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Abstract: Malignant lymphoma is one of the types of malignant tumors that can lead to death. The
diagnostic method for identifying malignant lymphoma is a histopathological analysis of lymphoma
tissue images. Because of the similar morphological characteristics of the lymphoma types, it is
difficult for doctors and specialists to manually distinguish the types of lymphomas. Therefore,
deep and automated learning techniques aim to solve this problem and help clinicians reconsider
their diagnostic decisions. Because of the similarity of the morphological characteristics between
lymphoma types, this study aimed to extract features using various algorithms and deep learning
models and combine them together into feature vectors. Two datasets have been applied, each
with two different systems for the reliable diagnosis of malignant lymphoma. The first system was
a hybrid system between DenseNet-121 and ResNet-50 to extract deep features and reduce their
dimensions by the principal component analysis (PCA) method, using the support vector machine
(SVM) algorithm for classifying low-dimensional deep features. The second system was based on
extracting the features using DenseNet-121 and ResNet-50 and combining them with the hand-crafted
features extracted by gray level co-occurrence matrix (GLCM), fuzzy color histogram (FCH), discrete
wavelet transform (DWT), and local binary pattern (LBP) algorithms and classifying them using a
feed-forward neural network (FFNN) classifier. All systems achieved superior results in diagnosing
the two datasets of malignant lymphomas. An FFNN classifier with features of ResNet-50 and
hand-crafted features reached an accuracy of 99.5%, specificity of 100%, sensitivity of 99.33%, and
AUC of 99.86% for the first dataset. In contrast, the same technique reached 100% for all measures to
diagnose the second dataset.

Keywords: DenseNet-121; ResNet-50; FFNN; lymphomas; SVM; LBP; GLCM; FCH; DWT

1. Introduction

Malignant lymphoma is considered to be one of the most dangerous and complex
cancers that lead to death. The exposure of lymphocytes to malignant lesions leads to the
formation of malignant tumors [1]. Lymphoma accounts for 50% of malignant blood dis-
eases [2]. According to a World Health Organization (WHO) report, there are approximately
100 types of malignant lymphoma. The most common types of malignant lymphoma are
mantle cell lymphoma (MCL), follicular lymphoma (FL) and chronic lymphocytic leukemia
(CLL) [3]. The most common symptom of the FL type is the emergence of a mass or
many accumulated masses. This is due to the accumulated lymphoma cells leading to the
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emergence of a tumor in the neck area or above the collar bones and can develop in the
armpits and thighs [4]. The MCL type develops in the mantle that is part of the lymph
nodes and affects B cells. B cells begin to grow in an abnormal way, forming a mass of
lymph nodes. These nodes appear in the area where they arise and cause problems within
the lymphatic system. The MCL is a non-Hodgkin lymphoma of the B-cell. This type
begins with the enlargement of the lymph nodes and spreads to the bone marrow, liver,
and digestive system. The causes of MCL are unknown and have an abnormal genetic
mutation; scientists do not know the cause of this mutation [5]. The CLL type is a leukemia
that begins in the white blood cells; it is due to a disorder of the bone marrow and an
inability to appropriately produce white blood cells. CLL slowly grows, and the affected
person may not have any symptoms for years. However, the CLL cells begin to appear
in other parts of the body, such as in the liver, lymph nodes, and spleen [6]. Due to the
many types of malignant lymphomas, it is difficult for pathologists to determine the type of
lymphoma. Microscopic images of biopsies taken from the patient are considered to be the
gold standard for determining the type of lymphoma and for determining the appropriate
treatment [7]. The histopathological diagnosis of malignant lymphoma is made to infer
the type of malignant lymphoma and is performed using a slide stained with hematoxylin
and eosin (H&E). A specific immunohistochemical (IHC) set is selected to identify the
type of malignant lymphoma. Finally, a diagnosis of the malignant lymphoma is made by
selecting the items stained by IHC. An examination of the characteristics and patterns of
the malignant lymphoma subtype can then be conducted [8]. However, manual diagnosis
has drawbacks. First, the long-term observation of microscopic histological images causes
visual fatigue, which can cause a misdiagnosis. Secondly, there is a shortage of skilled
doctors who have a good ability to analyze and efficiently diagnose images. Third, the
differing opinions of doctors lead to inconsistent diagnoses. Therefore, there is an urgent
need to achieve diagnoses using automated techniques to address the above challenges.
Recently, deep learning techniques have been found superior in extracting deep features
from histopathological images and classifying them with high efficiency. Deep learning
requires multiple layers for processing specific tasks; it has been applied to perform specific
tasks in many fields, including in medical image diagnoses [9]. This study aimed to develop
systems that could predict the type of malignant lymphoma from histopathological samples
stained with H&E. The generalizing power of a system depends on the training dataset,
and the generalizability of a system often deteriorates when the dataset is small. We aimed
to improve the ability of the system so that it can be generalized when it is trained on a
small dataset by applying the data augmentation technique. The augmentation works to
augment the training dataset. In this research, many different systems were developed to
diagnose histopathological images of malignant lymphomas. This study aimed to extract
features using deep learning and classify them using the SVM algorithm. A system has
also been herein developed to diagnose malignant lymphoma datasets using the FFNN
classifier according to mixed features, which were extracted using the CNN method with
hand-crafted features.

The main contributions of this study are as follows:

• The enhancement of histopathological images of lymphomas and increase of the
contrast of affected areas.

• The implementation of a hybrid technology that consists of using deep learning models
to extract deep features, deleting the classification layers, and replacing them with the
SVM algorithm for feature classification.

• A satisfactory and reliable diagnosis using an FFNN classifier according to mixed
features of deep learning combined with hand-crafted features.

