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Abstract: Sarcasm is a language phrase that conveys the polar opposite of what is being said, generally
something highly unpleasant to offend or mock somebody. Sarcasm is widely used on social media
platforms every day. Because sarcasm may change the meaning of a statement, the opinion analysis
procedure is prone to errors. Concerns about the integrity of analytics have grown as the usage of
automated social media analysis tools has expanded. According to preliminary research, sarcastic
statements alone have significantly reduced the accuracy of automatic sentiment analysis. Sarcastic
phrases also impact automatic fake news detection leading to false positives. Various individual
natural language processing techniques have been proposed earlier, but each has textual context
and proximity limitations. They cannot handle diverse content types. In this research paper, we
propose a novel hybrid sentence embedding-based technique using an autoencoder. The framework
proposes using sentence embedding from long short term memory-autoencoder, bidirectional encoder
representation transformer, and universal sentence encoder. The text over images is also considered
to handle multimedia content such as images and videos. The final framework is designed after the
ablation study of various hybrid fusions of models. The proposed model is verified on three diverse
real-world social media datasets—Self-Annotated Reddit Corpus (SARC), headlines dataset, and
Twitter dataset. The accuracy of 83.92%, 90.8%, and 92.80% is achieved. The accuracy metric values
are better than previous state-of-art frameworks.

Keywords: autoencoder; BERT; LSTM; sarcasm detection; social media platforms; USE

1. Introduction

We now live in the social media era. It has revolutionized the world in terms of
communication. Social media opens a world of new possibilities; for example, people may
now express themselves with only a finger tap. It is widely used for sharing comments,
opinions, support, and sentiments over any topic or image shared over the social media
application. Sarcasm is widely used day to day over social media platforms such as
Twitter and Facebook. Sarcasm is a turn of phrase for conveying comic, disdain, or bad
feelings via exaggerated linguistic constructions. It is a sort of fake politeness used to
increase anger inadvertently. Sarcasm can be looked like thinly concealed unkindness. The
sarcastic comments and tags are mainly toward political parties and celebrities as they
are supposed to be the influencers. Sarcasm has a link to psychological nature such as
anxiety and depression. Rothermich et al. [1] showcased that people with depression or
medium anxiety during a pandemic used more sarcasm in their interactions over social
media. According to a new study, teases feel their statements are less painful than their
victims [2]. However, in reality, they are more hurtful.
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Sarcasm may easily be detected in a face-to-face conversation by observing the
speaker’s facial expressions, tone, and gestures. However, identifying sarcasm is chal-
lenging because none of these indicators is readily present in written communication.
Identifying sarcastic comments for images, videos, or text shared over social platforms is
even more difficult as context lies with the image or the main text/comment/headline [3,4].
Sarcasm identification in online communications from social media sites, discussion forums,
and e-commerce websites has become essential for fake news detection, sentiment analysis,
opinion mining, and detecting of online trolls and cyberbullies [5–8]. Detecting sarcasm is
a hot topic of research in current times.

1.1. Challenges in Sarcasm Detection

A massive volume of data has considerable potential for corporations to learn more
about people’s opinions, sentiments, and other aspects. However, there is also a slew of
difficulties. For example, sarcasm mainly has positive words, but the context is different,
making them negative sentiments [9]. These subtle difficulties have led to wrong assessment
of the reviews of product/service in the review analysis or wrong classification in fake
news detection. Such difficulties have piqued many organizations and scholars interested
in pulling out accurate information from the textual data with sarcasm. Many techniques
in NLP are being proposed, considering the contextual part while training the sarcasm
detection. The contextual part is learnt from the proximity of words. Different techniques
have different proximities and are more related to different context training.

A few examples of sarcastic tweets are provided in Figures 1–3. Figure 1a,b are
examples of many sarcastic tweets about politicians and celebrities that are commented
on without other linguistic features such as hashtags, emoticons, or quotation marks.
They have positive words such as “huge admirer”, “love” etc., but the context is different.
Figure 2a,b show examples of sarcasm and positive words, but linguistic features such as
hashtags, exclamation marks, and question marks are present. Figure 3a,b show sarcastic
comments with images. Here the comments are in context to the image. Thus, multiple
types of sarcastic comments on social media can be observed, and each one needs to be
handled for greater accuracy in its detection. Another issue with social media platforms
is that people often use slang or abbreviations in their comments due to their size limit.
Understanding these abbreviations is difficult. Moreover, understanding the context of this
slang and abbreviations is another challenge.
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So, the main three challenges in sarcasm detection can be attributed to understanding
the context, as sarcasm has both positive and negative words. Second, dealing with
multiple content types, hashtags, emoticons, exclamation marks, question marks, slang,
abbreviations etc. Third, overcoming the limitation of word-based techniques as the context
of the sentences play a vital role, and thus word-embedding does not cater to all diverse
content types. The third challenge of diversity in the context and content of sarcastic textual
data is a significant concern. Each technique has a unique way of understanding and
learning the context, so multiple techniques must be applied and assembled into a single
framework to handle the diversity. Various models should be selected based on covering
short, long, and out-of-context textual data.

