
Citation: Xu, Y.; Zhang, Z.; Chen, L.;

Li, Z.; Yang, L. The Adaptive

Streaming SAR Back-Projection

Algorithm Based on Half-Precision in

GPU. Electronics 2022, 11, 2807.

https://doi.org/10.3390/electronics

11182807

Academic Editor: Antonio F. Díaz

Received: 26 August 2022

Accepted: 29 August 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

The Adaptive Streaming SAR Back-Projection Algorithm Based
on Half-Precision in GPU
Yihao Xu 1,2 , Zhuo Zhang 1,2,*, Longyong Chen 1,2, Zhenhua Li 1,2 and Ling Yang 1,2

1 National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100094, China

* Correspondence: zhangzhuo@aircas.ac.cn; Tel.: +86-186-1029-7595

Abstract: The back-projection (BP) algorithm is completely accurate in the imaging principle, but the
computational complexity is extremely high. The single-precision arithmetic used in the traditional
graphics processing unit (GPU) acceleration scheme has low throughput and its usage of the video
memory is large. An adaptive asynchronous streaming scheme for the BP algorithm based on
half-precision is proposed in this study, and then it is extended to the fast back-projection (FBP)
algorithm. In this scheme, the adaptive loss factors selection strategy ensures the dynamic range of
data, the asynchronous streaming structure ensures the efficiency of large scene imaging, and the
mixed-precision data processing ensures the imaging quality. The schemes proposed in this paper
are compared with BP, FBP, and fast factorized back-projection (FFBP) algorithms of single-precision
in GPU. The experimental results show that the two half-precision acceleration schemes in this paper
reduce the video memory usage to 74% and 59% of the single-precision schemes with guaranteed
image quality. The efficiency improvements of the proposed schemes are almost one and 0.5 times
greater than that of the corresponding single-precision scheme, and the advantage can be more
obvious when dealing with large computations.

Keywords: adaptive loss factor; asynchronous parallel stream; back-projection algorithm; half-precision
floating point; graphics processing unit; synthetic aperture radar; fast back-projection algorithm

1. Introduction

The back-projection (BP) algorithm originates from computed tomography (CT), which
is a point-by-point time-domain imaging algorithm without any approximation [1]. How-
ever, due to its computational complexity of O (Nˆ3), it is difficult to achieve the requirement
of real-time imaging. Digital signal processor (DSP) and field programmable gate array
(FPGA) technologies in synthetic aperture radar (SAR) real-time imaging can achieve con-
siderable acceleration ratios, but the programming to the hardware system is complex and
the equipment is expensive [2,3].

In order to reduce the computational volume, a fast back-projection (FBP) algorithm [4,5]
and a fast factorized back-projection (FFBP) algorithm [6] are proposed to improve the original
BP algorithm. The difference between the FBP algorithm and the original BP algorithm is that
it divides the total synthetic aperture into several small sub-apertures. The imaging process
for each sub-aperture polar coordinate system is the same as that of the original BP algorithm,
and the images formed by all sub-apertures are fused into one full-aperture scene image. The
first step of the FFBP algorithm is also the sub-aperture division of the synthetic aperture to
obtain lower resolution sub-aperture images. However, for the obtained sub-aperture images,
FFBP does not directly fuse them into a full-aperture scene image. A certain fusion base is
selected, and then a group of sub-apertures is used to fuse the images into a higher resolution
sub-aperture scene image. This process is repeated until the number of sub-apertures is less
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than or equal to the merge-base. Finally, several sub-images are interpolated and fused into
the full-aperture image with the same operation as FBP.

In June 2007, NVIDIA introduced the compute unified device architecture (CUDA)
with a C-like programming language, making high-performance parallel computing under
the graphics processing unit (GPU) gradually come into the public view [7]. In current stud-
ies on GPU-accelerated SAR imaging, significant accelerating effects have been achieved
with different acceleration and optimization methods [8–21]. Fasih et al. proposed a parallel
acceleration scheme in the BP algorithm, which divided data into partitions according
to range and aperture, and implemented interpolation based on texture memory. In this
acceleration scheme, the grid, block, and thread corresponded to image, sub-image, and
pixel, respectively [13]. However, the acceleration effect of this scheme was unfavorable,
and the problem of large data volume in real-time imaging was not considered. Meng et al.
from the Institute of Electronics, Chinese Academy of Sciences, elaborated an optimization
method for GPU parallel programs to solve the problem of insufficient GPU video memory
in data transfer and data processing, improving the real-time processing speed of the device
under large data volume. Their study was focused on frequency domain SAR imaging,
and the real-time performance of imaging can still be improved [12]. Liu used remote
direct memory access (RDMA) technology to realize multi- GPU collaborative computing
of the BP algorithm [20]. The FBP and FFBP algorithms are technically identical to the BP
algorithm and also have a high degree of parallelism, which allows a significant increase in
efficiency using GPU parallelism [18,22–24].

Unlike the improvements in the above GPU-based parallel scheme, the precision of the
data processing can also have a significant impact on the imaging efficiency. Portillo et al.
evaluated the impact of floating-point precision on radar image quality and power and
energy consumption. It was found that using a mixture of the single-precision floating point
(FP32) and double-precision floating point (FP64) imaging can achieve relatively higher image
quality with lower power consumption [8]. M. Wielage et al. compared the acceleration effect
and power consumption of the FFBP algorithm with FP32 and half precision on GPU and
FPGA platforms, respectively [18]. In addition, single-precision accelerated SAR algorithms
were investigated in many studies, and many good results were achieved by reducing the
precision [9–11,18].