• A reduction of the high-dimensional features and determination of the most important
features using the PCA algorithm

The rest of the work is organized as follows:
Section 2 summarizes some previous studies. Developing methodologies for analyzing

and diagnosing histopathological images of lymphomas in Section 3. Summarizing the per-
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formance of the systems in Section 4. Discussing and comparing the systems’ performance
for diagnosing two sets of malignant lymphoma data in Section 5. Concluding the work
in Section 6.

2. Related Work

This section discusses some of the previous studies that are relevant to the diagnosis
of malignant lymphoma. Each researcher aimed to achieve satisfactory results using
different methodologies.

Miyoshi et al. proposed a deep learning method for the diagnosis of images of
malignant lymphomas. The dataset was randomly divided with magnification factors
of ×5, ×20, and ×40. The system achieved a 94% accuracy with ×5 images, 93% with
×20 images, and 92% with ×40 images [10]. Zhang et al. conducted a comparison of
the performance of a BP network and optimized neural network with the GA-BP genetic
method. The dataset was optimized before being fed into the systems, and the GA-BP
network performed better than the BP network when classifying histopathological images
of malignant lymphoma [11]. Hashimoto et al. applied a deep learning model according
to multi-instance learning to diagnose malignant lymphoma subtypes. They measured
the probability density ratio of IHC by determining the character of the H&E-stained
slides and concluded that histopathological images in typical cases could be diagnosed
with better accuracy than atypical ones [12]. Stefancu et al. discussed the ability of
the surface-enhanced Raman scattering (SERS) method in diagnosing three subtypes of
malignant lymphomas. The method distinguished species based on a specific signal for
the DNA extracted from the lymph node biopsy sample. The method achieved an AUC
of 70% when distinguishing between normal and malignant DNA, as well as an overall
accuracy of 94.7% [13]. Sheng et al. presented the R-CNN model to diagnose the blood
cell dataset. The R-CNN model was used to detect and differentiate malignant lymphoma
from blast cells [14]. Gaidano et al. proposed four systems of machine learning to classify
B-NHL lymphomas from more than nine clinical entities. All algorithms achieved an
average accuracy of 92.68%, an average specificity of 98.77%, and an average sensitivity
of 88.54% [15]. Steinbuss et al. presented the EfficientNet model for the classification of
node and B-cell lymphomas. The network achieved an accuracy of 95.56% when testing the
system with another dataset [16]. Ganguly et al. applied the pre-trained ResNet-50 model
by adding layers to the model. The authors changed improvement options to diagnose the
pathogenic tissue dataset for malignant lymphomas. The diagnostic accuracy of the CNN
model depends on the structure and options for improvement of the CNN structure [17].
Li et al. presented multiple CNN models to diagnose a collection of textile photos of
the B-cell lymphatics. B-cell lymphoma images were analyzed from three hospitals by
artificial intelligence models. The technical contrast of pathological tissue slices reduced the
system performance when testing new samples [18]. Syrykh et al. developed the Bayesian
Neural Networks model to analyze stained slices and hematoxylin slices to achieve a good
accuracy; the network has achieved good results in the diagnosis of small lymphomas [19].
Lisson et al. conducted a comparison of deep and machine learning to detect a type of
malignant lymphoma, MCL. Three deep learning and two machine learning have been
used. The improved CNN 3D network has had the best performance in the diagnosis of
pathological textile images of MCL, achieving a resolution of 70% [20].

Our study developed new systems for hybrid feature extraction using deep learning,
combining them with hand-crafted features to form feature vectors, where we then fed
them into the FFNN network and achieved promising results.

3. Materials and Methods

The analysis and interpretation of the images of the two datasets of malignant lym-
phomas were performed to distinguish between their types. The images were enhanced,
and then the images of the two datasets were inputted into two different systems. The first
system was a hybrid system for extracting features using the CNN method, then classifying
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it using the SVM algorithm. The second system was to extract the hand-crafted features,
merging them with the deep features of deep learning models and then sending them to
the FFNN classifier to classify them with high efficiency, as shown in Figure 1. The PCA
has been executed to reduce the high features.

Figure 1. The methodological framework for the early diagnosis of the images of the two lymphoma
malignant tumor datasets.

3.1. Dataset

The systems evaluated histopathological images of the two datasets of malig-
nant lymphomas.

3.1.1. First Dataset

The systems proposed in this study evaluated histopathological images of malignant
lymphomas; for the first dataset that were taken as biopsies and stained with H&E. The
dataset was obtained from Kaggle, which consisted of 15,000 images equally divided into
three classes of malignant lymphoma: CLL, FL, and MCL. All dataset images were in the
JPEG file format with a size of 512 × 512 pixels. Figure 2a shows samples of all classes of
the first dataset [21].

3.1.2. Second Dataset

The systems proposed in this study evaluated histopathological images of malignant
lymphomas; for the second dataset, the data used were H&E-stained biopsies. The dataset
was obtained from various sites by several pathologists. The second dataset consisted of
374 histopathological images divided into three types of lymphomas, 113 histology images
of CLL, 139 histology images of FL, and 122 histology images of MCL. Figure 2b displays a
set of images for all classes of the second dataset [22].
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Figure 2. Some samples of images of malignant lymphoma: (a) First dataset and (b) Second dataset.