1.2. Major Contribution

Researchers have attempted to resolve these problems using content- or context-based
features. The resolution of the above challenges is required to improve the detection of
sarcasm over social media platforms. To resolve these multiple issues, a hybrid approach
should be proposed. Each previous research utilizes word-based or sentence-based content
or context techniques. Their limitations can be overcome if we employ multiple sentence-
based techniques and resolve the issues using a self-learning autoencoder. This thought
has inspired the authors of this paper to propose a hybrid approach. Employing multiple
branches of BERT with their independent parameters will not help much. The BERT is a
good technique where the sentences are a bit longer and have some co-relation concerning
the sentences before and after. On tweets data, only BERT will not make a significant
improvement as tweets are short and many times correlation between tweets does not exist.
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This paper proposes a hybrid model that gathers learning/identification from three
sentence-based models: bidirectional encoder representations from transformer (BERT),
universal sentence encoder (USE), and unsupervised learning long short term memory-
based autoencoder. Each of the three is a sentence encoder/embedding generator. BERT
and USE are a transformer-based model that considers the sentence’s context, not words,
and thus differs from word-based context. Initially, the autoencoder is trained over the
datasets. Later, the embeddings from the trained LSTM-based autoencoder and BERT and
USE are passed to autoencoder for classification. The learning from these is looped back
to autoencoder for further self-correction in an unsupervised way. The accuracy scores
of 83.92%, 90.8%, and 92.80% on three publicly available social media-oriented datasets
are achieved. These accuracies are better than the previous frameworks proposed earlier
by researchers.

The following are the critical goals of this paper:

• Creating a reliable and effective hybrid autoencoder-based model to detect sarcasm on
social sites. The model employs a LSTM-based autoencoder for further learning from
the results.

• The novelty lies in combining hybrid models from sentence-based embeddings and
unsupervised learning utilizing the autoencoder to overcome their limitations. The
models are selected by using ablation method and selecting those models which can
cover the diverse range of real-time datasets.

• The model is tested against publicly available real-world social media datasets such
as Twitter and Reddit. Validation on the real-world datasets is true measure of the
metrics for the model. The models can be employed directly over real-world social
media contents and can handle diverse contents.

• The model’s application is universal and can be used on diverse social media platforms.
Datasets have diversified short tweets from Twitter, short sentence from Reddit, and
long sentences from newspaper lines.

The practical and commercial applications of the proposed framework are many.
Corporations and scholars may use the suggested approach to correctly identify their
customers’ genuine opinions and emotions from their reviews of their products. This
will help them weed out sarcastic comments initially labelled as positive from earlier
approaches. Political party cells can be employed in getting the true sentiments of the
people and not be inaccurate in understanding due to sarcasm. If there are any learning or
strategies to be implemented based on the comments from the public, the political parties
can design correct strategies. Fact-checking industries which put manual effort into fake
news detection can utilize the model in their internal research and avoid any research over
the sarcastic comments. Nowadays, the corporation/company employees are very vocal
in sharing their reviews/views about the company over online platforms. The company
can re-look into these sarcastic comments and hint about some wrong decisions or plans
considered for the employees. Sarcastic comments also lead to inaccurate results of open
surveys regarding any political, social or cultural topics. Weeding out sarcastic comments
will help improve the overall survey results analysis.

The rest of this paper is laid out as follows. The second section examines relevant
research on sarcasm using different techniques. Section 3 outlines the proposed model
framework explaining its components. Section 4 shares information about the datasets,
experimental results, and comparative analysis with other models. Section 5 concludes and
provides direction toward future work.

2. Related Work

Although sarcasm has been researched in the social sciences for decades, researching
the models to detect sarcasm in texts automatically is a relatively recent topic. Automatic
sarcasm detection has recently piqued the interest of researchers in both the machine learn-
ing (ML) and natural language processing (NLP) domains [15]. An NLP-based method
employs language characteristics and a linguistic corpus to comprehend qualitative infor-
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mation. On the other hand, ML methods employ supervised and unsupervised learning
techniques to comprehend sarcastic sentences based on tagged or unlabeled material.

