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Abstract: Atrial fibrillation (AF) is the most common arrhythmia and can seriously threaten patient
health. Research on AF detection carries important clinical significance. This manuscript proposes an
AF detection method based on ballistocardiogram (BCG) signals collected by a noncontact sensor.
We first constructed a BCG signal dataset consisting of 28,214 ten-second nonoverlapping segments
collected from 45 inpatients during overnight sleep, including 9438 for AF, 9570 for sinus rhythm
(SR), and 9206 for motion artifacts (MA). Then, we designed a residual convolutional neural network
(CNN) for AF detection. The network has four modules, namely a downsampling convolutional
module, a local feature learning module, a global feature learning module, and a classification module,
and it extracts local and global features from BCG signals for AF detection. The model achieved
precision, sensitivity, specificity, F1 score, and accuracy of 96.8%, 93.7%, 98.4%, 95.2%, and 96.8%,
respectively. The results indicate that the AF detection method proposed in this manuscript could
serve as a basis for long-term screening of AF at home based on BCG signal acquisition.

Keywords: ballistocardiogram; atrial fibrillation; residual neural network; classification

1. Introduction

Atrial fibrillation (AF) is the most common clinical arrhythmia, threatening patient
health and profoundly increasing morbidity, mortality, and healthcare-related costs [1]. At
present, the estimated prevalence of AF in adults is between 2% and 4%, with a 2.3-fold
increase projected due to increased lifespan in the general population [2]. The risk of
developing AF increases with age. Approximately 60% of patients with AF are between the
ages of 65 and 85 years [3]. Various diseases have been associated with AF, such as stroke,
heart failure, coronary artery disease, and systemic thromboembolism [4,5]. Thus, the
timely detection and prevention of AF is significant [6]. However, a significant proportion
of patients with atrial fibrillation are asymptomatic or have mild symptoms, a phenomenon
known as subclinical atrial fibrillation. Thus, without the use of cardiac monitoring devices,
timely and accurate diagnoses are difficult. Therefore, a cardiac monitoring device that can
be used for daily monitoring and early detection of AF is needed.
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At present, electrocardiography (ECG) is the main method for diagnosing AF. The
typical features of AF include the absence of P-waves, which are replaced by rapid oscil-
lations or fibrillatory waves, and the irregular variability of RR intervals. These features
have allowed various AF detection methods to be developed, including the template-based
algorithm [7], feature analysis based on the RR intervals [8], the application of symbolic
dynamics, Shannon entropy based on the support vector machine (SVM) [9], and the
combination of the genetic algorithm and random forest classifier [10]. In recent years,
convolutional neural networks (CNNs) have been used for AF detection due to their strong
feature extraction ability. Limam et al. [11] proposed a convolutional recurrent neural
network (CRNN) consisting of two independent CNNs to extract related features, one from
ECG and the other from heart rates. Dang et al. [12] combined CNN and bidirectional long
short-term memory (Bi-LSTM) to automatically detect AF from ECG signals. Yao et al. [13]
proposed a multi-scale CNN which applied time scaling on input ECG signals and detected
AF based on scaled inputs. The residual network [14] is a type of deep neural network
(DNN) that was first proposed for image classification tasks. The residual network has
recently been successfully applied to ECG AF detection due to its excellent classification
performance and characteristics that can alleviate the degradation problem of DNNs. He
et al. [15] proposed a model consisting of residual CNN and Bi-LSTM to extract features
from raw ECG signals. Cao et al. [16] used an improved multi-scale decomposition en-
hanced residual CNN to detect AF from a single short ECG lead recording. Faust et al. [17]
proposed a method using residual CNN model to extract features from RR intervals of
ECG signals. However, the above methods are based on the acquisition of ECG signals and
usually require that electrodes are in direct contact with the skin of the subject, which can be
uncomfortable and inconvenient for long-term use, and is thus not suitable for monitoring
cardiac activity in daily life. Therefore, researchers have proposed some noncontact cardiac
activity monitoring techniques.

Previous studies have shown that noncontact cardiac monitoring techniques can be
used by subjects in daily life for long-term cardiac activity monitoring [18]. The ballisto-
cardiogram (BCG) [19] and seismocardiogram (SCG) [20] capture the body’s mechanical
responses to cardiac activity and blood circulation. The difference between them is that the
BCG measures pressure changes of the body against the measurement plane, while the SCG
measures local vibrations of the chest wall. The BCG is a noncontact body vibration detec-
tion method. In addition to the mechanical activity of the heart, other physiological factors
that cause body vibrations include breathing, noise, and motion artifacts (MA) [21–23].
BCG signals can be acquired by placing piezoelectric sensors on the measurement plane,
such as under mattresses [24] and chairs cushions [25]. In recent years, researchers have
proposed many cardiac activity detection algorithms based on BCG signals, such as heart
rate detection [26,27], J peak feature extraction [28], and cardiovascular disease classifica-
tion [29].