3.2. Enhancing Histopathological Images

Histopathological images contain artifacts and low contrast between the affected and
adjacent macular areas; It also contains dark spots and is stained with H&E and other
chemical solutions. Thus, there is a resultant deterioration in the effectiveness of CNN
models; CNN models require clear, well-formatted images. In this study, the average RGB
color space and the scale of each image were adjusted to augment its consistency [23]. Then,
the contrast of the spots of interest was increased by the contrast limited adaptive histogram
equalization (CLAHE) algorithm. The CLAHE algorithm increases the brightness of dark
spots through a fair distribution of illuminated pixels, which greatly improves the visibility
of the edges of spots of interest and increases the local contrast of the histopathological im-
ages of malignant lymphomas. The mechanism of CLAHE is performed by taking the aim
pixel and replacing it with neighboring pixels according to the derivative transformation of
the CLAHE method [24]. When the value of the aim pixel is greater than the neighboring
pixels’ values, the algorithm works to reduce the contrast. In comparison, when the value
of the central pixel is less than the value of the neighboring pixels, the algorithm increases
the contrast. Thus, histopathological images are improved, and they become ready to be
fed into CNN models. Figure 3 shows samples from the two malignant lymphoma datasets
after we performed the optimization. We would like to make it clear that the Figure 2
images are the same as in Figure 3 after enhancing them.

Figure 3. Some samples of histopathological images of malignant lymphomas after enhancement:
(a) First dataset and (b) Second dataset.
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3.3. Approach to Integrating CNN with Machine Learning

Deep learning models require a huge dataset to train them to achieve high diagnostic
efficiency. There are several reasons for using the hybrid technique, which are as follows:
first, deep neural networks consume much time to train a dataset; second, deep neural
networks require high specifications and expensive computers to classify a dataset; third,
deep neural networks do not reach satisfactory results for diagnosing histopathological
images of a malignant lymphoma dataset. Therefore, the hybrid approach solves these
challenges [25]. The basic idea of the hybrid approach is to remove the last layers (classi-
fication layers) from the CNN method and replace them with the SVM algorithm. Thus,
this approach possesses the high potential for a diagnosis within a short time. The hybrid
approach consists of deep learning models for feature extraction and an SVM algorithm for
receiving feature vectors from the PCA algorithm, classifying them with high accuracy. The
PCA algorithm was applied after the deep learning models to reduce the dimensionality of
features generated by deep learning models [26].

3.3.1. Deep Feature Extraction

Deep learning networks are used in many fields, including in health care, to diagnose
medical images. Deep learning models are highly capable of extracting features without
human intervention and contain many layers that are interconnected through neurons.
Each layer performs a specific computational function to perform a special task that extracts
deep features. Each neuron in the input layer receives data and passes them to the hidden
layers. The hidden layers extract features through linear functions [27]. The essential
hidden layers in deep learning networks for extracting features are the convolutional,
auxiliary, and pooling layers, which will be briefly explained.

Convolutional layers: The convolutional layer is the basic building block of CNN
models, and it bears the largest burden in network computations. In this layer, two matrices
are multiplied: one of them is the filter f (t), which is one of the basic parameters in the
convolutional layer; the second matrix is in the part from the image x (t), which is the same
size as the filter as in Equation (1). The size of the filter determines how much it wraps
around the image [28]. The filter slides around the height and width of the image and
produces a representation of a specific part of an image. The filter slides around the image
in certain steps, marked S, which are one of the basic parameters of the convolutional layer.
The zero padding P is one of the convolutional layer’s basic parameters that maintains the
original image’s size. Equation (2) describes the determination of the output size for each
neuron [29]. We assume that the input image size is L × W × D, the filter size is F, the step
amount is S, and the padding is P.

y(t) = (x ∗ f )(t) =
∫

x(a) f (t − a) da (1)

x (t) denotes input, f (t) means the filter, y (t) means output, and a represents the time
that the filter is wrapped around the image.

Output Neurons =
W − K + 2P

S
+ 1 (2)

Pooling layer: The pooling layer is used to reduce the dimensionality of the features
generated by the convolutional layers. Therefore, this layer reduces the computational cost
and weight and speeds up the training process of the dataset. There are two main methods
for this layer, Max and Average Pooling, each with a certain working method. First, in
Max-Pooling, the maximum value is selected from a group of specified values and replaced
by the maximum value, as seen in Equation (3). Second, for the Average-Pooling method,
the average of a specific part of the image is computed and then replaced by the average
value, as seen in Equation (4). Thus, the size of the spatial image is reduced.

z(i, j) = maxm,n=1....k f [(i − 1)p + m; (j − 1)p + n] (3)
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z(i, j) =
1
k2 ∑

m,n=1....k

f [(i − 1)p + m; (j − 1)p + n] (4)

where f means the size of filter, p symbolizes the number of steps, m and n defines the
location of the matrix, and k symbolizes the size of the matrix.

Auxiliary layers work on further improvements, such as the RLU layer. It passes on
positive features and converts negative features to zero. To reduce the computational cost,
CNN models provide a dropout layer by passing a certain amount of features onward in
each iteration. In this paper, the layer was tuned by 50%; this means that the layer passed
50% of the parameters and prevented 50% on each repeat, which doubles the time needed
for the training of the dataset [30].

Thus, the image features from the two malignant lymphoma datasets were extracted using
DenseNet-121 and ResNet-50, and the PCA algorithm reduced the high-dimensional features.

3.3.2. SVM Algorithm

This technique removes the classification layers from the DenseNet-121 and ResNet-50
architectures and replaces them with the SVM algorithm.

SVM is a linear model used for solving linear and nonlinear regression and classifica-
tion problems. The key idea of the SVM algorithm is to produce a hyperplane or line to
separate the dataset into classes. The algorithm receives the dataset’s features and plots
each feature value as a point in the N-dimensional space, where N is the size of the fea-
tures. The algorithm generates many hyperplanes with different margins between classes,
meaning that the SVM will choose the hyperplane (line) with the max-margin between the
classes. The best hyperplane is determined by the locations of the support vectors that are
near the hyperplane [31].

Figure 4 displays the architecture of the hybrid approach to the histopathological
diagnosis of the two lymphoma datasets. DenseNet-121 and ResNet-50 models receive
optimized images and extract features with high dimensions. Therefore, the PCA method
was used to reduce the features and send them to the SVM algorithm for classification.