Eke et al. [16] reviewed various previous research on sarcasm detection. According
to this review article, the most widely utilized feature extraction approaches were n-gram
and part-of-speech tagging (POS) techniques. However, for feature representation, binary
representation and term frequency were employed. It also observed that information
gain and Chi-squared test were widely employed for feature selection. “support vector
machines” (SVM), “random forests” (RF), maximum entropy and Naive Bayes classification
algorithms were utilized more. Sarsam et al. [17] also reviewed various “adapted machine
learning algorithms” (AMLA) and “customized machine learning algorithms” (CMLA)
used in research on sarcasm detection. Their findings were similar to Eke et al. [16] Their
research showed that “using lexical, pragmatic, frequency, and part-of-speech tagging can
contribute to the performance of SVM, whereas both lexical and personal features can
enhance the performance of CNN-SVM”. Khodak et al. [18] created a large-scale corpus
for sarcasm detection. They carried out manual annotation first and later compared their
results with techniques such as a bag of words, sentence embeddings, and bag-of-bigrams.
They observed that the manual detecting sarcasm was better than other techniques. They
said that machine learning techniques can definitely be improved, starting with the use of
context to determine sarcasm more accurately.

Machine learning-based models were proposed earlier, and they primarily extract
language features and train them over machine learning classifiers. Keerthi Kumar and
Harish [19] used machine learning on content-based features. They utilized “mutual
information” (MI), “information gain” (IG), and chi-square for feature selection methods
and passed it to the clustering algorithms for further filtering. The “support vector machine”
(SVM) is used for classification at the final stage. Pawar and Bhingarkar [20] employed
machine learning classification models for sarcasm detection on a similar concept. They
collated features related to sentiment, punctuations, semantics and syntactic (like number
of interjections, unusual words, laughing expression), and patterns. All these feature sets
were learned over SVM and random forest for classification.

Another approach was to move above words and learn the context of the sentences.
These could be done primarily by using “long short-term memory” (LSTM), bidirectional
LSTM or gated or guided attention modules. Ghosh and Veale [21] employed neural
network architecture to detect sarcasm over Twitter tweets. They designed a framework
comprising CNN and bidirectional LSTM. Two inputs embeddings were provided; one
embedding was generated from Twitter data, and the other stream had contextual data
about the author (Tweeter) of the tweet. The embeddings were passed through CNN layers
for feature learning and then to bidirectional LSTM. The output vectors from bidirectional
LSTM were passed to dense layers, and the SoftMax layer carried out the classification.
Similarly, Ghosh, Fabbri, and Muresan [22] used various LSTMs with contextual data to
identify the sarcastic comments. They analyzed the previous comment to understand the
context of the present comment. The context understanding is helpful before predicting
whether it is sarcastic or not. Xiong et al. [23] proposed a novel method with a combination
of self-matching words and a bidirectional LSTM framework. In self-matching words,
the words within the sentences were matched to determine standard information. They
used a low-rank bilinear pooling technique to concatenate inconsistencies and composition
information to account for possible information redundancy without compromising the
classification results. Liu et al. [24] utilized only the content features such as “part of speech”
(POS), punctuations, numeric data, and emoticons to detect the sarcasm in the Twitter.
Misra and Arora [25] utilized bidirectional LSTM followed by an attention module to detect
sarcasm. The bidirectional LSTM provides contextual information considering the previous
and subsequent sentences; at attention, the module complements the LSTM by providing
the relevant weights for the words. They also created a new dataset, headlines from the
website onions (www.theonion.com, accessed on 21 February 2022) and HuffPost’s. Akula
and Garibay [26] proposed a multi-headed self-attention framework to classify sarcastic

www.theonion.com
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comments over various social media platforms. It also involves gated recurrent units to
identify the far-off correlation of words output from the self-attention module. Another
multi-headed attention model using bidirectional LSTM was proposed by Kumar et al. [13]
Attention mechanism along with gated recurrent unit (GRU) was suggested by Kamal and
Abulaish [27].