Although BCG-based cardiac activity monitoring research has developed rapidly in
recent years, the use of BCG signals for AF detection remains an unexplored technique.
Brüser et al. [30] proposed a feature selection algorithm based on the mutual information
between the features and class labels, as well as the first- and second-order interactions
among features, and evaluated seven machine learning algorithms (naive Bayes, linear
and quadratic discriminant analysis, support vector machine, random forest, and bagged
and boosted trees) for their performance in separating 30 s-long BCG epochs into AF, SR,
and MA. The best classifier (random forest) achieved a mean sensitivity and specificity
of 93.8% and 98.2%, respectively. Yu et al. [31] extracted features from stationary wavelet
transform of 30 s BCG epochs and used three machine learning classifiers (support vector
machine, K-nearest neighbor, and ensemble learning) to detect AF. The ensemble classifier
achieved a mean accuracy, sensitivity, and specificity of 94.4%, 97.0%, and 89.1%, respec-
tively. Wen et al. [32] extracted features from BCG energy signals and used five machine
learning algorithms (support vector machine, naive Bayes, decision tree, bootstrap aggre-
gated decision tree, and random forest) to identify AF and SR. The algorithm achieved a
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sensitivity, precision, and accuracy of 96.8%, 92.8%, and 94.5%, respectively. Jiang et al. [33]
proposed a deep learning method for AF and SR classification that integrated features
extracted from a Bi-LSTM network and features extracted from phase space. The method
achieved an accuracy, specificity, sensitivity, and precision of 94.7%, 93.5%, 95.9%, and
93.7%, respectively.

Some effective methods for BCG-based AF detection have been proposed thus far,
but certain issues remain. First, most previous studies [30–32] have focused on traditional
machine learning. However, manual feature extraction is subjective and may lead to the
loss of important information, especially considering the morphological diversity of BCG
signals. Second, the BCG datasets used with the previously proposed methods [30–33] are
small in scale, while machine learning, especially deep learning methods, require a large
amount of data for training and validation.

In this manuscript, we focus on developing a noncontact AF detection method based
on BCG signals. An offline residual CNN model, inspired by ECG-based AF detection
methods [15–17], was proposed to detect AF in BCG segments, which can be applied in
household long-term AF monitoring and screening. To summarize, the main contributions
are: (1) To the best of our knowledge, this manuscript is the first to apply residual CNN to
extract features from BCG segments for AF detection. (2) The number of BCG segments in
our dataset is currently the largest in relevant research, which ensures the feasibility and
reliability of the proposed deep learning method. This manuscript is organized as follows:
Section 2 describes the proposed method including dataset construction, residual CNN
model construction, and the detailed experimental process. Section 3 presents our study
results and analysis. Section 4 provides discussions of our findings and potential future
work. Section 5 concludes the whole passage.

2. Materials and Methods

In the proposed method, the BCG signals were collected from 45 inpatients by a non-
contact BCG acquisition system. The discrete wavelet transform and RMS filter were then
used to preprocess the acquired BCG signals. After that, we labeled the BCG recordings
according to the synchronously collected ECG signals and split them into 10 s nonoverlap-
ping segments consisting of three types of BCG signals (AF, SR, and MA). A residual CNN
model was introduced to classify the classification task for AF detection. The overall flow
diagram of the proposed method is shown in Figure 1.
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2.1. Data Acquisition
2.1.1. Participants

In this study, we collected BCG signals (509.8 h in total) from 45 subjects (24 males
and 21 females, aged 27–93 years, mean 72.6 years (standard deviation (STD) 14.8), who
were hospitalized in Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University,
Hangzhou, Zhejiang, China. Among these subjects, 19 had confirmed paroxysmal AF, and
26 had non-AF. Detailed demographic information of these subjects is presented in Table 1.
The BCG data collection was approved by the Ethics Committee of Sir Run Run Shaw
Hospital, School of Medicine, Zhejiang University, and the subjects.

Table 1. The demographic information of the subjects.