Figure 4. The infrastructure framework of the hybrid technique for the histological diagnosis of
malignant lymphomas.
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3.4. FFNN with Merging the Features of CNN and Hand-Crafted Features

This section discusses the methodology for classifying images of malignant lym-
phomas by the FFNN classifier based on combining features extracted from DenseNet-121
and ResNet-50 separately using hand-crafted features (extracted using DWT, GLCM, FCH,
and LBP methods).

When fed to the FFNN network with deep features extracted by the CNN models, the
FFNN classifier does not reach satisfactory accuracy. Even when fed to the FFNN network
with hand-crafted features extracted by DWT, GLCM, FCH, and LBP methods, the FFNN
classifier does not reach satisfactory accuracy. Thus, to achieve satisfactory accuracy, the
features of the CNN models were combined with hand-crafted features in the same feature
vectors, and then fed to the FFNN network to classify them with high accuracy.

The basic steps of the methodology were as follows:
First, we optimized the histopathological images of the two datasets, and then fed the

images of the two datasets into the DenseNet-121 and ResNet-50 models, which extract
deep features using convolution layers and reduce feature dimensions using pooling
layers. Both the DenseNet-121 and ResNet-50 models produce 2048 deep features for each
histological image and then store it in vectors of feature; thus, the size in our study became
15,000 × 2048 for the first dataset and 374 × 2048 for the second dataset.

Second, The PCA algorithm was executed to reduce the high features. Thus, the size
of the two datasets after dimensional reduction was 15,000 × 512 for the first dataset and
374 × 512 for the second dataset.

Third, we applied GLCM, FCH, DWT, and LBP algorithms to extract the color, shape,
and texture features.

The GLCM algorithm converts the region of interest (ROI) of the histopathological
image into a gray-level matrix and then extracts texture features. The algorithm works
by collecting spatial information of the area of interest. The algorithm works to check the
spatial relation between the target pixel and neighboring pixels according to the directions
θ and the distance d between the pixel and its neighbors. The ROI has coarse and smooth
regions, where the coarse regions contain pixel values of divergent values. In contrast, the
smooth region has pixels of close (almost similar) values [32]. Thus, the algorithm can find
the coarse texture areas and distinguish them from the soft areas. The GLCM algorithm
produced 13 statistical scales according to the spatial relationships between pixels. Each
scale represents a characteristic of ROI.

The color features are one of the most important features that distinguish which
class each pathological histological image belongs to. Therefore, the FCH method was
used to obtain the color features. The method’s main idea is that it represents the color
in the histogram bin and adopts a fuzzy representation of the colors instead of a binary
representation. Thus, the method distributes each color in a certain histogram bin, then
distributes all the colors contained in the ROI in varied histogram bins. Therefore, the
colors that are similar will be placed into one histogram bin; when two or more colors that
are similar have a different histogram bin, the two colors are classified as different [33].
Finally, the algorithm compares the membership value to find out the similarity of colors
and distributes them in the histogram bin. This algorithm extracted 16 features for each
image of the two malignant lymphoma datasets.

The DWT algorithm was used to analyze the histopathological images by high- and
low-pass filters. The high-pass filters produce detailed parameters for the input image in the
vertical, diagonal, and horizontal directions; each direction extracts three statistical features:
the mean, standard deviation, and variance. Therefore, the high-pass filter produces nine
statistical features. At the same time, approximate parameters are produced through a low-
pass filter, which extracts three statistical features, namely the mean, standard deviation,
and variance. The algorithm extracted 12 statistical features for each histological image of
the two datasets of malignant lymphomas.

The LBP algorithm converted the image into a matrix form to extract the texture
features by measuring the local pixels of the binary texture surfaces with their contrast. The



Electronics 2022, 11, 2865 9 of 22

algorithm size was set to 7 × 7 pixels; the algorithm targeted one pixel in each iteration
and replaced it with a value of 48 close pixels, as shown in Equation (5) of the LBP. The
LBP algorithm compares the gray value of the target pixel (gc) with the gray value of
48 neighboring pixels (gp). Thus, the process continues until all values of the histological
image have been replaced [34].

LBPR,P =

P−1

∑
p=0

s
(

gp − gc
)
2p (5)

where gc means the grey weight of the aim pixel, R denotes the radius of adjoining, gp
means the grey weight of adjoining pixels, and P is the number of adjoining pixels.

Fourth, the hand-crafted features that were extracted using GLCM, DWT, FCH, and
LBP methods were combined into feature vectors so that the size of the two datasets became
15,000 × 244 for the first dataset and 374 × 244 for the second dataset.

Fifth, we combined the low-dimensional features extracted by DenseNet-121 [35] and
ResNet-50 [36] models with the features extracted in the fourth step. Thus, the feature
size of the two datasets became 15,000 × 756 for the first dataset and 374 × 756 for the
second dataset.

Sixth, the features of the two datasets were fed into the FFNN classifier to classify the
images of the two datasets with high accuracy and efficiency.

Figure 5 describes the methodology of the feature fusion approach from several
algorithms and their classification using the FFNN network.

Figure 5. The structure of the fusion features to diagnose histopathological images of malignant lymphomas.
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4. Experimental Results
4.1. Splitting of the Datasets

This study aimed to achieve promising results through the hybrid techniques with
fused features for the histological diagnosis of the two datasets of malignant lymphomas.
The first dataset contained 15,000 histological images of three types of malignant lym-
phomas; we obtained 5000 histological images for the CLL type, 5000 histological images
for the FL type, and 5000 histological images for the MCL type. In contrast, the second
dataset contained 374 histological images of three types of malignant lymphomas, of which
113 were histological images of the CLL type, 139 were histological images of the FL type,
and 122 were histological images of the MCL type. When implementing the proposed sys-
tems, the two datasets were randomly divided into 80% during the training and validation
of the dataset (80:20%) and 20% for testing the accuracy and efficiency of the systems in
making a correct diagnosis. Table 1 shows the split of histological images of the datasets
for all implementation stages.