In version 7.5 of CUDA, the half-precision floating point (FP16) was introduced [25].
The low-precision arithmetic enables less video memory usage, greater computational
throughput, and shorter access times, but its low dynamic range of data and high represen-
tation errors pose challenges for the imaging quality [26]. Currently, FP16 arithmetic has
been widely used in deep learning, and considerable acceleration ratios have been obtained
by loss calibration, mixed-precision arithmetic, and other methods to guarantee model
accuracy [27,28]. Currently, there are three main constraints to achieve FP16 arithmetic for
real-time BP imaging, which are described as follows:

1. The dynamic range of the data. Compared with FP64/ FP32 arithmetic, FP16 arith-
metic displays a smaller range of data, so it is challenging to cope with the inevitable
order-of-magnitude fluctuations in the processing of measured data.

2. The low accuracy. The FP16 arithmetic has a higher data representation error, espe-
cially in trigonometric computing with high accuracy requirements. The error can
directly lead to unacceptable imaging results.

3. The asymmetric relationship between the measured data volume and the memory
capacity. The existing GPUs have small memory, and the SAR imaging data volume
is large; the GPU memory can hardly support the reading and processing of the SAR
echo data, and the transmission time of the large volume of data between the device
and the host is very long.

Regarding the above problems, an adaptive asynchronous streaming acceleration
scheme is proposed, which improves real-time data processing while ensuring imaging
quality. In this scheme, data is reduced to FP16 for storage, transmission, and calculation,
and the data processing and memory copy are parallelized.
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The rest of this paper is organized as follows. The BP algorithm, FBP algorithm, FFBP
algorithm, and their parallel computing models are introduced in Section 2. Section 3
presents an adaptive asynchronous streaming BP algorithm acceleration scheme based on
FP16 arithmetic, and extends it to the FBP algorithm, and the optimization strategy and
error analysis are described in detail in this section. Section 4 includes the experimental
results and corresponding analysis, and conclusions are described in Section 5.

2. Research Method
2.1. BP Algorithm and GPU Acceleration Model

The SAR BP algorithm mainly consists of two parts: range compression and back
projection. The range compression equation can be expressed as:

sM(τ, η) = sr(τ, η)⊗ h(τ) (1)

where τ represents the range time; η represents the azimuthal time; sr(τ, η) represents the
echo signal.

The range compression function h(τ) can be obtained:

h(τ) = rect
(

τ

Tr

)
exp(−jπKrτ2) (2)

where Kr is the linear modulation frequency; rect() represents the rectangular window
function; Tr is the pulse duration.

The back projection is divided into several steps: division of the grid, calculation of
the two-way delay, linear interpolation, phase compensation, and coherent addition of the
signal. The back projection equation can be expressed as follows:

fBP(xm, yn) =
∫

sM[τmn(η), η] exp(
j4πRmn

λ
)dη (3)

where λ represents the radar emission wavelength; τmn(η) indicates the delay between the
point and the radar; Rmn is the distance from the point (xm, yn) to the radar (0, y(η)):

Rmn =

√
xm2 + (y(η)− yn)

2 (4)

In this model, the central processing unit (CPU) holds the overall architecture of
the algorithm and transfers the data to the global memory of the GPU. Then, the kernel
function is started on the GPU to read the global memory and complete the parallel data
processing. Finally, the processed data is sent back to the CPU. However, because the
transfer speed of the input/output (I/O) between the global memory and the CPU is slow,
frequent data interactions can reduce efficiency, and the delay effect is more obvious in big
data imaging [9].

Currently, the parallel strategy shown in Figure 1 is usually adopted in existing BP
algorithm acceleration schemes [29]. Range compression is achieved by transferring the
data to the frequency domain with the help of the CUDA batch fast Fourier transform (FFT)
function cufftExecC2C(). The compressed data is converted back to the time domain by
the batch inverse fast Fourier transform (IFFT) function. However, the GPU computing
module is idle for a long time during data transfer. CUDA provides a copy function,
cudaMemcpyAsync(), which enables the early return of control between the device and
host [30]. By allocating the same instructions to different streams in a batch, the original
instructions are subdivided, operations within each stream are implemented sequentially,
and parallel implementation can be achieved between different streams. In addition, the
thread synchronization can be completed by the cudaThreadSynchronize() instruction.
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version implementation, respectively. Since the FP32 dynamic range can meet the pro-
cessing requirements, steps 2 and 3 are only used in the proposed FP16 schemes, which 
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Figure 1. Parallel BP algorithm.

As mentioned above, the use of asynchronous parallel streaming technology in batches
allows the computation of one stream to be performed simultaneously with the data copy
of another stream, concealing the data copy time and reducing the video memory usage. In
order to meet the processing requirements of large data volume, the GPU scheme in this
paper changes the range compression and back projection of Figure 1 to an asynchronous
streaming structure. The volume of data processed by each stream is very small and is
passed back to the CPU when the processing is complete. Therefore, the data transfer time
is concealed. The internal process of the back projection kernel in the BP algorithm remains
unchanged, and each thread is responsible for calculating the total contribution of that
data block to a particular pixel point. The flow of the range compression in asynchronous
streams is schematically shown in Figure 2.
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Thus, the data copy is completed first in each stream. Number 1, 2, and 3 in Figure 2
represent the range compression, adaptive loss factors selection, and data precision conver-
sion implementation, respectively. Since the FP32 dynamic range can meet the processing
requirements, steps 2 and 3 are only used in the proposed FP16 schemes, which are detailed
in Section 3.

According to the description above, the data is bifurcated according to batch and
stream, and the number of azimuth pulses Nu of each data block can be evenly divided by
the batch and stream number.

