256 × 256 pixels. Figure 2 shows the label
visualization result in this dataset. The TH-1 satellite is the first stereo mapping transmission
satellite in China, and its goal is to achieve topographic mapping at a 1:50,000 scale without
using ground control points. It consists of a high-resolution camera with ground pixel size
of 2 m and a multispectral camera with a ground pixel size of 10 m. Images with a spatial
resolution of 2 m are applied in this dataset, and these images cover a geographical area of
more than 3640 square kilometers.

The proportions of residential area and other land cover categories in RERB dataset
are shown in Table 2. It is obvious that the proportion of the residential area is lower than
that of the other categories, which is consistent with the distribution of large-scale remote
sensing imagery scenes.

Table 2. The proportion of residential area in our dataset.

Proportion (%) Label Number Color

Residential area 15.89 1 (255,255,255)
Background 84.11 0 (0,0,0)

The labels used for traditional semantic segmentation usually do not have regular-
ization characteristics, as shown in Figure 3b. This kind of label is assigned accurately
according to the actual range of residential areas in the image [42]. Different from semantic
segmentation labels, according to the contour regularization requirements in mapping
application, we need to ensure the labels of residential areas into a regular format.
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Figure 3. Comparison of traditional semantic segmentation labels and mapping application labels:
(a) Original image; (b) semantic segmentation labels; and (c) mapping application labels.

In addition to the regularization requirements of contour line segments, special at-
tention should also be paid to the treatment of the included angle between line segments
when labeling. The main principles include small contour protrusion removal and small
contour concave part filling. As shown in Figure 4, using the interior of the patch as the
reference direction, the contour protrusion and the concave part of the contour are defined
when the angle between contour segments is too small (<45◦) and excessively large (>90◦),
respectively. These situations will be corrected with blunt or right angles. For example, in
Figure 3b, there are small acute angles as shown in the red circles at the corner of residential
areas. Therefore, as shown in Figure 3c, we edit these angles by using a right angle or an
obtuse angle in mapping application labels.
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Figure 4. Diagrams of raised and sunken areas: (a) The angle is too small; (b) the angle is too large;
and (c) the angle is 90◦.

We split 85% of these images into the train set and leave the remaining 15% as the test
set. As for annotation, RERB dataset provides pixel-level labels for two important categories,
including background and residential area. They are labeled with black (0) and white (1).

We also analyze RERB dataset and find it has four properties: (1) Large-scale and
high-resolution. As shown in Table 1, RERB contains 13,892 high-quality satellite images
acquired from different cities in China. It covers an area of more than 3640 square kilometers.
(2) Well annotated and regular label contour. For each satellite image, we provide accurate
pixel-wise mapping application labels for two categories (‘background’ and ‘residential’
area), which are annotated by a group of experts. (3) Rich background. The remote sensing
mapping task is always faced with the diverse background samples (i.e., ground objects
that are not of interest). The high-resolution and different scenes bring more rich details for
the background samples. (4) Class imbalance. As shown in Table 2, two categories have
very different proportions, which lead to a class imbalance problem. This problem poses a
special challenge for the regularization extraction of the residential areas task.

3.3. Statistics for RERB Dataset

Some statistics of the RERB dataset are analyzed in this section. The number of labeled
pixels has been counted. As is shown in Table 2 and Figure 5a, the background class
contains the most pixels with rich and diverse background samples, which cause special
challenge for residential areas extraction.
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For the spectral statistics (Figure 5b), the background category has a lower mean value
(color column) and standard deviation (vertical line). Because of the high-resolution images
of TH-1 satellite are single channel, the values of red, green, and blue are same. As is
shown in Figure 5c, most of the residential areas have relatively small scales. Through
calculation, the average size of the minimum 30% residential areas is about 479.71 pixels,
and the average size of the maximum 30% residential areas is about 18,851 pixels. The
multiscale residential areas require the models to have multiscale capture capabilities.
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3.4. Construction of Residential Area Regularized Extraction Model

The common semantic segmentation network is generally a symmetric network with
encoding–decoding structure [19,20]. The encoding operations mainly include convolution
and pooling. Convolution is used to extract high-dimensional features of the input image,
and pooling is used to make the image smaller. The decoding operations mainly include
deconvolution and up-sampling. Deconvolution makes the features of the image reappear
after classification, and up-sampling can restore the original size of the image. Finally, the
classification results of each pixel are output. In terms of loss function, cross-entropy [46]
has been the most widely used loss function in semantic segmentations of images.