Table 1. Distribution of the two histological datasets of malignant lymphomas.

Datasets The First Dataset The Second Dataset

Phase Training and Validation
Testing
(20%)

Training and Validation
Testing
(20%)Classes Training

(80%)
Validation

(20%)
Training

(80%)
Validation

(20%)

CLL 3800 800 1000 72 18 23
FL 3800 800 1000 89 22 28

MCL 3800 800 1000 78 20 24

4.2. Augmentation of Data

This section discusses our attempts to resolve the limitations of both the paucity of the
second dataset for malignant lymphomas and the unbalanced dataset. The systems have
been evaluated by two datasets, where the first dataset was balanced and also had a suitable
number of images to train [37]. The second dataset on the other hand had 374 histological
images unevenly distributed among the three types of malignant lymphomas. Therefore,
the second dataset needed to process the insufficient and unbalanced dataset images with
the assistance of a technique that augmented the data. In this paper, the augmentation of
data technique was only applied to the second dataset. Data augmentation technology
artificially increases histological images from the same dataset through image rotation, shift,
flipping, etc. Table 2 describes the improvement of the second dataset images through the
training to solve the problem of overfitting. Note that the balancing of the second dataset
by increasing the images differs from one class to the other.

Table 2. The method for augmenting the histological images and balancing the second dataset for
malignant lymphomas.

Phase Training Phase

Classes CLL FC MCL

Before_aug 72 89 78
After_aug 3600 3649 3666

4.3. Proposed Methods Evaluation Metrics

The systems were evaluated for the diagnosis of two datasets of malignant lym-
phomas by measuring the accuracy, specificity, precision, AUC, and sensitivity described
in Equation (6)–(10). The variables noted in the equations have been obtained from the
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confusion matrix. Each proposed system produces a confusion matrix, which contains
properly categorized samples and improperly categorized samples [38].

Accuracy =
TN + TP

TN + TP + FN + FP
× 100% (6)

Specificity =
TN

TN + FP
× 100 (7)

Precision =
TP

TP + FP
× 100% (8)

AUC =
True Positive Rate
False Positive Rate

(9)

Sensitivity =
TP

TP + FN
× 100% (10)

where TP means histological images of malignant lymphoma that were strictly classified as
malignant lymphoma. TN means a normal histological image that was strictly categorized
as normal. FP means a normal histological, but was misclassified as a malignant lymphoma.
FN means histological images of malignant lymphoma that were incorrectly categorized
as normal.

4.4. Experimental Results of Hybrid Technique

This section discusses the results of the hybrid systems of the deep learning and
SVM methods. After enhancing the histopathological images, they were fed into the two
models, DenseNet-121 and ResNet-50, to extract deep features. Then, the PCA algorithm
was executed to reduce the high features. We removed the classification layers from the
DenseNet-121 and ResNet-50 models and replaced them with the SVM algorithm to classify
deep features after their dimension reduction. This technique is characterized by the high
accuracy and a faster training of the datasets and can be implemented on medium-cost
computers. The performance of the two-hybrid approaches was evaluated using the two
datasets of images of malignant lymphomas.

Table 3 shows the results of the systems for image diagnosis of the two datasets
of malignant lymphomas. The ResNet-50 + SVM network performed better than the
DenseNet-121 + SVM network for both malignant lymphoma datasets. The results of the
two-hybrid systems of the two datasets were as follows: First, their performance with
the first dataset was that the DenseNet-121 + SVM network yielded an accuracy of 97.7%,
specificity of 99.11%, precision of 97.66%, AUC of 98.14% and sensitivity of 97.71%. The
ResNet-50 + SVM network yielded an accuracy of 98.8%, specificity of 99.33%, precision
of 98.66%, sensitivity of 98.7%, and AUC of 98.54%. The performance of the two hybrid
systems with the second dataset was that the DenseNet-121 + SVM network achieved an
accuracy of 96%, specificity of 98%, precision of 96.33%, sensitivity of 95.97%, and AUC of
97.57. In contrast, the ResNet-50 + SVM network achieved an accuracy of 97.3%, specificity
of 98.66%, precision of 97.33%, sensitivity of 97.12%, and AUC of 97.79%.

Table 3. Results for the evaluation of the hybrid approach in diagnosing the two datasets of
malignant lymphomas.

Datasets First Dataset Second Dataset

Metrics DenseNet-121 + SVM ResNet-50 + SVM DenseNet-121 + SVM ResNet-50 + SVM

Accuracy% 97.7 98.8 96 97.3
Specificity % 99.11 99.33 98 98.66
Precision % 97.66 98.66 96.33 97.33

Sensitivity % 97.71 98.7 95.97 97.12
AUC % 98.14 98.54 97.57 97.79
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Figure 6 illustrates the performance of the two systems in diagnosing the malignant
lymphoma datasets.

Figure 6. Presentation of the performance of the hybrid system for diagnosing malignant lymphomas.

Figure 7 summarizes the confusion matrix for the DenseNet-121 + SVM and ResNet-50 + SVM
systems in diagnosing the three types of malignant lymphoma of the first dataset. The
DenseNet-121 + SVM achieved an accuracy of 97.7%, 98.4%, and 97.1% in the classification
of CLL, FL, and MCL (malignant tumors), respectively. In contrast, ResNet-50 + SVM
yielded an accuracy of 98.3%, 99.2%, and 98.8% in the detection of the CLL, FL, and MCL
types, respectively.