It is assumed that i and j represent the jth stream data block of batch i. Due to the
limitation of synthetic aperture length Ls, the number of signals corresponding to each
imaging point is limited in the strip mode. In the BP algorithm, the lower bound index
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lowi,j and the upper bound index upperi,j of imaging region in video memory of each data
block can be obtained by Equations (5) and (6), respectively. In the back projection of a
specific data block, only the threads with thread IDs in the region need to be implemented:

lowi,j =

 0∣∣∣∣ yi,jmin
− Ls

2 −Wymin
dy

∣∣∣∣
yi,jmin −

Ls
2 −Wymin < 0

else
(5)

upperi,j =

 Ny− 1∣∣∣∣ yi,jmax+
Ls
2 −Wymin

dy

∣∣∣∣
yi,jmax +

Ls
2 −Wymax > 0

else
(6)

where yi,jmin , yi,jmax represents the starting and the ending point of the radar corresponding
to the data block; Wymin , Wymax corresponds to the azimuth starting point and ending
point of the total imaging region; dy represents the size of the grid division; Ny represents
the number of azimuth grid points.

2.2. FBP Algorithm and GPU Acceleration Model

The FBP algorithm divides the full aperture into M sub-apertures, and the original back
projection is performed for each sub-aperture containing NLs/M pulses. NLs represents
a synthetic aperture pulse number. The radar position at the center pulse moment in the
sub-aperture is taken as the sub-aperture center to establish the polar coordinate system.
The range resolution of the sub-aperture is identical to that of the BP algorithm. The angular
resolution ∆θ of the sub-aperture is obtained from the azimuthal resolution, which needs
to satisfy the Nyquist sampling requirement in polar coordinates, and is generally chosen
to be smaller in practice considering the error [4,6].

∆θ ≤ λ

2 Ls
M

(7)

Each sub-aperture imaging is based on the same principle as the original BP imaging.
As shown in Figure 3, the ith sub-aperture imaging result fi(ρi, θi) can be expressed as:

fi(ρi, θi) =
∫

sM
[
τρi ,θi (η), η

]
exp[

j4π(Rρi ,θi − ρi)

λ
]dη (8)

Rρi ,θi =
√

ρi
2 + dx2 − 2sinθi × ρi × dx (9)

where (ρi, θi) represents the point in polar coordinates; dx represents the distance between
the radar and the center of the sub-aperture at the current pulse moment; Rρi ,θi represents
the distance between the radar and the point (ρi, θi) at the current pulse moment.

The second step of the FBP algorithm fuses the low-resolution images of M sub-
apertures into a full-aperture grid image with the same grid division as the original BP
algorithm. The process is expressed as follows:

fFBP(x, y) = ∑M
i=1

[
fi
(
ρxi , θyi

)
× exp(j

4π

λ
ρxi )

]
(10)

where
(
ρxi , θyi

)
represents the polar coordinate of the grid point (x, y) in the ith sub-

aperture. This process requires two-dimensional interpolation, and the two-dimensional
interpolation used in this paper is achieved by nearest-neighbor interpolation in the range
direction and 8-point sinc interpolation in the angle domain.
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Figure 3. FBP algorithm.

By assuming that the ground grid is divided into Nx× Ny, and the number of angle
points of sub-aperture is Nθ , the first step requires the interpolation of Nx× Nθ × NLs/M
times for M sub-apertures, and the second step requires the two-dimensional interpolation
for each ground grid point. The computational volume can be expressed as Nx× Ny×M,
then the FBP computational complexity is OFBP = Nx× (Nθ × NLs + Ny×M).

Figure 4 shows the parallel scheme of the FBP algorithm after range compression,
where Nr_up represents the number of range sampling points for range compressed data
after interpolation in the frequency domain of Figure 1. From the principle, it is easy to
see that the sub-aperture division of the FBP algorithm fits well with the asynchronous
streaming structure. Each sub-aperture data is a data block. The number of streams in
Figure 4 is selected as 4, and the sub-aperture data enters the stream structure at the GPU
side in a batch of 4. The number of pulses Nu per sub-aperture is equal to NLs/M for
full-aperture imaging.

Figure 4. Parallel FBP algorithm.
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As in Section 2.1, the range-compressed data block is first loaded using asynchronous
stream instructions, and Nu pulses are traversed in each sub-aperture back projection
kernel. The Equation (8) in the polar coordinate system is executed, ultimately obtaining
M low-resolution sub-aperture images. Then, polar sub-image fusion kernel is entered to
achieve the sub-image fusion of Equation (10) to get the final image and transfer it back to
the host. The specific computational tasks of a thread in different kernel functions are given
on the right side of Figure 4. In the above two kernel functions, a thread corresponds to a
sub-image polar coordinate point and a ground grid point, respectively, and parallelism is
achieved between different threads.

2.3. FFBP Algorithm and GPU Acceleration Model

The first step of the FFBP algorithm is the same as the FBP algorithm, which can divide
the polar coordinates according to the resolution Equation (7) derived from FBP. As strip-
mode imaging is explored in this paper, FFBP is more suitable for spotlight and circle trace
imaging than FBP and BP algorithms [6,23,24]. Due to the constant movement of the radar, the
image merging between different synthetic apertures to avoid angular domain upsampling
in the strip mode can be done using the overlapping image method [31], but this is not the
focus of this paper. In addition, FFBP involves more interpolation operations in principle
compared to FBP, leading to an increase in error, and the selection of angular resolution
requires consideration of error control [6]. Within a synthetic aperture, the imaging results for
each of the initial sub-apertures of the FFBP are given in the following equation:

f (0)i0

(
ρi0 , θi0

)
=
∫

sM

[
τρi0 ,θi0

(η), η
]

exp[
j4π
(

Rρi0 ,θi0
− ρi0

)
λ

]dη (11)

where
(
ρi0 , θi0

)
represents the polar coordinates in the i0 sub-aperture; Rρi0 ,θi0

represents
the distance between the radar and the

(
ρi0 , θi0

)
point at the current pulse moment.