In order to test the effectiveness of the RERB dataset, we designed an end-to-end
regularized extraction network by analyzing the regularization characteristics of label
contour and the constraints of loss function.

As shown in Figure 6, compared with the traditional semantic segmentation network in
Figure 7, our method extracts the contour of the label image first, and realizes regularization
extraction by adding the cross-entropy constraint of the label contour image and model
prediction image to the original loss function. The baseline method chosen in this article
can be any semantic segmentation network, such as U-Net [19] or DeepLab v3+ [24].
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The cross-entropy loss function can make the predicted image learned from the training
data similar to the real label image. Considering that the label image contour of RERB
dataset already has good, regularized contour characteristics, we first extract the contour of
label image and then constrain the contour regularization degree of the network prediction
image by calculating the cross-entropy loss between the label contour image and the
network prediction image, as shown in Equation (1):

L1(Y, O) = Fce(Y, Gcon(O)) (1)

where O ∈ {0, 1}W×H denotes the label image, W × H represents the image size, Y is the
network inference result image, which has the same size as image O. Fce and Gcon(O)
represent the cross-entropy loss function and the contour extraction function, respectively.
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L1(Y, O) represents the degree of inconsistency between the contours of the two
images. Through the calculation and back propagation of L1(Y, O) in the training process,
the contour of the prediction image can be made more and more regular. The cross-entropy
loss function is expressed as follows:

Fce(Y, G) = −∑x gx log(yx) + (1− gx) log(1− yx) (2)

where yx and gx denotes the value at position x in the image Y and G, respectively.
The contour of the label image can be extracted by the corrosion of a 3 × 3 structuring

element. Corrosion is a commonly used morphological operation in an image processing
file, and it can be expressed as follows:

Gcon(O) = |O− Erosion3×3(O)| (3)

In the above formula, the corrosion operation Erosion3×3(O) can remove the area
contour in the image O, and then the contour image can be obtained by subtracting the
corroded image from the original image.

In the training stage, the Adam [47] optimizer is adopted, and it is a first-order
optimization algorithm. The best model can be obtained by minimizing joint loss function
L(Y, O), which is shown in the following formula:

L(Y, O) = αL0(Y, O) + βL1(Y, O) (4)

where L0(Y, O) is the original loss function of the baseline network, and the functions used
in this paper include cross-entropy and Lovász [48]. The existence of L0(Y, O) can ensure
the segmentation accuracy of the original semantic segmentation network. α and β are the
two weights of loss functions, which are experimentally determined.

4. Experiment and Analysis

In this section, we carried out experimental verification and tested the effectiveness of
the RERB dataset by using the model constructed in Sections 3 and 4. We first introduced the
evaluation metrics. Then, we performed an ablation study to determine some parameters. In
the contrast experiment, the baseline networks were U-Net and DeepLab v3+. All experiments
were carried out on a platform with an Intel Core (TM) i9 3.60 GHz CPU, 32 GB RAM, GeForce
GTX 2080 GPU, and 11 GB video memory. These algorithms were implemented using
PyTorch 1.0 and Python 3.7.

4.1. Design of Evaluation Metrics

The traditional semantic segmentation evaluation indexes, such as mean intersection
over union (mIoU) [18], mainly evaluated the extraction accuracy in pixel units, which
cannot reflect the regularization degree of contours as a whole. In detail, the calculation
of mIoU was based on the confusion matrix, as shown in Table 3. There were ncl different
classes in total, including backgrounds, where nij was the number of pixels of class i
predicted to belong to class j and ti = ∑j nij was the total number of pixels of class i.

Table 3. Confusion matrix.