The transformer-based approach is also another way of learning the context. Babane-
jad et al. [28] proposed a contextual features-based BERT model for detecting sarcastic
comments. Another transformer-based model RCNN-Roberta was proposed by Potamias
et al. [29]. They added the utilized RoBerta transformer, a slimmer version of BERT-base
and employed bidirectional LSTM. The uniqueness they applied was concatenating the
embeddings from the RoBerta and bidirectional LSTM and passing it to the pooling layer.
Sundararajan and Palanisamy [30] employed a feature ensemble model with a rule-based
approach for sarcasm detection. Another deep learning ensemble model was employed
by Goel et al. [31]. Du et al. [32] observed that analyzing the context, including feelings
of messages that respond to the target language text and the user’s expressive habit, is
necessary for identifying sarcasm. They proposed a two-stream CNN, which evaluates both
the semantics and emotional context of the target language text. They employed SenticNet
to supplement the “long short-term memory” (LSTM) model. The attention mechanism is
then used to account for the user’s expressive habits. Parameswaran et al. [33] suggested a
combination of a machine learning classifier and a deep learning model to retrieve the target
of sarcasm from the text. First, they employed machine learning to categorize sarcastic
phrases and evaluate if they contain a target (LSTM). The target is extracted using a deep
learning model from aspect-based sentiment analysis.

Researchers employed other modalities such as user behavior, hashtags, emotions,
and personality traits to detect sarcasm. Garcia et al. [34] used emoticons/emojis to
detect sarcasm. Different emoticons were used in sarcastic comments than in other tweets.
Yao et al. [35] employed a very novel technique. They utilized four different text-context-
based text and Twitter images for sarcasm detection. They used tweets, images in tweets,
text over images and image captions. These multi-modalities are learnt over a multi-channel
interactions model based on gated and guided attention modules. Hazarika et al. [36]
proposed content and context-based embedding methods for sarcasm detection over social
platforms. The model employs user features that include stylometric and personality
features of users. Illic et al. [37] proposed a framework that employs character-level feature
representations of words. It is based on “embeddings from language models” (ELMo).
Agrawal, An, and Papagelis [38] proposed a novel emotion-based framework for sarcasm
detection. They approach the goal of sarcasm detection as a sequence classification issue,
exploiting the natural fluctuations in distinct emotions over the length of a piece of text to
investigate the impact of transitions in affective states. In order to train a model to recognize
sarcasm, they first divide the text into smaller chunks, represent each chunk with affective
data, and then identify the transitions between emotions in the text. Malave and Dhage [39]
proposed a framework to track user behavior patterns, personality traits, and context
information for sarcasm detection. Sykora, Elayan, and Jackson [40] suggested a model
based on hashtags on social media platforms. It studied the hashtags features and identified
the sarcastic sentences. Ding, Tian, and Yu [41] used a fusion of multimodal approaches
for sarcasm detection. Their model employed residual connections, and had three model
variations based on distinct experimental circumstances comprising a multi-level late-
fusion learning framework. They used MUStARD dataset which has text, audio, and visual
data of sarcasm. They trained each modality in different streams and concatenated in the
end following the late-fusion technique. Wen et al. [42] employed a sememe and auxiliary
enhanced attention neural model for sarcasm detection. It used auxiliary information to
elicit complete comprehension and used Bi-Gru attention model.

Research has also been extended beyond the English language. Techentin et al. [43]
studied the sarcasm of native and non-native English speakers. They identified that certain
experience features play a role in the ability of non-native speakers to identify and use
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sarcastic cues. Farha and Magdy [44]. Al-Hassan, and Al-Dossari [45] researched sarcasm
detection in Arabic. Similarly, Swami et al. [46] created and proposed a model for sarcasm
detection over Hindi–English tweets.

Current Issues

The issue with the above previous research is that most of them target a singular
approach. Employing singular content or context-based approaches has its limitations.
They might not be a universal solution as context and content change based on the social
platforms. There are some research where multiple feature ensemble models have been
proposed, but those suggested models combine the modalities from all features correctly.
Using features other than content and context does not seem a practical solution. User
habits and personality traits are limited to specific individuals and cannot be generalized
to create a scalable solution over social platforms.

The authors intend to resolve the issues mentioned above by designing a hybrid
model that considers sentence contexts (using transformers). The solution’s novelty is
utilizing the autoencoder as unsupervised learning for self-correction, which balances
the limitations of the individual approaches based on the rules. The solution is universal
as multiple techniques are employed, and their learnings are weighted accordingly. The
universality lies in the fact that it is validated on diverse datasets such as short comments
from the Twitter dataset, long sentences in the headlines datasets and text over images in
Reddit/Twitter dataset.

3. Proposed Model

The proposed model is a hybrid model where three sentence-based techniques are
utilized to provide the surest answer for the sarcasm detection algorithm. The model
employs autoencoder, BERT, and USE to identify whether the tweet/text is sarcastic or
not. The classification output from the three mentioned techniques is passed to the dense
layers, which learn the concatenated sentence embeddings for classification probability.
The vectors are concatenated and passed to SoftMax for final classification of input as
sarcastic or non-sarcastic.