In the second step, the selected base number base is used for group merging. When
each group is merged, the radar position at the center of the group is chosen as the large
aperture center, and a polar coordinate system is established with the large aperture
center as the origin. The aperture merging is done by two-dimensional interpolation,
and the process is repeated until the number of sub-apertures is less than or equal to the
merging base. For the scene exposed in large aperture time, the angular division interval
should be reduced to base times the original, but always bigger than the angular resolution
corresponding to the full aperture. The merging process is explained in Figure 5 using
base = 2 as an example, and A, B are the center of initial aperture and new sub aperture,
respectively. The equation for the kth round of merging is as follows:

f (k)ik

(
ρik , θik

)
= ∑

[
f (k−1)
ik−1

(
ρik−1

, θik−1

)
× exp

(
j
4π

λ

(
ρik−1

− ρik

))]
(12)

where
(

ρik−1
, θik−1

)
represents the polar coordinates of the point

(
ρik , θik

)
of the ik large

aperture corresponding to the ik−1 original aperture, which can be easily obtained with
the help of cosine theorem. ik−1 traverses all original apertures corresponding to the ik
large aperture.

The third step is the same as the FBP algorithm. The grid is divided for the full aperture
exposure scene. For each grid point in the scene, the corresponding positions are found
in the sub-aperture images at the stop of the second iteration step, and the accurate pixel
value of this grid in each sub-aperture image is obtained by two-dimensional interpolation.
The third step’s equation is as follows:

fFFBP(x, y) = ∑base
ik=1

[
f (k)ik

(
ρik , θik

)
× exp(j

4π

λ
ρik )

]
(13)
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It is assumed that the initial division M = basek+1; ik traverses the merged base large
aperture images;

(
ρik , θik

)
represents the polar coordinates of (x, y) corresponding to the ik

large aperture.
The computational volume of the FFBP algorithm is analyzed below. The calculation

of the first step is the same as the FBP algorithm. The large aperture in the second step has
Nx× Nθ × base points, each point needs base two-dimensional interpolation, with a total of
M/base large apertures. The first merging calculation is equal to Nx × Nθ × base × M.
Similarly, the second merging calculation is also equal to Nx × Nθ × base × M. The
third step of FFBP is calculated in the same way as FBP, which can be expressed as
Nx× Ny× base. The computational volume of the FFBP algorithm can be expressed as
OFFBP = Nx × Ny × base + Nx × Nθ × M ×

(
NLs/M + base×

(
logM

base − 1
))

. When the
sub-aperture division is increased, the computational volume of FFBP can be significantly
reduced compared to FBP. The computation ignores the small amount of angular do-
main expansion caused by the merging of strip mode sub-apertures, and thus the actual
computational volume is larger.

Figure 6 shows a parallel scheme of the FFBP algorithm with a full aperture. The
number 2 is chosen as the merge base and Mi represents the number of sub-apertures
at the beginning of the ith round of merging. The FFBP parallel scheme differs from
the FBP parallel scheme mainly in the sub-aperture fusion kernel. The FFBP parallel
algorithm requires passing the new sub-aperture grids used to merge different levels of
sub-apertures into the GPU and releasing the video memory of original sub-aperture grids
after fusion. In the sub-aperture fusion kernel, each thread achieves the interpolation and
pixel superposition of the same certain coordinate point in all new large apertures in its
corresponding original apertures, as expressed in Equation (12). The sub-aperture fusion
kernel is called several times until less than base large sub-aperture images are obtained.
The final grid imaging is done by accessing the polar sub-image fusion kernel, and the
result is transmitted back to the host.
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Figure 6. Parallel FFBP algorithm.

3. BP and FBP Algorithm with FP16

The impact of numerical precision on the running efficiency of programs on the GPU
is mainly reflected in two aspects: memory bandwidth and arithmetic bandwidth. In terms
of memory bandwidth, the combination of CPU and GPU causes many data copies. Lower
data precision can reduce the usage of video memory, shorten copy time, and fully utilize
the advantages of GPU in computational power. For arithmetic bandwidth, CUDA provides
optimized FP16 high-throughput instructions with significant arithmetic acceleration.

As FP16 arithmetic of CUDA becomes more sophisticated, the shortcomings of previ-
ous parallel schemes have become increasingly apparent. The accessing and processing
of the data are slow, and the data requires large storage space and a long transmission
time [9,12,32]. In addition, the improvement in image quality obtained by high-precision
operations may significantly exceed the associated increase in energy consumption [8].

In the FP16 BP scheme proposed in this paper, the range compression for the original
echo data is completed according to Figure 2, and the specific implementation flow chart
after range compression is given in Figure 7.

1. The echo data is read in from the page-locked memory, and the number of batches and
streams in each batch can be set according to the data volume. Copy of data blocks
and range compression are achieved in asynchronous parallel by different streams.

2. The adaptive loss factors are selected, and the conversion of FP16 is completed with
them in each stream. The FP16 data block is asynchronously transferred back to the
page-locked memory, and the next batch of range compression for that stream is
turned on.

3. Before starting the back projection, the specification factor is determined based on
the loss factors of all data blocks. At the same time, the imaging region index
lowi,j and upperi,j corresponding to each data block is determined according to the
Equations (5) and (6).

4. The copy of data and the calculation of the back projection are executed asynchronously,
and the mixed-precision calculation is executed in the back projection kernel. After
performing the back projection of the region under the index of step 3 by different
streams, the threads obtain the total contribution of this data block to the pixel points
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and multiplied with the respective loss factors and specification factor. Afterward, they
are superimposed into the uniform video memory using FP16 instructions.
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3.1. Back Projection with FP16

Data represented by FP16 has large errors and is unsuitable in operations requiring
high precision, especially in the phase calculation. In contrast, since operations such as
summation and interpolation have lower requirements in data precision, they can be
achieved at FP16. Thus, a back projection strategy with mixed-precision is designed, as
shown in Figure 8:
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1. The calculation of the slope distance in a thread is implemented at FP32, and the
distance difference with the reference point is also calculated at FP32. Then, the
distance difference is converted to FP16, and the FP16 echo value is obtained by linear
interpolation at FP16.