Figure 7. The confusion matrix to display the diagnosis of malignant lymphomas of first dataset by:
(a) DenseNet-121 + SVM and (b) ResNet-50 + SVM.

Figure 8 describes the confusion matrix for DenseNet-121 + SVM and ResNet-50 + SVM
systems in diagnosing the three types of malignant lymphoma of the second dataset.
DenseNet-121 + SVM achieved an accuracy of 95.7%, 96.4%, and 95.8% in the classi-
fication of the CLL, FL, and MCL types (malignant tumors), respectively. In contrast,
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ResNet-50+SVM yielded an accuracy of 91.3%, 100%, and 100% in the detection of the CLL,
FL, and MCL types, respectively.

Figure 8. The confusion matrix displaying the diagnosis of malignant lymphomas of the second
dataset by: (a) DenseNet-121 + SVM and (b) ResNet-50 + SVM.

4.5. Results of FFNN Network in Merging the Features of CNN with Hand-Crafted Features

This section discusses the performance of the FFNN classifier in diagnosing the
histopathological images of two malignant lymphoma datasets according to the features
extracted, separately using the DenseNet-121 and ResNet-50 models and combining them
with hand-crafted features. Fusing features that were extracted using deep learning and
hand-crafted features is a novel technique. The 2048 features were extracted from each of
the DenseNet-121 and ResNet-50 models, and it is worth noting that the features were high
dimensional. Therefore the PCA algorithm was used to reduce the high dimension features.
Thus, the features extracted from both DenseNet-121 and ResNet-50 were 512 deep features.
There were 244 hand-crafted features. Finally, all of the features were combined into the
feature vectors, which formed 756 features for each histological image. The 15,000 × 756
feature vectors for the first dataset and 374 × 756 for the second dataset were fed into the
FFNN classifier for classification. The following section discusses some tools for evaluating
the FFNN of the two malignant lymphoma datasets.

4.5.1. Error Histogram

In this work, the performance of the FFNN classifier for the diagnosis of two lym-
phoma datasets was evaluated using the error histogram tool. This tool measures the
error rate generated between the output and target values during the training, testing, and
validation phases over many iterations. The classifier produces many colors that represent
the stages of the split of the dataset, where the training phase is represented by blue; red
is during the testing of new samples and green is used during the validation stage when
adjusting the weights and parameters. Figure 9 shows the classifier’s performance by error
histogram in the diagnosis of the first dataset of malignant lymphomas. When classify-
ing the hybrid of DenseNet-121 and hand-crafted features, the FFNN classifier reached
its best evaluation at 20 bins that were represented between the values of −0.9386 and
0.9388. The FFNN classifier also reached its best evaluation for the hybrid of ResNet-50 and
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hand-crafted features at 20 bins, which were represented between the values of −0.9479
and 0.9479.

Figure 9. A display of the error histogram evaluating the first dataset based on mixed features in
(a) DenseNet-121 and hand-crafted features and (b) ResNet-50 and hand-crafted features.

In contrast, listed here is the performance of the FFNN classifier when diagnosing the
second dataset of malignant lymphomas. When classifying the hybrid of DenseNet-121
and hand-crafted features, the FFNN classifier reached its best evaluation at 20 bins, which
were represented between values of −0.9488 and 0.9488. The FFNN classifier also reached
its best evaluation when classifying the hybrid of ResNet-50 and hand-crafted features at
20 bins, which were represented between −0.06809 and 0.06809.

4.5.2. Validation and Gradient

In this work, the performance of the FFNN classifier for the diagnosis of the two
lymphoma datasets was evaluated using the validation and gradient algorithm. The tool
measures the error between the expected and actual values across the training epochs of the
dataset. Figure 10 shows the classifier’s performance, analyzed using the validation and
gradient algorithm, for the diagnosis of the first dataset of malignant lymphomas. When
classifying the hybrid of DenseNet-121 and hand-crafted features, the FFNN classifier
reached its best evaluation with a validation of 34 at epoch six and gradient value of
0.0015631. The FFNN classifier also reached its best evaluation when classifying the hybrid
of ResNet-50 and hand-crafted features with a validation of 305 at epoch six and gradient
value of 0.0074258.

In contrast, listed here are the results for the diagnosis of the second dataset of malig-
nant lymphomas; when classifying the hybrid of DenseNet-121 and hand-crafted features,
the FFNN classifier reached its best evaluation with a validation of 0 at epoch 35 and a
gradient value of 5.4382 × 10−7. The FFNN classifier also reached its best evaluation when
classifying the hybrid of ResNet-50 and hand-crafted features at a validation of 3 at epoch
34 and a gradient value 9.5633 × 10−7.
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Figure 10. A display of the validation and gradient analysis for evaluating the first dataset based on
mixed features of (a) DenseNet-121 and hand-crafted and (b) ResNet-50 and hand-crafted.

4.5.3. Best Performance of Validation

In this study, the performance of the FFNN classifier in the diagnosis of the two sets
of lymphoma data was evaluated using mean squared error, or cross-entropy. This tool
measures the error rate generated between the predicted and actual output during the
training, testing, and validation phases across multiple epochs. The classifier produces
several colors representing the dataset’s stages, where blue represents the training phase,
red represents the testing of new samples, and green represents the validation phase, when
weights and parameters are being adjusted. Figure 11 shows the classifier’s performance by
mean squared error for the diagnosis of the first dataset of malignant lymphomas. When
classifying the hybrid of DenseNet-121 and hand-crafted features, the FFNN classifier
reached its best evaluation when it reached a minimum error of 0.0077946 at epoch 28. The
FFNN classifier also reached its best evaluation when classifying the hybrid of ResNet-50
and hand-crafted features when it reached a minimum error of 0.00041545 at epoch 299.