Confusion Matrix
Ground Truth Labels

class 1 . . . class i . . . class ncl

prediction

class 1 n11 . . . n1i . . . n1ncl

. . . . . . . . . . . . . . . . . .
class i ni1 . . . nii . . . nincl

. . . . . . . . . . . . . . . . . .
class ncl nncl1 . . . nncl i . . . nncl ncl
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Therefore, mIoU is calculated as follows.

mIoU = (1/ncl)mathlarger∑inii/
(
ti + mathlarger∑jnji − nii

)
(5)

To quantitatively evaluate the regularization extraction results, a contour matching
index (CMI) was designed to measure the performance of the algorithm in this paper. The
specific steps of the CMI calculation are as follows.

(1) The contours of the model prediction image (Figure 8b) and the label image (Figure 8c)
were extracted, and the results are shown in Figure 8d,e;

(2) The distance transform of the contour of label image was computed, as shown in
Figure 8f;

(3) A contour matching value was obtained by matching the contour of the model predic-
tion image (Figure 8d) with the distance transformed image (Figure 8f);

(4) The CMI value of this image was obtained by dividing the matched value by the
number of pixels in the contour of the label image.
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Figure 8. Schematic illustration of the procedure used to calculate the CMI: (a) Image; (b) model
prediction image; (c) label image; (d) contour image of (b); (e) contour image of (c); and (f) transformed
image of (e).

The critical factor of the distance transform [49] was the definition of distance. In this
paper, a block distance transform was adopted. The pixel value of the true contour point
was 0 in the image after the distance transform was computed. The farther away from the
true contour point, the larger the pixel value of the transformed image. Thus, the matching
value can be obtained by calculating the sum of pixel values in the transformed image
corresponding to the position of the contour points in the model prediction image. Since
the contour image was a binary image that contained only the residential area point (pixel
value 1) and the background point (pixel value 0), the matching values between Figure 8d,f
can be calculated as follows:

S = ∑(i,j)Ci,j · ei,j/sum(Gt) (6)
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where (i, j) is the pixel coordinate, Ci,j and ei,j are pixel values at (i, j) in Figure 8d,f,
respectively, and sum(Gt) represents the total number of contour points in label contour
image Gt (Figure 8e).

The value S reflected the matching degree between the prediction result and the value
image. The smaller the value was, the higher the matching degree. Furthermore, the average
CMI of all images was used as the evaluation result when a whole test set was evaluated.

Considering that the background class occupied most of the image, we removed the
background class in the calculation of mIoU to prevent it from affecting the evaluation
of other ground features. Therefore, the evaluation indexes included the CMI and IoU of
residential areas.

4.2. Parameters Settings and Ablation Study
4.2.1. Parameters Settings

In the experiment, we divided the training set and test set according to the ratio of
17:3. Finally, the training set and the test set contained approximately 13,611 image slices
and 281 image slices, respectively. To verify the adaptability of the proposed method to
different loss functions, Lovász was used for L0(Y, O) when the baseline network was
U-Net, and cross-entropy was used for L0(Y, O) when the baseline network was DeepLab
v3+. The number of ground feature elements c was set as 2.

The polynomial learning rate policy was employed where the initial learning rate was
multiplied by (1− iter/total_iter)1.5 after each iteration. The maximum number of training
cycles was 100 epochs, and thus, totaliter = 100. The optimal model was determined
by testing the model epoch by epoch during training. The weight decay coefficient was
set to 0.0005. In terms of the optimization method, the Adam [47] optimizer was used
for training.

Batch size value had a great impact on model training and quality of results. Usually,
we selected the maximum value according to the network parameters and the hardware
configuration (mainly the video memory of GPU). In this paper, we carried out experiments
with a batch size of 8, which was determined by model size and video memory. The
selection principle was to make the video memory not overflow.

4.2.2. Ablation Study

In this section, we first studied the influence of the initial learning rate on the test
set of the RERB dataset. To perform this ablation study, we adopted the semantic seg-
mentation network and the metric mIoU. We evaluated the performance pertaining to the
abovementioned parameters, as described in Table 4.

Table 4. Ablation study for the initial learning rate.