2. Based on the FP32 slope distance of the current azimuth, the phase value and signal
compensation value are calculated at FP32 and converted to FP16 to complete the
phase compensation and superimpose with the previous azimuth result at FP16.

3. All pulses of the data block are traversed and steps 1–2 are repeated to obtain the FP16
pixel contribution of this data block to this grid point. Finally, the thread performs the
same operation of step 4 in Section 3, then the thread is exited.

3.2. Strategy for Adaptive Factors Selection

To make imaging implement adaptively at FP16, an adaptive loss factors selection
strategy is proposed in this study to convert the data after the range compression into FP16
data for storage, transmission, and calculation.

In the kernel function for determining the loss factors in Figure 2, thread 0 traverses
some points of each pulse. The number of points which are traversed by thread 0 is related
to the size of the shared memory used by the kernel function. All threads are combined
to complete access to all pulse points of this data block, and the results of their respective
absolute maximum echo values are stored in the shared memory unit corresponding to the
thread ID. In order to avoid bank conflict, the comparison of different units is completed
with the help of shared memory reduction operation. Finally, the maximum value is
determined in thread 0, which is used to find the lower limit of the value of the loss factor
Equation (14), preventing the overflow of the back projection kernel function in pulse
superposition. In addition, thread 0 is used to determine the maximum value of the data
block while sampling the absolute value of the data to calculate an average S0, which
represents the average magnitude of the data block. The combination of the above two
values leads to a statistically significant better loss factor αi,j, which balances the dynamic
range and data computation accuracy. It also prevents the disappearance of data with low
magnitude. The loss factor for the jth stream data block of batch i is set according to Nu:

αi,j = max

(
S0,

Nu× sMi,jmax

32500

)
(14)

where sMi,jmax
represents the maximum absolute value in the data block, which can be

quickly determined with the shared memory. In actual practice, this value usually can be
freely selected within 65,504, which is the maximum of FP16.

In addition, to ensure that the superposition of the sub-images does not exceed the
dynamic range of FP16, and to avoid the uneven grayscale in the final image, a specification
factor αo f f set is designed in this study, which is defined as:

αo f f set =
Nu

αmax
× V

Ls× PRF
(15)

where PRF represents the pulse repeat frequency; V represents the radar velocity; αmax
represents the maximum value of the adaptive loss factors in total data blocks.

Based on Equations (3) and (14), the back projection equation performed for each data
block in this scheme is Equation (16), and the adaptive data range control in back projection
is shown in Figure 9.

gi,j(xm, yn) =
∫ sMi,j [τmn(η), η]

αi,j
exp(

j4πRmn

λ
)dη (16)

where gi,j(xm, yn) represents the FP16 sub-image. The specific imaging region for each data
block is presented in Equations (5) and (6).
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Based on Equations (15) and (16), the final imaging result fBP(xm, yn) can be expressed as:

fBP(xm, yn) = ∑
i

∑
j

gi,j(xm, yn)× αi,j × αo f f set (17)

In addition, for meeting the dynamic range of FP16 and FP32, the interpolation in back
projection is changed from interpolation by time-delay to interpolation by distance in this
study, and the preprocessing for __cosf() by 4π

[
Rmn

λ − int
(

Rmn
λ

)]
is adopted.

3.3. FBP Algorithm with FP16

The FP16 acceleration scheme of the BP algorithm has been described above. The
FBP algorithm simply replaces the direct back projection of the BP algorithm with a polar
coordinate projection of the sub-aperture and two-dimensional interpolation to obtain the
final image. The principle of FP16 FBP scheme is basically the same as the FP16 scheme of
BP. The FP16 sub-images in Figure 7 are replaced by the FP16 polar sub-images obtained
from the sub-apertures, and the FP16 two-dimensional interpolation is added to the sub-
image fusion for the FP16 overall acceleration process of FBP. The selection of loss factors is
based on order-of-magnitude statistics and the data range of pulse superposition. Since the
FBP algorithm does not change the principle that each grid point coherently superimposes
the contribution of the pulse in a synthetic aperture time, the loss and specification factors
are still chosen based on Equations (14) and (15).

According to the correspondence between streaming structure and sub-aperture men-
tioned in Section 2.2, Equations (8) and (10) in the FP16 scheme of FBP can be expressed as:

fi(ρi, θi) =
∫ sMi

[
τρi ,θi (η), η

]
αi

exp[
j4π(Rρi ,θi − ρi)

λ
]dη (18)

fFBP(x, y) =
M

∑
i=1

[
fi
(
ρxi , θyi

)
× exp

(
j
4π

λ
ρxi

)
× αi × αo f f set

]
(19)

where αi and sMi represent the loss factor and the range compressed data of the ith sub-
aperture, respectively.

The FP16 implementation of the sub-aperture back projection kernel in the FBP algo-
rithm is the same as Figure 8, except that the range calculation is performed in the polar
coordinate system and the final image of the sub-aperture is obtained without multiply-
ing any factors and superposition with the previous data block. The polar sub-image
fusion kernel of FBP is performed by replacing the FP32 two-dimensional interpolation
in Figure 4 with FP16 interpolation. However, FP32 instruction __sinf() is still used in
the interpolation because there is too much loss of precision with FP16 instruction. The
interpolated data of each sub-aperture achieves phase compensation in FP16 and then
multiplies the specification and loss factor to complete the FP16 superposition of different
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apertures. In this paper, in order to ensure the accuracy of angle calculation, the inverse
trigonometric instructions involved in FBP and FFBP algorithms adopt FP64. Except the
inverse trigonometric instruction, the GPU schemes are all carried out according to the
instructions of FP32 or FP16 described in this paper.

3.4. Error Analysis and Applicable Conditions

This paper only analyzes the additional errors caused by the FP16 calculation and
does not include the errors of the algorithm itself. Since the errors of the whole image and
individual pixel point depend on the number of operations, the errors caused by the data
precision of the FBP algorithm could be smaller than those of the BP algorithm. In this
paper, the error results are given as an example of the FP16 scheme of BP.