Figure 11. A display of the best performance in the evaluation of the first dataset based on mixed
features in: (a) DenseNet-121 and hand-crafted and (b) ResNet-50 and hand-crafted.
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In contrast, listed here is the performance of the FFNN classifier for the diagnosis of the
second dataset of lymphoma malignancies. When classifying the hybrid of DenseNet-121
and hand-crafted features, the FFNN classifier reached its best evaluation when it reached
a lowest error of 4.6673 × 10−7 at epoch 35. The FFNN classifier reached its best evaluation
when classifying the hybrid of ResNet-50 and hand-crafted features when it reached a
lowest error value of −05-76183e at epoch 31.

4.5.4. Confusion Matrix

The confusion matrix is a vital technique for evaluating a network’s performance. This
section summarizes the results of the FFNN classifier through its production of a confusion
matrix. It is the same quaternary matrix that contains all histological image samples for
one of the malignant lymphoma datasets. Correctly diagnosed histological images are
represented on the primary diameter, while incorrectly diagnosed histological images are
above and below the primary diameter. Class 1 represents the CLL lymphoma type, Class
2 represents the FL lymphoma type, and Class 3 represents the MCL lymphoma type.
Figure 12 summarizes the results of the FFNN classifier for the diagnosis of the histological
images of the first dataset of malignant lymphomas. The FFNN classifier with the hybrid
of DenseNet-121 and hand-crafted features yielded an accuracy of 99.3%. When fed with
the hybrid of ResNet-50 and hand-crafted features, the classifier’s accuracy was 99.5%.

Figure 12. The confusion matrix for the FFNN classifier in the classification of the images of the first
dataset based on mixed features: (a) DenseNet-121 and hand-crafted; (b) ResNet-50 and hand-crafted.

Figure 13 summarizes the results of the FFNN classifier in the diagnosis of the histo-
logical images of the second dataset of malignant lymphomas. The FFNN classifier with the
hybrid of DenseNet-121 and hand-crafted features reached an accuracy of 98.7%. When fed
with the hybrid of ResNet-50 and hand-crafted features, the classifier yielded an accuracy
of 100%.
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Figure 13. The confusion matrix for the FFNN classifier in the classification of images of the second
dataset based on mixed features: (a) DenseNet-121 and hand-crafted; (b) ResNet-50 and hand-crafted.

Table 4 summarizes the results of the FFNN classifier with the fused features of
several algorithms with the deep learning models. This technique achieved superior results
in terms of an accurate and reliable diagnosis of the malignant lymphoma types. The
FFNN filter achieved the following results: First, the performance results of the FFNN
classifier with the first dataset: when extracting the hybrid of DenseNet-121 and hand-
crafted features, the system yielded an accuracy of 99.3%, specificity of 99.67%, precision of
99.43%, AUC of 99.74% and sensitivity of 99.1%. When the classifier was fed the hybrid of
ResNet-50 and hand-crafted features, the system reached an accuracy of 99.5%, specificity
of 100%, precision of 99.65%, AUC of 99.86%, and sensitivity of 99.33%.

Table 4. FFNN classifier performance results with the hybrid features of the two datasets of malig-
nant lymphomas.

Datasets First Dataset Second Dataset

Hybrid Features DenseNet-121 and
Hand-Crafted

ResNet-50 and
Hand-Crafted

DenseNet-121 and
Hand-Crafted

ResNet-50 and
Hand-Crafted

Accuracy % 99.3 99.5 98.7 100
Specificity % 99.67 100 99.31 100
Precision % 99.43 99.65 98.65 100

Sensitivity % 99.1 99.33 98.74 100
AUC % 99.74 99.86 99.12 100

Second, the performance results of the FFNN classifier with the second dataset: when
feeding the classifier with the hybrid of DenseNet-121 and hand-crafted features, the
system reached an accuracy of 98.7%, specificity of 99.31%, precision of 98.65%, AUC of
99.12%, and sensitivity of 98.74%. When the classifier was fed the hybrid of ResNet-50
and hand-crafted features, the system yielded an accuracy of 100%, specificity of 100%,
precision of 100%, AUC of 100%, and sensitivity of 100%.
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Figure 14 displays the results of the FFNN classifier when fed with the mixed features
extracted from DenseNet-121 and ResNet-50 models with the features of shape, texture,
and color.

Figure 14. The demonstration of the FFNN performance with the hybrid features in the detection of
malignant lymphomas.

5. Discussion and Comparison of Performance

This study dealt with modern systems and was highly efficient in the diagnosis of
histopathological images to distinguish between the types of malignant lymphomas. There
were some challenges that we faced, which were: the lack of histopathological images
of the dataset and the imbalance of the classes within the dataset. We overcame these
challenges by applying the data augmentation method. Adding hemoxylin and eosin
(H&E) to tissue biopsy presents a challenge to artificial intelligence-based techniques. This
challenge was solved by using image optimization methods. There is also a similarity
between the histopathological images and some types of malignant lymphoma, which
represents a challenge to artificial intelligence techniques. This challenge was solved by
extracting the features in several methods and fusing them into the same feature vectors.