U-Net (Lovász) DeepLab v3+
(Cross-Entropy)

The Initial Learning Rate mIoU mIoU

1 × 10−3 0.76099 0.76919
1 × 10−4 0.77895 0.79395
5 × 10−5 0.77924 0.79749
2 × 10−5 0.78533 0.80450
1 × 10−5 0.77406 0.79527
1 × 10−6 0.77384 0.77298

The experiments specified in Table 4 were conducted with training batch size = 8. As
shown in Table 4, the mIoU peaked when the initial learning rate was 2 × 10−5.

Next, we studied the influence of the weight α and β on the test set of the RERB dataset.
The cross-entropy loss between the label contour image and the network prediction image
was inserted to the above semantic segmentation models. The metric CMI was adopted in
these experiments.
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The experiments specified in Table 5 were conducted with training batch size = 8 and
the initial learning rate 2 × 10−5. As shown in Table 5, the CMI index of the proposed
method reached the minimum value when α = 0.3 and β = 0.7.

Table 5. Ablation study for α and β.

Ours (U-Net)
Lovász+
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4.3. Results and Analysis

We parameter tuned some parameters of U-Net, DeepLab v3+ and our proposed
method, and the quantitative evaluation results on the test set of RERB dataset are shown
in Table 6.

Table 6. Training parameters and quantitative evaluation results.

U-Net Ours (U-Net) DeepLab v3+ Ours (DeepLab v3+)

loss Lovász Lovász+ L1(Y, O) Cross-Entropy Cross-Entropy
+ L1(Y, O)

initial lr 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5

batch size 8 8 8 8
(α, β) -- (0.3, 0.7) -- (0.3, 0.7)
IoU 0.7853 0.7813 (−0.51%) 0.7953 0.8003 (+0.63%)
CMI 65.638 39.686 (+39.54%) 43.051 32.074 (+25.50%)

train epoch 18 41 41 52
test time 15.37 s 15.55 s 42.79 s 42.78 s

The contrasting experimental results are shown in Figure 9. As seen from Table 6 and
Figure 9, the regularization level of residential area contours extracted by our proposed
method had increased greatly, especially those areas marked by white circles. When the
baseline network was U-Net, the IoU of residential areas decreased by 0.51%, but the CMI
increased by 39.54%. Moreover, both the IoU of residential areas and the CMI increased by
0.63% and 25.5%, respectively, when the baseline network was DeepLab v3+.

Compared with the semantic segmentation dataset, the label image contour in RERB
dataset had the regularization characteristic and provided additional information, so
it could support the construction and training of end-to-end regularization extraction
model of residential areas. The experimental results demonstrated the preponderance and
practicability of the RERB dataset.

In terms of computational complexity, according to the model construction method
in Sections 3 and 4, the increased calculation amount of this method compared with the
basic network mainly included label image edge extraction and contour cross-entropy loss
calculation during training. The operations of contour extraction included a corrosion
operation with 3 × 3 structuring element and a subtraction. Contour cross-entropy loss
calculation included logarithmic calculation and accumulation, which was the same as the
original cross-entropy function. Therefore, during the training phase, the computational
complexity of the proposed method was slightly larger than that of the traditional semantic
segmentation network. Consequently, the runtime of training and the optimal epoch
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number of our method were higher than those before model modification. In the case of
test time, our proposed method was at the same level with traditional models.
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5. Conclusions

For residential areas, the difference between semantic segmentation labels and map-
ping application labels limits the possibility of end-to-end regularization extraction training.
In order to address this problem, we built a dataset named RERB (Residential area Extrac-
tion with Regularized Boundary) for the end-to-end regularization extraction of residential
areas. To ensure the rationality of RERB dataset, we analyzed the contour representation
requirements for residential area mapping according to the graphic specification of 1:50,000
topographic map, and then transformed it into the following annotation requirements: the
contour of label image should be regular, and the included angle of contour line segments
should be as right angle as possible. Based on these principles, we have completed the
annotation of residential areas in 13,892 image patches based on TH-1 images. The size
of each image is approximately 256 × 256 pixels. The RERB dataset encompasses four
properties: (1) Large-scale and high-resolution; (2) well annotated and regular label contour;
(3) rich background; and (4) class imbalance. In reality, high resolution, complex back-
ground, and category imbalance represent three challenges in residential area mapping.
Finally, a residential area regularization extraction model is constructed with a contour
cross-entropy constraint by using the regular contour label of a residential area. Experi-
mental results showed that the proposed algorithm can improve the regularization degree
of the extracted contour of residential areas while maintaining nearly the same extraction
accuracy. This fully proves the effectiveness of RERB dataset. In the future, we will expand
and improve the dataset of mapping residential area and conduct in-depth research on the
end-to-end model for mapping.