The binary representation of floating-point numbers is divided into sign (s), exponent
(i), and mantissa (m), and the precision of the data representation is determined by the man-
tissa of the data. FP32 contains 1 sign, 8 exponents, and 23 mantissas, while FP16 has only
5 exponents and 10 mantissas. The calculation of a floating-point number F can be ex-
pressed as:

F = (−1)s × 2i × (1 + 0.m) (20)

The high data representation error of FP16 makes it a necessary consideration in
imaging. Taking 1024 as an example (210), its representation error is 2−13 in FP32, but 20

in FP16. The back projection requires NLs × Nx× Ny additions and multiplications. By
assuming NLs = Nx = Ny = N, the absolute and relative error equations for the data
calculation are as follows:

ε
(
∑n

i=1 xi

)
= ∑n

i=1 ε(xi) (21)

ε
(
∏n

i=1 xi

)
= ∑n

i=1


∏n

j = 1
j 6= i

x∗j

ε(xi)

 (22)

εr

(
∑n

i=1 xi

)
= max[εr(x1), εr(x2), . . . . . .] (23)

εr

(
∏n

i=1 xi

)
≈∑n

i=1 εr(xi) (24)

where ε(xi) indicates the absolute error of data representation; xi indicates the true value
of data; x∗j indicates the value after data representation; εr(xi) indicates the relative error
of data.

According to Equations (21) and (22), it can be concluded that the absolute error of
FP16 addition for the whole image in the above case reaches N3, while the absolute error of
FP32 is only 2−13 × N3, and the error of multiplication can be even larger. Low precision
data representation errors are unavoidable. The schemes in this paper consider the adaptive
adjustment of the order of magnitude of the data, leading to most of the operations around 20.
As a result, the corresponding FP16 addition absolute error is reduced to 2−10 × N3, and the
multiplication error can be also effectively reduced. Moreover, from Equations (23) and (24), it
can be seen that the relative error of addition and subtraction is determined by the relative
error of the data representation. The FP16 also has a high relative error, while the relative
error of multiplication is constantly superimposed. Compared to the absolute error, it is more
difficult to reduce the relative error of FP16.

The loss analysis is provided below for each pixel point. In the BP algorithm, N
additions and multiplications are required for each point. When the order of magnitude
of the data reaches 20, the absolute error of addition can also be reduced to 2−10 × N,
exactly consistent with the above analysis. For the error due to the reduced interpolation
precision, the reduced data precision gives more losses to sinc interpolation compared to
linear interpolation as the former performs more low-precision operations.
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Based on the above discussion, some illustrations of the FP16 schemes application
in this paper are provided. Considering the dynamic range of the data, this scheme can
achieve excellent results for airborne and onboard imaging. Due to the time consumption
introduced by the loss factor determination mechanism, greater speedups can be achieved
for data with many pulses and few pulse sampling points. The FP16 scheme is more
suitable for processing more concentrated data. When the amount of data to be processed
is the same, the reduction of Nu results in fewer advantages for FP16 data copies and video
memory. The pre-processing is required for the operations of extreme magnitudes, such as
speed of light and pulse sampling interval.

4. Experiment

To explore the effectiveness achieved by FP16 schemes, the following eight schemes
are realized: BP-CPU-FP64, FBP-CPU-FP64, FFBP-CPU-FP64, BP-GPU-FP32, FBP-GPU-FP32,
FFBP-GPU-FP32, BP-GPU-FP16, and FBP-GPU-FP16. The parameters of the environment,
simulation, and the experimental scene are listed in Tables 1 and 2. The simulation uses a
3072×1024 echo volume with an upsampling factor of 2 to image a scene with an azimuth of
750 m and a distance of 250 m. The radar azimuth center is the origin. The motion direction is
y-axis positive, the coordinate of the simulation point is (23,500 m, 4 m), the grid is divided
as 7501× 2501 according to 0.1 m, the number of sub-aperture is 64, and each sub-aperture
contains 48 pulses. For comparison, Nu of BP schemes is also taken as 48. In this paper, the
merge base of FFBP is chosen as 2, and the number of streams is set as 4. Each thread block in
the kernel function contains 256 threads, and the number of thread blocks depends on the
number of grid points required for the different kernel functions.

Table 1. Environment specifications.

Parameters Value

System Windows 10 (×64)
CPU AMD Ryzen 7 5800H
GPU NVIDIA GeForce RTX 3060

Environment MATLAB 2021, VS 2019, CUDA 11.3

Table 2. Simulation and experimental parameters.

Parameters Value

Wavelength 0.03125 m
PRF 533.330793 Hz

V 154.195864 m/s
Band width 480 MHz
Pulse width 2.4 us

Sampling rate 548571428.571429 Hz
Nearest distance 23305.0 m

4.1. Simulation Results and Analysis

The normalized amplitude diagrams in range and azimuth direction of the three CPU
schemes for a point target are shown in Figure 10, and the comparison of the peak sidelobe
ratio (PSLR) and the integral sidelobe ratio (ISLR) for the point target is shown in Table 3. By
comparison, it can be found that the energy aggregation effects are basically the same. The
time consumption of BP, FBP, and FFBP schemes in Figure 10 are 30,357,648 ms, 570,969 ms,
and 2,140,093 ms, respectively, and the fast time-domain algorithms achieve a good speedup.
When there are few aperture divisions, the FFBP computation is larger than that of FBP
according to the computational volume derivation in Section 2, resulting in a faster speed of
the FBP algorithm.
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Table 3. Imaging indicators of the CPU schemes.