The flowchart of the proposed model is explained in Figure 4. Initially, the text input
is passed to the pre-processing layer. Here the text is pre-processed, and all hangtags and
emoji are removed. For the image, the text is extracted from the image using optical charac-
ter reader (OCR) API pytesseract. Tesseract is google API for OCR. The implementation of
tesseract API in python is pytesseract.
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After the text is pre-processed, the pre-training phase begins for the autoencoder.
The autoencoder is an unsupervised learning encoder that is based on LSTM. The vector
representation generated from the pre-training phase is collected. In the second phase,
the initial pre-processed text is passed to BERT and USE models to generate sentence
embeddings. All three components output a vector space of embeddings, but as all have
different methods of creating embeddings, the embeddings are different. The embeddings
generated from the autoencoder, BERT, and USE are concatenated in the third phase. The
fused embeddings are passed to dense layers for feature vector learning. The output from
the dense layer is passed to SoftMax for the final classification of sarcasm or not sarcasm.

Figure 5 is a detailed illustration of the proposed model. We can see how the text input
is passed to the pre-training phase in the LSTM and is also passed to BERT and USE models.
The fused sentence embeddings are learnt over dense layers. The probabilities of all three
are passed to the final SoftMax layer. BERT, USE, and autoencoder all produce sentence
embeddings. It considers the entire sentence and produces a vector. It also considers the
previous and prior sentences for producing context-driven sentence embedding. BERT is
the latest sentence embeddings generator. BERT works in a bidirectional way, while USE
and LSTM-Autoencoder work unidirectionally.
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same values. The fast growth of unsupervised learning methods, where autoencoders find
many applications, is responsible for their current prominence.

It comprises an encoder unit buried layer and a decoder unit in its basic form. The
encoder aims to convert data input into a lower-dimensional representation known as
code. In addition to dimensionality reduction, the decoding side is learned to reduce
prediction error. An autoencoder is a standard feed-forward neural network that computes
loss function gradients using the backpropagation technique despite its architectural style.
Only one class of observations can be used to train an autoencoder, i.e., the rich in training
cases non-fraudulent class. This model will learn to recreate typical user actions with low
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reconstruction and high reconstruction errors for fraudulent, unknown activities. One
technique to employ an autoencoder in a multi-class classification issue is to train several
one-class autoencoders and then stack them at the end. After the first training step is
completed, a second classifier is created on top of it, utilizing prediction mistakes as input
and genuine labels as output.

The encoder and the decoder are the two pieces of the autoencoder. The encoder
learns to understand the input and compress it to a bottleneck layer-defined internal repre-
sentation. The decoder reproduces the input using the encoder’s output (the bottleneck
layer). We only maintain the encoder once the autoencoder has been taught, and we utilize
it to compress input samples to vectors produced by the bottleneck layer. Figure 6 shows
the LSTM-based autoencoder architecture. The middle block of “encoded representation”
illustrated is the embeddings concatenated with BERT and USE model. Instead of using a
bottleneck layer the same size as the input, we would not compress the input’s input in
this initial autoencoder. This should be a simple problem that the model will learn almost
completely, and it will be used to ensure that our model is appropriately implemented.
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3.2. Universal Sentence Encoder (USE)

Text is encoded into high-dimensional vectors using the universal sentence encoder,
which may be used for text classification, semantic similarity, clustering, and other natural
language applications.

The model is geared for material that is longer than a word, such as sentences, phrases,
or short paragraphs. It is trained on various data sources and tasks to dynamically
accommodate a wide range of natural language comprehension tasks. The input is a
512-dimensional vector, and the output is a variable-length English text. The outcomes
of applying this model to the STS benchmark for semantic similarity may be observed
in the sample notebook. A deep averaging network (DAN) encoder is used to train the
universal-sentence-encoder model.

On a high level, the goal is to create an encoder that can summarize every text into
a 512-dimensional embedding. We utilize the same embedding to tackle various tasks
and update the phrase embedding based on the mistakes it makes. Because the same
embedding must do several generic tasks, it will only capture the most useful information
while ignoring the noise. The hope is that this will lead to a general embedding that can
be applied to a wide range of NLP tasks, including relatedness, clustering, paraphrase
detection, and text categorization.