Author Contributions: Conceptualization, L.Z., S.L. and D.G.; methodology, S.L., W.L. and D.G.;
resources, D.G.; data curation, S.L., H.G., X.Z. and J.H.; writing—original draft preparation, S.L. and
J.H.; writing—review and editing, S.L., W.L. and J.H.; supervision, L.Z. and D.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) un-
der grant 62101395 and the independent research project of State Key Laboratory of Geo-Information
Engineering (Grants No. SKLGIE2020-ZZ-1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available, as the research group’s mapping model
construction related research is still being carried on.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GB/T 20257.3-2017; Cartographic Symbols for National Fundamental Scale Maps-Part 3: Specifications for Cartographic Symbols

1:25000 1:50000 & 1:100000 Topographic Maps. Standardization Administration of the P.R.C.: Beijing, China, 2017; pp. 19–21.
(In Chinese)

2. Feng, W. Remote Sensing Image Interpretation, 1st ed.; Science Press: Beijing, China, 1998; pp. 162–165. (In Chinese)
3. Peterle, J. A concept for topographic map updating using digital orthophotos. Photogrammetria 1985, 40, 87–94. [CrossRef]
4. Holland, D.A.; Boyd, D.S.; Marshall, P. Updating topographic mapping in Great Britain using imagery from high-resolution

satellite sensors. ISPRS J. Photogramm. Remote Sens. 2006, 60, 212–223. [CrossRef]
5. Ministry of Finance of the PRC; State Bureau of Surveying and Mapping of the PRC. Detailed Rules for Quota Calculation of

Surveying and Mapping Production Costs; Ministry of Finance of the PRC: Beijing, China, 2009; p. 24. (In Chinese)
6. Li, D. China’s first civilian three-line-array stereo mapping satellite: ZY-3. Acta Geod. Cartogr. Sin. 2012, 41, 317–322. (In Chinese)
7. Wang, J.; Wang, R.; Hu, X.; Su, Z. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite. ISPRS J.

Photogramm. Remote Sens. 2017, 124, 144–151. [CrossRef]
8. eCognition. Available online: https://geospatial.trimble.com/products-and-solutions/ecognition (accessed on 26 August 2021).
9. Han, F.; Su, Y.; Zheng, J. Research on method of extracting discovery based on EasyFeature elements. Geomat. Spat. Inf. Technol.

2020, 43, 234–236. (In Chinese)

http://doi.org/10.1016/0031-8663(85)90003-1
http://doi.org/10.1016/j.isprsjprs.2006.02.002
http://doi.org/10.1016/j.isprsjprs.2017.01.003
https://geospatial.trimble.com/products-and-solutions/ecognition


Electronics 2022, 11, 2790 16 of 17

10. Alokasi, H.; Ahmad, M.B. Deep learning-based frameworks for semantic segmentation of road scenes. Electronics 2022, 11, 1884.
[CrossRef]

11. Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning.
Neurocomputing 2022, 493, 626–646. [CrossRef]

12. Fu, G.; Liu, C.J.; Zhou, R.; Sun, T.; Zhang, Q.J. Classification for high resolution remote sensing imagery using a fully convolutional
network. Remote Sens. 2017, 9, 498. [CrossRef]

13. Ji, S.; Wei, S. Building extraction via convolutional neural networks from an open remote sensing building dataset. Acta Geod.
Cartogr. Sin. 2019, 48, 448–459. (In Chinese) [CrossRef]

14. Alemohammad, H.; Booth, K. LandCoverNet: A global benchmark land cover classification training dataset. arXiv 2020,
arXiv:2012.03111.

15. Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing
images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [CrossRef]

16. Wang, J.; Zheng, Z.; Ma, A.; Lu, X.; Zhong, Y. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic
segmentation. In Proceedings of the Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, Virtual, 6–14 December 2021. [CrossRef]

17. Liu, S.; Gao, K.; Qin, J.; Gong, H.; Wang, H.; Zhang, L.; Gong, D. SE2Net: Semantic segmentation of remote sensing images based
on self-attention and edge enhancement modules. J. Appl. Remote Sens. 2021, 15, 026512. [CrossRef]

18. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

19. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

20. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for scene segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

21. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [CrossRef]

22. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected CRFs. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego,
CA, USA, 7–9 May 2015.

23. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef]

24. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conf. Computer Vision (ECCV), Part VII, Munich, Germany, 8–14 September 2018;
pp. 833–851. [CrossRef]

25. Wu, H.; Zhang, J.; Huang, K. FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation. arXiv 2019,
arXiv:1903.11816.

26. Yu, F.; Koltun, V. Multi-Scale context aggregation by dilated convolutions. In Proceedings of the 4th International Conference on
Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.

27. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [CrossRef]

28. Hasan, A.H.; Al-Kremy, N.A.R.; Alsaffar, M.F.; Jawad, M.A.; Al-Terehi, M.N. DNA Repair Genes (APE1 and XRCC1)
Polymorphisms-Cadmium Interaction in Fuel Station Workers. J. Pharm. Negat. Results 2022, 13, 32–37.

29. Alsaffar, M.F. Elevation of Some Biochemical and Immunological Parameters in Hemodialysis Patients Suffering from Hepatitis C
Virus Infection in Babylon Province. Indian J. Forensic Med. Toxicol. 2021, 15, 2354–2362.

30. Sun, Y.; Zhang, X.; Xin, Q.; Huang, J. Developing a multi-filter convolutional neural network for semantic segmentation using
high-resolution aerial imagery and LiDAR data. ISPRS J. Photogramm. Remote Sens. 2018, 143, 3–14. [CrossRef]

31. Cui, W.; Xiong, B.; Zhang, L. Multi-scale fully convolutional neural network for building extraction. Acta Geod. Cartogr. Sin. 2019,
48, 597–608. (In Chinese) [CrossRef]

32. Liu, Y.; Piramanayagam, S.; Monteiro, S.T.; Saber, E. Semantic segmentation of multisensory remote sensing imagery with deep
ConvNets and high-order conditional random fields. J. Appl. Remote Sens. 2019, 13, 016501. [CrossRef]

33. Ding, L.; Bruzzone, L. A deep architecture based on a two-stage learning for semantic segmentation of large-size remote
sensing images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019; pp. 5228–5231. [CrossRef]

34. Zheng, X.; Huan, L.; Xia, G.; Gong, J. Parsing very high resolution urban scene images by learning deep ConvNets with
edge-aware loss. ISPRS J. Photogramm. Remote Sens. 2020, 170, 15–28. [CrossRef]

35. Liu, J.; Xiong, X.; Li, J.; Wu, C.; Song, R. Dilated residual network based on dual expectation maximization attention for semantic
segmentation of remote sensing images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,
Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1825–1828. [CrossRef]

http://doi.org/10.3390/electronics11121884
http://doi.org/10.1016/j.neucom.2022.01.005
http://doi.org/10.3390/rs9050498
http://doi.org/10.11947/j.AGCS.2019.20180206
http://doi.org/10.1016/j.rse.2019.111322
http://doi.org/10.5281/zenodo.5706578
http://doi.org/10.1117/1.JRS.15.026512
http://doi.org/10.1109/CVPR.2015.7298965
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1109/CVPR.2017.660
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1007/978-3-030-01234-2_49
http://doi.org/10.1109/CVPR.2017.195
http://doi.org/10.1016/j.isprsjprs.2018.06.005
http://doi.org/10.11947/j.AGCS.2019.20180062
http://doi.org/10.1117/1.JRS.13.016501
http://doi.org/10.1109/IGARSS.2019.8899204
http://doi.org/10.1016/j.isprsjprs.2020.09.019
http://doi.org/10.1109/IGARSS39084.2020.9324423