Direction Parameters BP-CPU-FP64 FBP-CPU-FP64 FFBP-CPU-FP64

Range PSLR (dB) −13.3085 −13.3535 −13.2633
ISLR (dB) −10.1937 −10.3197 −10.2047

Azimuth
PSLR (dB) −13.1957 −12.7574 −13.4845
ISLR (dB) −10.2021 −9.8649 −9.7976

According to the GPU acceleration schemes of BP, FBP, and FFBP algorithms proposed
in Sections 2 and 3, the simulation results of each algorithm under FP32 and FP16 are given
in Figure 11. It can be seen that the BP-GPU-FP32, BP-GPU-FP16, and FBP-GPU-FP32
schemes maintain suitable sinc function waveforms with low sidelobes, and the FBP-GPU-
FP16 scheme has high azimuthal sidelobes, but the energy aggregation effect is still acceptable.
The experimental conditions and the FP32 instructions used in the FFBP-GPU-FP32 and FBP-
GPU-FP32 schemes are the same, but the FFBP-GPU-FP32 scheme has too much interpolation,
and the point target simulation error is large. The experiments in this paper can reduce
the error by increasing the division density and changing to high-precision instructions to
make the imaging quality of FFBP-GPU-FP32 close to that of FFBP-CPU-FP64. However,
it can lead to a decrease in acceleration efficiency and an increase in video memory usage,
making it unnecessary to be further discussed. To illustrate the feasibility of the FFBP-GPU
acceleration scheme proposed in Section 2.3, the FFBP-GPU-FP32+ scheme after changing to
many high-precision instructions on top of FFBP-GPU-FP32 is supplemented in this section.
The corresponding results are given in Figure 11.

This experiment satisfies the density dividing condition proposed in Section 2. In
Figure 11, the time consumptions of FBP-GPU-FP32 and FFBP-GPU-FP32 are 602 ms
and 1184 ms, respectively, which is shorter than the 1653 ms of BP-GPU-FP32. BP-GPU-
FP16 takes only 918 ms, and FBP-GPU-FP16 takes even less time with 440 ms. These
results indicate that the BP-GPU-FP16 and FBP-GPU-FP16 achieve considerable imaging
performance in a much shorter period of time, and the latter is more efficient. Table 4 shows
the imaging indicators of the different schemes. It can be seen that BP-GPU-FP16 has better
simulation quality, compared with the FBP-GPU-FP16 scheme.
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FP32 in azimuth direction.

Table 4. Imaging indicators of the four GPU schemes.

Direction Parameters BP-GPU-FP32 FBP-GPU-FP32 BP-GPU-FP16 FBP-GPU-FP16

Range PSLR (dB) −13.3722 −13.3028 −13.5414 −13.2985
ISLR (dB) −10.2416 −10.2350 −10.0277 −10.2866

Azimuth
PSLR (dB) −12.9271 −12.0809 −11.5352 −7.9673
ISLR (dB) −7.9891 −6.1871 −5.6912 −1.2428

In terms of real-time imaging, the total time and back projection time of the BP-
GPU-FP32, BP-GPU-FP16, FBP-GPU-FP32, and FBP-GPU-FP16 schemes for different grid
divisions with 3072×1024 data volume are shown in Table 5 and Figure 12, respectively.
The back projection of FBP and FFBP algorithms are divided into 2 and 3 kernel functions
in Sections 2.2 and 2.3, respectively. It can be seen that:

1. The computational volume of the algorithm is mainly concentrated in the back projec-
tion part, and the efficiency improvement achieved by using lower precision in the
back projection part directly improves the overall efficiency of the algorithm.

2. As the grid division becomes denser, the acceleration ratio of the BP-GPU-FP16 scheme
compared to the BP-GPU-FP32 scheme increases and reaches about 1.8 times. The
reasons for this result are that the copy speed of FP16 data is faster; the more pixels
reduce the time-consuming proportion of adaptive loss factors determination, but
make the proportion of FP16 calculations increase.

3. Under the same division, the acceleration ratio of FBP-GPU-FP16 is lower than that of
the BP-GPU-FP16 scheme, because the FP16 interpolation of aperture fusion in back
projection uses the __sinf() instruction of FP32 to guarantee the interpolation accuracy,
and its FP32 distance calculation is also more complicated. As shown in Figure 12, the
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acceleration ratio becomes larger as the grid division becomes denser, indicating that
this FP16 scheme is also more advantageous for large computational volumes.

Table 5. Speedup with GPU-FP16 schemes of different grid divisions.

Grid Division BP-GPU-
FP32 (ms)

BP-GPU-
FP16 (ms) Speedup FBP-GPU-FP32 (ms) FBP-GPU-FP16 (ms) Speedup

3001× 1001 289 164 1.76× 122 113 1.07×
4501× 1501 617 348 1.77× 180 151 1.19×
6001× 2001 1070 601 1.78× 315 246 1.28×
7501× 2501 1653 918 1.80× 602 440 1.37×
9001× 3001 2379 1318 1.80× 1046 750 1.39×
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4.2. Experiment Results

Figure 13 shows the results of the eight schemes for the region of 750× 750 m2 selected
by 0.15 m interval for the experimental data with 3072×4096 data volume, and the local
area of the pictures is intercepted and enlarged. The other conditions of the experiment are
the same as the above simulation. In Figure 13 the transverse direction is azimuth. It should
be noted that whether motion compensation is performed has almost no effect on the
image quality of the BP algorithm. In this paper, linear trajectories are used for the imaging
processing, and the results in Figure 13 are adjusted for overall contrast for presentation
purposes, but the image quality analysis in Section 4.3 is still performed on the original
images. It can be seen that the imaging results of FFBP-GPU-FP32 and FBP-GPU-FP16 are
relatively worse, which are related to more interpolation operations and low data precision,
and the focusing results of other images are not significantly different.
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4.3. Analysis of Image Quality

To quantitatively analyze the imaging quality of different schemes, Equation (25) is
applied to calculate the image entropy H of complex images for Ny× Nx pixel points:

H = −∑Ny
m=1 ∑Nx

n=1 ρ(m, n)logρ(m, n) (25)

ρ(m, n) =
|x(m, n)|2

Pow
(26)

where x(m, n) represents the pixel value; Pow represents the total pixel power; ρ(m, n)
represents the proportion of power.