There are variants in the universal sentence encoder—transformer encoder and deep
averaging network.
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In this variation, the transformer encoder employs the encoder component of the
original transformer construction. Six stacked transformer layers make up the architecture.
A self-attention module is included in each layer, followed by a feed-forward network.
The self-attention process considers the word order and the surrounding context when
constructing each word representation. To account for the variation in sentence length, the
output context-aware word embeddings are added element by element and divided by
the square root of the sentence length. As an output sentence embedding, we receive a
512-dimensional vector.

In the deep averaging network, the encoder is based on the design Iyyer et al. [48].
First, the embeddings for all words and bi-grams in a phrase are averaged. The data are
then sent into a 4-layer feed-forward deep DNN to produce a 512-dimensional phrase
embedding as an output. During training, the embeddings for words and bi-grams are
learnt. Figure 7 shows the different variations of the USE model.
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In the transfer encoder, because of its complicated design, this encoder provides
greater accuracy on downstream jobs but uses more memory and computation resources.
Moreover, because self-attention has a temporal complexity that rises with sentence length,
the compute time scales drastically. However, it is just slightly slower for short phrases.
On the other hand, the deep averaging network has somewhat lower accuracy than the
transformer type but has a much faster inference time. The computing time is linear in
terms of the input sequence length because we are only doing feed-forward operations.

3.3. BERT

BERT is a self-supervised pre-training approach developed and presented by Google
that learns to predict purposely hidden (masked) text parts. BERT is based on the architec-
ture of transformers. The research team from BERT-base defines BERT as “BERT stands
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for bidirectional encoder representations from transformers [49]. It is designed to pre-train
deep bidirectional representations from the unlabeled text by jointly conditioning the left
and right context. As a result, the pre-trained BERT model can be fine-tuned with just one
additional output layer to create state-of-the-art models for a wide range of NLP tasks”.

Previously, natural processing language models were unidirectional, such as GloVe
and Word2Vec [50]. They could only move the context window to understand the context
in one direction—a sliding window of “n” words (either right or left of a target word) to
grasp the context of the target word. BERT, however, can work in both directions. This
means the BERT transformers can move the sentences right and left in both directions
to fully understand the target word’s context. In BERT-base architecture, 12 layers of
encoders are stacked together. Because BERT’s goal is to develop a language model, just
the encoder approach is necessary. It creates a 768-dimensional embedding. In terms
of learning, it contains two primary components: “masked language modelling” (MLM)
and “next sentence prediction” (NPS). Masked LM (MLM) enables bidirectional training
in previously difficult-to-train models. This attribute allows the model to infer a word’s
context from its surroundings (left and right). In the training phase, NPS is employed.
The training method is to feed the model pairs of sentences and learn to predict whether
the second sentence in the pair is the following sentence in the original text. During
training, 50% of the inputs are a pair in which the second sentence is the sentence after
it in the original text, while the other 50% are random sentences from the corpus. The
first sentence and the random sentence will be separated. It should be emphasized that
BERT-base is a pre-trained model based on a 2500 million word Wikipedia corpus. Figure 8
illustrates the architecture diagram of the BERT-base as described by the creator of the BERT
from Google.
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4. Experimental Results

To assure the model’s effectiveness, we conducted an extensive experiment over
the three publicly available social networking datasets, Self-Annotated Reddit Corpus
(SARC) [18], Twitter dataset [21], and headlines dataset [25].

The model was constructed on the Google TensorFlow platform using the Keras library
on a system with 32 GB RAM and GPU Nvidia Quadro RTX 4000 8GB GDDR6. The dense
layers had a “Relu” activation function and “Adam” optimizer with a learning rate of 10−4.
The loss function utilized was binary crossentropy, as this is a binary classification problem.
These hyperparameters were kept the same across all dense layers for each component.
The dataset was randomly divided into three groups, 80% to train and 20%to test. The final
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findings were recorded when the maximum accuracy level was achieved. Accuracy metric
was employed to stop the network.

4.1. Datasets
4.1.1. Twitter Dataset

A Twitter bot called @onlinesarcasm was used to gather tweets for this dataset. This
dataset includes tweets and answers to them and the user’s mood at the moment of
tweeting. The content is the users’ tweets/retweets, and the context is the replies to the
tweets. 1956 tweets: 895 tweets were acknowledged as sarcastic by their authors, and
1061 were acknowledged as non-sarcastic [21].

4.1.2. SARC Dataset

SARC 2.0, a self-annotated Reddit corpus dataset, comprises comments from Reddit
forums. Users’ sarcastic remarks, which are with the s token to indicate sarcastic intent,
are deleted. We utilize only the original remark in our studies, with no parent or child
comments. In our studies, we utilized the “Main Balanced” and “Political” dataset versions,
with the latter including sole comments from the political subreddit [18].