The histological images contain some artifacts resulting from extracting biopsies, and
therefore, it led to a breakdown in the performance of the proposed systems. Therefore, all
histopathological images had to be optimized. The technique of data augmentation was
also used in the second dataset due to the lack of histological images and the imbalance
of the dataset classes. This study consisted of two proposed approaches, each with two
systems, as follows: First, the development of a hybrid approach consisting of two blocks,
namely the deep learning method and the SVM algorithm. Each block had a specific task
where the first block (DenseNet-121 and ResNet-50) extracted deep features with high
dimensions, so that the PCA algorithm could be used to reduce the high dimensions and
store them into feature vectors. The second block (SVM) was fed with low-dimensional
feature vectors to classify the images with high accuracy. These approaches yielded good
results, where the DenseNet-121 + SVM and ResNet-50 + SVM models yielded accuracies of
97.7% and 98.8% for the first dataset and overall accuracies of 96% and 97.3% for the second
dataset, respectively. The second approach was based on the hybrid features between
DenseNet-121 and ResNet-50 models and was developed and fused with hand-crafted
features, then stored in feature vectors to be fed into the FFNN classifier for a diagnosis.
With the first dataset, the FFNN classifier reached an accuracy of 99.3% with the hybrid
of DenseNet-121 and hand-crafted features and an accuracy of 99.5% with the hybrid of
ResNet-50 and hand-crafted features. With the second dataset, the FFNN classifier reached
an accuracy of 98.7% with the hybrid of DenseNet-121 and hand-crafted features and an
accuracy of 100% with the hybrid of the ResNet-50 and hand-crafted features.

Table 5 summarizes the diagnostic results of the proposed systems in the diagnosis of
the histopathological images of the two datasets of malignant lymphomas. The evaluation
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of the systems on the first dataset was as follows: The FFNN with the hybrid of ResNet-50
and hand-crafted features yielded the best accuracy for diagnosing the CLL lymphoma
type at 99.4%, FL lymphoma type at 99.7% and MCL lymphoma type at 99.5%. Thus, the
hybrid features of ResNet-50 and hand-crafted performed better than the other methods
in correctly representing the histological images. The evaluation of the systems on the
second dataset was as follows: The FFNN with the hybrid of ResNet-50 and hand-crafted
features yielded the best accuracy for diagnosing the CLL lymphoma type at 100%; for the
FL lymphoma type, the ResNet-50 + SVM and FFNN classifier achieved a 100% accuracy;
and for the MCL lymphoma type, the ResNet-50 + SVM and FFNN classifier yielded an
accuracy of 100%.

Table 5. The results of the proposed systems in the diagnosis of the types of malignant lymphomas.

Datasets First Dataset Second Dataset

Systems CLL
%

FL
%

MCL
%

Overall
Accuracy

%

CLL
%

FL
%

MCL
%

Overall
Accuracy

%

Hybrid System DenseNet-121 + SVM 97.7 98.4 97.1 97.7 95.7 96.4 95.8 96
ResNet-50 + SVM 98.3 99.2 98.8 98.8 91.3 100 100 97.3

Fu
si

on
Fe

at
ur

es

FF
N

N
C

la
ss

ifi
er DenseNet-121,

GLCM, FCH,
DWT, and LBP

99.3 99.4 99.1 99.3 95.7 100 100 98.7

ResNet-50, GLCM,
FCH, DWT,

and LBP
99.4 99.7 99.5 99.5 100 100 100 100

Figure 15 shows the performance of all systems implemented, the overall diagnostic
accuracy, and the accuracy in diagnosing each type of malignant lymphoma.

Figure 15. A presentation of the performance of the implementing systems for each type of malig-
nant lymphoma.

Table 6 describes the performance results of the proposed system together with the
performance results of the previous systems that are relevant. It can be noted from the
table that the proposed system was evaluated using all of the metrics, while previous
studies were only evaluated by some of the metrics. Previous studies achieved an accuracy
ranging between 68.3% and 94.7%, while the proposed system reached 99.5%. Previous
studies achieved a sensitivity ranging between 84.09% and 97%, while the proposed system
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reached 99.33%. Previous studies achieved a precision ranging between 89% and 95.67%,
while the proposed system reached 99.65%.

Table 6. A comparison of the performance of the proposed systems with the performance of the
systems from previous relevant studies.

Previous Studies Accuracy (%) Sensitivity (%) Precision % Specificity (%) AUC %

Miyoshi et al. [10] 87 91 89 -
Zhang et al. [11] 96 - - - -

Hashimoto et al. [12] 68.3 - - - -
Stefancu et al. [13] 94.7 - - - 70
Gaidano et al. [15] 94.28 84.09 95.67 - -

Lippi et al. [39] 97 - - -
Proposed model 99.5 99.33 99.65 100 99.86

6. Conclusions

Because of the diversity of malignant lymphomas and the similarity of their features,
manual diagnosis has had limitations due to the similarity of features in the types of
lymphomas. A great amount of experience and time are needed to analyze tissue biopsies.
In this study, several proposed systems were developed that serve as a reference for doctors
and experts to distinguish between the types of lymphomas. This study aimed to extract
advantages out of the many algorithms and deep learning models and apply some hybrid
techniques. The histopathological images were optimized to remove artifacts that degraded
the system performance. The histological images of the two lymphoma datasets were fed
to two proposed approaches, each of which had two systems. The first approach was to
apply a hybrid system between the DenseNet-121 and ResNet-50 models and the SVM
algorithm. As DenseNet-121 and ResNet-50 extract the deep features with high dimensions,
the PCA algorithm was applied to reduce the high dimensions. The SVM algorithm worked
to receive low-dimensional features and classify them with high efficiency. The hybrid
techniques also achieved promising results in distinguishing the types of malignant tumors.
The second approach was based on extracting the features from the DenseNet-121 and
ResNet-50 models separately and then combining them with the hybrid features to feed
them into the FFNN classifier and classify them with promising accuracy. This method
yielded fantastic results in the histological diagnosis of the two datasets of malignant
lymphomas. The FFNN classifier with the hybrid of ResNet-50 and hand-crafted features
reached an accuracy of 99.5%, specificity of 100%, sensitivity of 99.33%, and AUC of 99.86%
for the first dataset. In contrast, the same FFNN classifier when fed the hybrid of ResNet-50
and hand-crafted features yielded values of 100% for all measures in the second dataset.
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