Energy-Efficient Edge Optimization Embedded System Using Graph Theory with 2-Tiered Security
Abstract
:1. Introduction
- It proposes an intelligent method for extracting minimal spanning trees using theory.
- The cost function is optimized using real-time parameters and, accordingly, end-to-end routes are identified.
- It provides security on two main entrance points: from the IoT system to edge devices and from edge devices to mobile sinks. Such tiers protect against network threats and increase the reliability of the nodes.
- The proposed system is tested and validated in its performance in terms of resource management and energy efficiency.
2. Literature Work
3. Problem Statement
4. Energy-Efficient Enabled Reliable Edge-SDN Protocol with Graph Theory
4.1. System Model
- Nodes are randomly deployed in the targeted area.
- Nodes are static with mobile gateways.
- Gateways can perform data aggregation and maintain proximity tables.
- Tables are not static and frequently change the information when any event incurs.
- Sensor nodes cannot direct communication with edge devices.
- If the residual energy of any node is below the threshold, its flag value is zero.
4.2. Discussion
- Firstly, the source node selects the edge from its neighbor based on the minimum weighted cost
- Moreover, it is continuously monitored so that the selected edge does not create a loop.
- Finally, the execution of the Krushkal algorithm stops if edges are included in the route.
4.3. IoT-Security with SDN Architecture
5. Simulations
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noura, M.; Nordin, R. A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. J. Netw. Comput. Appl. 2016, 71, 130–150. [Google Scholar] [CrossRef]
- Li, J.; Lei, G.; Manogaran, G.; Mastorakis, G.; Mavromoustakis, C.X. D2D communication mode selection and resource optimization algorithm with optimal throughput in 5G network. IEEE Access 2019, 7, 25263–25273. [Google Scholar] [CrossRef]
- Haseeb, K.; Rehman, A.; Saba, T.; Bahaj, S.A.; Lloret, J. Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors. Sensors 2022, 22, 2115. [Google Scholar] [CrossRef]
- Pedhadiya, M.K.; Jha, R.K.; Bhatt, H.G. Device to device communication: A survey. J. Netw. Comput. Appl. 2019, 129, 71–89. [Google Scholar] [CrossRef]
- Shamganth, K.; Sibley, M.J. A survey on relay selection in cooperative device-to-device (D2D) communication for 5G cellular networks. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 42–46. [Google Scholar]
- Georgios, L.; Kerstin, S.; Theofylaktos, A. Internet of Things in the Context of Industry 4.0: An overview. 2019. Available online: http://dspace.vsp.cz/handle/ijek/103 (accessed on 13 September 2022).
- Elansary, I.; Darwish, A.; Hassanien, A.E. The future scope of internet of things for monitoring and prediction of COVID-19 patients. In Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches; Springer: Berlin/Heidelberg, Germany, 2021; pp. 235–247. [Google Scholar]
- Tyagi, A.K.; Fernandez, T.F.; Mishra, S.; Kumari, S. Intelligent automation systems at the core of industry 4.0. In Proceedings of the International Conference on Intelligent Systems Design and Applications, online, 13–15 December 2021; pp. 1–18. [Google Scholar]
- Swamy, S.N.; Kota, S.R. An empirical study on system level aspects of Internet of Things (IoT). IEEE Access 2020, 8, 188082–188134. [Google Scholar] [CrossRef]
- Tabaa, M.; Monteiro, F.; Bensag, H.; Dandache, A. Green Industrial Internet of Things from a smart industry perspectives. Energy Rep. 2020, 6, 430–446. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Haseeb, K.; Larabi Marie-Sainte, S.; Lloret, J. Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies 2021, 14, 6414. [Google Scholar] [CrossRef]
- Wei, Z.; Masouros, C.; Liu, F.; Chatzinotas, S.; Ottersten, B. Energy-and cost-efficient physical layer security in the era of IoT: The role of interference. IEEE Commun. Mag. 2020, 58, 81–87. [Google Scholar] [CrossRef]
- Wang, N.; Wang, P.; Alipour-Fanid, A.; Jiao, L.; Zeng, K. Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities. IEEE Internet Things J. 2019, 6, 8169–8181. [Google Scholar] [CrossRef]
- Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on multi-access edge computing for internet of things realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wan, J.; Celesti, A.; Li, D.; Abbas, H.; Zhang, Q. Edge computing in IoT-based manufacturing. IEEE Commun. Mag. 2018, 56, 103–109. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, T.; Gao, H.; Shi, W.; Liu, L.; Cérin, C.; Wan, J. Energy aware edge computing: A survey. Comput. Commun. 2020, 151, 556–580. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, X.; Gao, H.; Zhou, X.; Wan, J. Toward computation offloading in edge computing: A survey. IEEE Access 2019, 7, 131543–131558. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [Google Scholar] [CrossRef]
- Rao, P.M.; Deebak, B. Security and privacy issues in smart cities/industries: Technologies, applications, and challenges. J. Ambient. Intell. Humaniz. Comput. 2022, 1–37. [Google Scholar] [CrossRef]
- Fawzy, D.; Moussa, S.M.; Badr, N.L. The Internet of Things and Architectures of Big Data Analytics: Challenges of Intersection at Different Domains. IEEE Access 2022, 10, 4969–4992. [Google Scholar] [CrossRef]
- Islam, N.; Haseeb, K.; Rehman, A.; Alam, T.; Jeon, G. An adaptive and secure routes migration model for the sustainable cloud of things. Clust. Comput. 2022, 1–12. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; García, Ó.; Muñoz, L.; Rodríguez-González, S. Edge computing, iot and social computing in smart energy scenarios. Sensors 2019, 19, 3353. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Zhang, Q.; Choo, K.-K.R. An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans. Serv. Comput. 2020, 13, 625–638. [Google Scholar] [CrossRef]
- Jan, M.A.; Khan, F.; Mastorakis, S.; Adil, M.; Akbar, A.; Stergiou, N. LightIoT: Lightweight and secure communication for energy-efficient IoT in health informatics. IEEE Trans. Green Commun. Netw. 2021, 5, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Anajemba, J.H.; Yue, T.; Iwendi, C.; Alenezi, M.; Mittal, M. Optimal cooperative offloading scheme for energy efficient multi-access edge computation. IEEE Access 2020, 8, 53931–53941. [Google Scholar] [CrossRef]
- Jiang, B.; Huang, G.; Wang, T.; Gui, J.; Zhu, X. Trust based energy efficient data collection with unmanned aerial vehicle in edge network. Trans. Emerg. Telecommun. Technol. 2022, 33, e3942. [Google Scholar] [CrossRef]
- Zhang, H.; He, X.; Wu, Q.; Dai, H. Spectral graph theory based resource allocation for IRS-assisted multi-hop edge computing. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 10–13 May 2021; pp. 1–6. [Google Scholar]
- Godquin, T.; Barbier, M.; Gaber, C.; Grimault, J.-L.; Le Bars, J.-M. Placement optimization of IoT security solutions for edge computing based on graph theory. In Proceedings of the 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), London, UK, 29–31 October 2019; pp. 1–7. [Google Scholar]
- Dhelim, S.; Aung, N.; Kechadi, T.; Ning, H.; Chen, L.; Lakas, A. Trust2Vec: Large-Scale IoT Trust Management System Based on Signed Network Embeddings. Available online: https://arxiv.org/pdf/2204.06988.pdf (accessed on 1 August 2022).
- Ali, O.; Jaradat, A.; Kulakli, A.; Abuhalimeh, A. A comparative study: Blockchain technology utilization benefits, challenges and functionalities. IEEE Access 2021, 9, 12730–12749. [Google Scholar] [CrossRef]
- Kleinberg, J.; Tardos, E. Algorithm Design. Available online: https://ict.iitk.ac.in/wp-content/uploads/CS345-Algorithms-II-Algorithm-Design-by-Jon-Kleinberg-Eva-Tardos.pdf (accessed on 1 August 2022).
Parameters | Values |
---|---|
Simulation area | 5000 m × 5000 m |
Sensors | 75–375 |
Data size | 10–50 KB |
Transmission power | 10 m |
Initial energy | 3–6 j |
Simulations | 15 |
Edge devices | 5 |
Gateway nodes | 10 |
Size of control packet | 512 bits |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saba, T.; Rehman, A.; Haseeb, K.; Bahaj, S.A.; Jeon, G. Energy-Efficient Edge Optimization Embedded System Using Graph Theory with 2-Tiered Security. Electronics 2022, 11, 2942. https://doi.org/10.3390/electronics11182942
Saba T, Rehman A, Haseeb K, Bahaj SA, Jeon G. Energy-Efficient Edge Optimization Embedded System Using Graph Theory with 2-Tiered Security. Electronics. 2022; 11(18):2942. https://doi.org/10.3390/electronics11182942
Chicago/Turabian StyleSaba, Tanzila, Amjad Rehman, Khalid Haseeb, Saeed Ali Bahaj, and Gwanggil Jeon. 2022. "Energy-Efficient Edge Optimization Embedded System Using Graph Theory with 2-Tiered Security" Electronics 11, no. 18: 2942. https://doi.org/10.3390/electronics11182942
APA StyleSaba, T., Rehman, A., Haseeb, K., Bahaj, S. A., & Jeon, G. (2022). Energy-Efficient Edge Optimization Embedded System Using Graph Theory with 2-Tiered Security. Electronics, 11(18), 2942. https://doi.org/10.3390/electronics11182942