4.1.3. Headline Dataset

This news headlines dataset is collected from two news websites: Onion and Huffpost.
The onion has sarcastic versions of current events, whereas Huffpost has actual news
headlines. Headlines are used as content, and the news article is used as context. It has
26,709 total headlines; 11,725 are sarcastic, and 14,984 are non-sarcastic [25].

4.2. Performance Measure

We calculated Accuracy, Precision, Recall, F1score, AUC, and Matthews Correla-
tion Coefficient (MCC) values to evaluate our model’s performance. Figure 9 illustrates
the confusion matrix. These are the standard performance measure metric for classifica-
tion problems.

Precision (P) = TP/(TP + FP)
Recall (R) = TP/(TP + FN)

Accuracy = TP + TN/(TP + TN + FP + FN)
F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)

mAP =
Q
∑

q=1
AvegP(q)/Q

AUC = Area under the ROC
MCC = (TP ∗ TN − FP ∗ FN)/√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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MCC is statistical correlation value for evaluating models of binary classification. Its
responsibility is to evaluate or quantify the difference between the projected and actual val-
ues. MCC considers all four values in the confusion matrix. A high number of MCC value
indicates that both classes are correctly predicted, even if one class is disproportionately
under- (or over-) represented.

Our models’ performance on the three publicly available datasets is mentioned in
Table 1. The model achieved 83.92%, 90.8%, and 92.80% accuracy scores on SARC, headlines,
and Twitter datasets.

Table 1. Performance metric of the proposed models on three datasets.

Dataset SARC Headlines Twitter

Models Acc. Prec. Recall MCC Acc. Prec. Recall MCC Acc. Prec. Recall MCC

Auto-Encoder 80.91% 0.81 0.8 0.66 89.75% 0.9 0.88 0.8 91.89% 0.92 0.89 0.85
USE + Auto-Encoder 82.46% 0.82 0.82 0.67 89.90% 0.91 0.86 0.81 92.32% 0.93 0.92 0.85

BERT + Auto-Encoder 82.42% 0.83 0.81 0.67 90.35% 0.91 0.88 0.81 92.40% 0.94 0.91 0.85
USE + BERT +
Auto-Encoder

(Proposed)
83.92% 0.83 0.85 0.68 90.81% 0.92 0.912 0.81 92.80% 0.95 0.91 0.86

The final model design and selection of sentence embeddings were finalized based
on the ablation study. Various combinations of sentence-embedding models were experi-
mented. In all the combinations of mixing models, the uniformity of the parameters was
maintained. Similar pre-processing steps were considered. All the various combinations
were validated against all datasets. The generic parameters such as activation function,
optimizer, loss function, and learning rate were similar in all model combinations. Uti-
lizing the combination of various sentence models experimented in the step-up process,
all three datasets have balanced categories of both classes. When the dataset is balanced,
the accuracy metric plays a better role in model selection. Table 1 details the performance
results of various model combinations on the three datasets. We observed that employing
only the autoencoder was not fruitful and led to lower accuracy. Using BERT or USE
and autoencoder improved results, but all three throughputs’ combinations are the best
performance metrics.

The performance measure is better than other previous research on sarcasm detection.
Tables 2–4 compare the proposed model results with previous researchers’ frameworks on
SARC, Twitter, and headlines datasets, respectively.

Table 2. Performance comparison of SARC dataset.

Models Accuracy Precision Recall F1

CASCADE [36] 74.00% - - 0.75
SARC [18] 77.00% - - -

Elmo-BiLSTM [37] 79.00% - - -
RCNN-RoBERTa [29] 79.00% 0.78 0.78 0.78
Multi-Head Attn [26] 81.00% - - -

Proposed Model 83.92% 0.83 0.85 0.84

Table 3. Performance comparison of the Twitter dataset.

Models Accuracy Precision Recall F1

Sarcasm Magnet [21] - 0.90 0.89 0.90
Sentence-level Attn [22] 74.90% 0.749 0.75 749

Self Matching Netwk [23] 74.40% 0.763 0.725 0.744
A2Text-Net [24] 80.10% 0.83 0.802 0.801

Multi-Head Attn [26] 81.20% 0.809 0.818 0.812
Proposed Model 92.80% 0.95 0.91 0.93
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Table 4. Performance comparison of headlines dataset.