Electronics 2022, 11, 2790 17 of 17

36. Zhang, X.; Du, L.; Tan, S.; Wu, F.; Zhu, L.; Zeng, Y.; Wu, B. Land use and land cover mapping using RapidEye imagery based on a
novel band attention deep learning method in the Three Gorges reservoir area. Remote Sens. 2021, 13, 1225. [CrossRef]

37. Abdollahi, A.; Pradhan, B. Integrating semantic edges and segmentation information for building extraction from aerial images
using UNet. Mach. Learn. Appl. 2021, 6, 100194. [CrossRef]

38. Liu, J.; Zhang, J.; Li, Z.; Zhang, G.; Du, W.; Zhao, W.; Liu, J. Technical framework of 1:10000 cartographic element extraction based
on GF-7 satellite. Geomat. World 2018, 25, 58–61. (In Chinese) [CrossRef]

39. Zhao, M.; Liu, S.; Xu, G.; Yang, M. A method of residential area contours regularization in remote sensing image based on straight
line segment fitting. Geomat. Sci. Eng. 2019, 39, 29–33. (In Chinese)

40. Pan, X.; Zhao, J.; Xu, J. An end-to-end and localized post-processing method for correcting high-resolution remote sensing
classification result images. Remote Sens. 2020, 12, 852. [CrossRef]

41. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Fully convolutional neural networks for remote sensing image classification.
In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China,
10–15 July 2016; pp. 5071–5074. [CrossRef]

42. He, C.; Fang, P.Z.; Zhang, Z.; Xiong, D.H.; Liao, M.S. An end-to-end conditional random fields and skip-connected generative
adversarial segmentation network for remote sensing images. Remote Sens. 2019, 11, 1604. [CrossRef]

43. Sun, Y.; Zhang, X.; Zhao, X.; Xin, Q. Extracting building boundaries from high resolution optical images and LiDAR data by
integrating the convolutional neural network and the active contour model. Remote Sens. 2018, 10, 1459. [CrossRef]

44. Ruan, T.; Liu, T.; Huang, Z.; Wei, Y.; Wei, S.; Zhao, Y. Devil in the details: Towards accurate single and multiple human parsing.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 28–30 January 2019; pp. 4814–4821.

45. Takikawa, T.; Acuna, D.; Jampani, V.; Fidler, S. Gated-SCNN: Gated shape CNNs for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 5228–5237. [CrossRef]

46. YA, D.M.; Liu, Q.; Qian, Z.B. Automated image segmentation using improved PCNN model based on cross-entropy.
In Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, China,
20–22 October 2004; pp. 743–746. [CrossRef]

47. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3th International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

48. Berman, M.; Triki, A.R.; Blaschko, M.B. The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-
over-union measure in neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4413–4421. [CrossRef]

49. Embrechts, H.; Roose, D. Parallel Algorithms for the Distance Transformation. In Parallel Processing: CONPAR 92—VAPP V;
Springer: Berlin/Heidelberg, Germany, 1992; pp. 387–391. [CrossRef]

http://doi.org/10.3390/rs13061225
http://doi.org/10.1016/j.mlwa.2021.100194
http://doi.org/10.3969/j.issn.1672-1586.2018.06.011
http://doi.org/10.3390/rs12050852
http://doi.org/10.1109/IGARSS.2016.7730322
http://doi.org/10.3390/rs11131604
http://doi.org/10.3390/rs10091459
http://doi.org/10.1109/ICCV.2019.00533
http://doi.org/10.1109/ISIMP.2004.1434171
http://doi.org/10.1109/CVPR.2018.00464
http://doi.org/10.1007/3-540-55426-2_44

	Introduction 
	Related Works 
	Datasets for Ground Object Extraction 
	Semantic Segmentation 
	Post-Processing Technology 

	The RERB Dataset and Model Construction 
	Contour Requirements for Mapping Applications 
	Overview and Data Properties 
	Statistics for RERB Dataset 
	Construction of Residential Area Regularized Extraction Model 

	Experiment and Analysis 
	Design of Evaluation Metrics 
	Parameters Settings and Ablation Study 
	Parameters Settings 
	Ablation Study 

	Results and Analysis 

	Conclusions 
	References