Generally, the lower image entropy means a better focusing effect of SAR images. In
addition, the mean structural similarity index measure (MSSIM) and peak signal-to-noise
ratio (PSNR) are selected as the evaluation criteria of grayscale image quality, with larger
values representing less difference between the image and the real scene. The BP-CPU-FP64
imaging result is selected for reference, and the evaluation results of other schemes are
given in Table 6. It can be seen that the overall imaging quality of the CPU-FP64 schemes
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is better because it uses FP64 to process the data. With the same processing precision,
BP achieves better focusing results compared to FBP and FFBP. The latter two both use
different degrees of approximation to improve the imaging efficiency based on the original
BP. Notably, the BP-GPU-FP16 scheme achieves similar imaging quality as the FBP-GPU-
FP32 scheme, but the imaging quality of FBP-GPU-FP16 is reduced. In Table 6, it can be
seen that the image quality of FBP-GPU-FP16 is similar to that of the FFBP-GPU-FP32, but
Figure 13h shows an acceptable visual quality because PSLR in Section 4.1 is not the only
factor affecting image quality. Due to the imaging quality and time of FFBP-GPU-FP32, the
FFBP-GPU-FP16 scheme is not explored in this paper.

Table 6. Image quality.

Entropy MSSIM PSNR

FBP-CPU-FP64 22.9657 0.9985 48.5118
FFBP-CPU-FP64 22.9997 0.9953 42.3074

BP-GPU-FP32 23.0708 0.9986 49.9150
FBP-GPU-FP32 23.1461 0.9952 46.1326

FFBP-GPU-FP32 23.2721 0.9885 43.2326
BP-GPU-FP16 23.1695 0.9940 44.8880

FBP-GPU-FP16 23.2964 0.9808 41.5353

4.4. Analysis of the Real-Time Performance

The imaging time comparison in Section 4.2 is given in Table 7. The time for reading
data from the file, writing back to the file, and initializing some parameters is not included
in this study. Similar to the simulation results, the fast time-domain algorithms achieve
higher efficiency at various data processing precisions, and their CPU schemes achieve
hundreds of times acceleration compared to the BP-CPU-FP64 scheme. The GPU-FP16
schemes realize considerable accelerations relative to GPU-FP32 schemes and thousands of
times acceleration relative to the CPU-FP64 schemes. The FBP-GPU-FP16 scheme achieves
the highest efficiency. Furthermore, the fast time-domain algorithms can continue to use
other optimizations on GPU-FP32 schemes to increase its acceleration ratio relative to the
BP-GPU-FP32 scheme.

Table 7. Running time of the eight schemes.

Time
(ms)

BP -CPU
-FP64

FBP-CPU
-FP64

FFBP-CPU
-FP64

BP-GPU
-FP32

FBP-GPU
-FP32

FFBP-GPU
-FP32

BP-GPU
-FP16

FBP-GPU
-FP16

Total 155,563,001 526,937 1,108,282 2295 548 807 1274 415
Back projection 155,561,267 522,515 1,100,532 2250 466 663 1218 360

The FP16 performance in RTX 3060 is the same as that of FP32, which can halve the
imaging time in Table 7. In contrast, the FP16 performance in A100 can reach 77.97 TFLOPS,
which is four times the FP32 performance. With the development of FP16 performance in
GPU, the FP16 scheme in this study can achieve a higher acceleration.

4.5. Analysis of Video Memory Usage

The back projection is the main time-consuming part of the BP algorithm and utilizes
the most video memory. In Table 8, compared to the GPU non-streaming FP32 scheme and
BP-GPU-FP32 scheme in Section 4.2, the BP-GPU-FP16 scheme uses 50.9% and 74.2% of
the first two, respectively, greatly relieving the pressure on the video memory under the
experimental data. The FBP and FFBP algorithms are characterized by large video memory
consumption due to the sub-aperture imaging method, which poses a challenge to the
limited video memory of the GPU. It can be seen that the FBP-GPU-FP16 scheme proposed
in this paper utilizes only 59.0% of the video memory of the FBP-GPU-FP32 scheme, but it
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is still larger than the BP-GPU-FP32 scheme, which is the price for the fast time-domain
algorithm to achieve high efficiency.

Table 8. Occupancy analysis of video memory.

Parameters BP-GPU-FP32-
Non-Streaming

BP-GPU
-FP32

FBP-GPU
-FP32

FFBP-GPU
-FP32

BP-GPU
-FP16

FBP-GPU
-FP16

Video memory 573.65 MB 393.65 MB 1125.49 MB 1013.43 MB 292.24 MB 663.87 MB

In the future, strategies such as multi-GPU collaboration can be used to assign different
GPUs to perform the range compression and back projection of FP16. By this method, the
time and memory usage of the range compression and back projection are balanced to
achieve better results.

5. Conclusions

In this study, an adaptive asynchronous streaming scheme for the BP algorithm and FBP
algorithm based on FP16 is proposed. The experimental results show that these schemes
can improve the imaging efficiency of the GPU FP32 schemes in RTX 3060 by 1× and
0.5×, respectively, with similar imaging quality. The usage of video memory is also sig-
nificantly decreased. Moreover, the advantage of these schemes is more obvious when the
calculation increases.

The development trend of GPU indicates that the performance of low-precision arith-
metic will be continuously optimized, while the improvement of image quality obtained
through high-precision arithmetic will be unnecessary due to its high resource consumption.
Based on imaging quality, video memory usage, imaging speed, and the prospect of FP16
operation of GPU, the BP-GPU-FP16 and FBP-GPU-FP16 schemes proposed in this paper
have advantages over the FP32 schemes.
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