Models Accuracy Precision Recall F1

Hybrid [25] 89.70% - - -
A2Text-Net [24] 86.20% 0.863 0.862 0.862

Multi-Head Attn [26] 91.60% 0.919 0.918 0.918
Proposed Model 90.81% 0.92 0.911 0.915

The SARC dataset, which is the largest dataset among the three datasets, has comments
from the Redditt websites. From Table 2, we observe that previous scholars primarily used
attention mechanisms and LSTM/Bi-directional LSTM in their research [18,27,29,52–54].
Figure 10 shows the confusion matrix of the results obtained on SARC dataset. Figure 11
shows the accuracy comparison chart. Our suggested model uses the BERT-base, which
the developers of the BERT-base have demonstrated to be superior to LSTM/Bi-LSTM.
Second, Reddit features both reddit and subreddit comments; thus, preceding statements
and prior sentences must be interpreted in context. This is not possible with LSTM since it
can only forecast the future/forward and not the past/backward. As a result, overfitting
is an issue for LSTM. Bi-LSTM, on the other hand, allows for learning from previous and
future sequences. However, with Bi-LSTM, the context must be accurately understood;
otherwise, the classification will be incorrect. BERT-base, which functions similarly to
a transformer, is bidirectional, as is the encoder stack, which performs better in context.
BERT-base is also trained set on an extensive corpus with the diverse domain. Thus, our
proposed model has better accuracy than previous models that employed LSTM. One of
the models utilized by our proposed hybrid model employs BERT-base, which is further
fine-tuned with autoencoders.
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Over the Twitter datasets, an attention mechanism has been employed in most of
the previous research [22,23,27,55,56]. Table 3 shows the detailed comparison. Figure 12
shows the confusion matrix results obtained on Twitter dataset. Figure 13 shows the
accuracy comparison chart. The attention mechanism is well suited to concentrating on a
certain word or sentence. Twitter allows for shorter comments and more use of slang and
abbreviation. Because each tweet is unique, the focus cannot be narrowed down. The usage
of slang and acronyms may wreak havoc on the attention system. Our proposed model
includes an LSTM-based autoencoder that is fine-tuned during the pre-training phase.
LSTM better serves short comments/tweets with fine-tuned. The results are relatively
comparable on various combinations in all three sentence embeddings models. This is due
to the LSTM-based autoencoder, which uses words and performs better on short phrases,
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yielding superior accuracy across the Twitter dataset. As a result, the suggested algorithm
classifies brief tweets accurately on average, depending on criteria.
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Over the headlines dataset the proposed model has very good precision and re-
call values compared to other models. Table 4 provides the detailed comparison results.
Figure 14 shows the confusion matrix for Headlines dataset. Figure 15 shows the accuracy
comparison chart. Here the accuracy is at par with other previous models because of the
range of headlines. There are no prior or subsequent phrases in news headlines, making
it difficult to discern the context. Each news headline is unique and can even be caustic.
Because no context is associated with the forward and backward sentence embeddings,
BERT-base and USE may not operate well with the headlines dataset. The LSTM per-
forms better in this case in recognizing the pattern of specific words used in the headlines.
As a result, the precision of our suggested model is comparable to that of other recent
study models.
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Figure 16 illustrates the average precision (mAP) information on the three datasets.
The area between the precision-recall graphs provides the information on AP. We observe
that the AP on SARC datasets is the lowest.
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5. Conclusions

This research paper offers a hybrid model for sarcasm detection combining sentence-
based embeddings and autoencoder techniques. The model employs LSTM autoencoder,
USE, and BERT-base sentence embedding architecture. The embedding from each technique
is learned through the dense layers, and classification probabilities are projected. These
projected probabilities are passed to SoftMax for final classification. The framework is
universal and performs well on diverse content types. The model is evaluated on real-world
social media platforms based on publicly available datasets SARC, headlines, and Twitter.
The accuracy achieved by the model is higher than previously state-of-art frameworks in
sarcasm detection. The accuracy score of 83.92%, 90.8%, and 92.80% is obtained on the
SARC, headlines, and Twitter datasets. The better accuracy is attributed to the utilization
of multiple sentence embedding techniques covering various dataset types and fine-tuning
autoencoders that balance out the limitations of each technique individually. The model
can be used by various corporations, social media mining experts, and fact-checking people
to weed out sarcastic comments from the large corpus. The sentiment analysis and opinion
mining results will improve after the sarcastic comments are out. There are other linguistic
types such as mockery, irony, and pun. These tweets with these language types of sentences
can be investigated for further research. Moreover, there must be an improvement over
the headline’s dataset. A more evolutionary technique such as a genetic algorithm can be
looked for further research.
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