AF Non-AF ALL

Amount 19 26 45
Gender (male/female) 8/11 16/10 24/21

Age (years) 74.3 ± 10.0 71.3 ± 17.4 72.6 ± 14.8
BMI (kg/m2) 21.5 ± 3.3 20.9 ± 2.9 21.2 ± 3.1

Average acquisition
duration (hours) 12.2 ± 3.4 10.7 ± 1.6 11.3 ± 2.6

2.1.2. BCG Recording

In this study, a noncontact BCG signal acquisition system (Figure 2a) designed and
developed by Hangzhou BOBO Technology Ltd., Hangzhou, China, was used. The system
consisted of a microcontroller, a signal conditioning circuit including amplifier, filter and
analog-to-digital converter, and a piezoelectric sensor stripe with 7 cm width and 72 cm
length. The sensitivity of the sensor was 0.015 V/10−6ε, where ε is a dimensional value that
represents the relative change of the length of a material to its initial length. The designed
circuit included a Digital Automatic Gain Control System to guarantee the signal captured
could almost always fit our requirements. Four sets of such a BCG signal acquisition system
were used in this study, and these systems had the same specifications.

The sensor stripe was placed above the mattress but under the sheet of the hospital
bed, which ensured no stress to subjects during sleep. It was horizontally placed under the
subject’s cardiac location to capture the best signal as shown in Figure 2b. BCG signal data
were continuously collected while each subject slept on a hospital bed for the entire night
without constraints. This means that the subjects could change their sleeping postures
freely and might get out of bed to urinate, for instance. The BCG signals were recorded at
125 Hz sampling rate. Simultaneously, the ECG signals were collected by Holter (Beneware
CT-08S) at a sampling rate of 200 Hz for reference.
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2.2. Data Preprocessing

As mentioned in the introduction, in addition to heartbeat information, the raw BCG
signals contain noise and interference from various sources, including motion artifacts due
to the body movement of the subject. These interference, noise, and motion signals can
seriously affect AF detection in BCG signals. Therefore, the collected BCG signals must be
preprocessed to remove the interference and noise and separate the motion artifacts for
use in the classification algorithm. In this manuscript, we used the same discrete wavelet
transform and RMS filter as in a previous study by our group [32] to process the raw BCG
signals. The acquired BCG signals were first decomposed into seven details, and then the
third to sixth layers of details were selected for reconstruction.

The RMS filter, defined in Equation (1), was used to detect both motion artifacts during
acquisition and invalid signals when the subject left their bed.

S[n] =

√√√√ 1
N

N−1

∑
k=0

( f [n + k])2 (1)

where f [n] and S[n] represent the BCG signal after the wavelet transform and the RMS-
filtered BCG signal, respectively. n represents the sample points, and N represents the
window size for calculating the root mean square value of each sample point, which was
empirically set to 200. To unify the selection criteria of different subjects, we normalized
the amplitude of S[n] to [0, 1], that is, divided the amplitude by the maximum. The upper
and lower thresholds of valid signals were set to 0.25 and 0.1, respectively, on the basis of
empirical values (Figure 3). The segments with amplitudes less than 0.1 were discarded as
invalid signals caused by the subject’s deviation or leaving from the sensor (6.2 h in total).
The segments with the amplitude higher than 0.25 were labeled motion artifacts and were
reserved to build the BCG dataset as one of the three signal types. The rest of the BCG
signals awaited further processing.
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2.3. Data Labeling and Segmentation

In this section, the BCG signals were labeled according to the synchronously collected
ECG and confirmed by experts (examples are shown in Figure 4). BCG signals from non-AF
subjects were labeled SR if a normal sinus rhythm was confirmed by the synchronized
ECG. BCG signals from AF subjects were labeled AF if AF rhythm was confirmed by
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the synchronized ECG. Then, we divided the two types of labeled BCG signals and MA
BCG signals detected in the signal preprocessing into 10 s nonoverlapping segments. All
other BCG signals (425.2 h in total) were discarded during the labeling and segmentation
process. Finally, the BCG dataset was constructed (78.4 h in total), as shown in Table 2.
Mathematically, the dataset can be described as a m× n matrix, where m represents the
total number of BCG segments and n represents the total number of sampling points for
each segment, which equal 28,214 and 1250, respectively.
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Table 2. The BCG dataset used in this research.

AF SR MA ALL

Amount of
segments 9438 9570 9206 28,214

Figure 5 shows the three types of BCG signals from different subjects in the BCG
dataset. The amplitudes of MA are generally larger than the two other classes among
subjects. The morphology of the BCG signals of AF and SR varied greatly among subjects
due to differences in the physical condition, age, and sleeping posture of the patients, as
well as the relative positions of the body and sensor caused by difference sleeping posture
of the subjects, which increased the difficulty of screening for AF.
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(a–c), AF; (d–f), SR; (g–i), MA.

2.4. Neural Network Model Construction
2.4.1. Problem Formulation

The AF detection task in this manuscript is to identify AF signals in single-channel
BCG signals. The training set T = {(x(1), y(1)), (x(2), y(2)), . . . (x(i), y(i)), . . . , (x(k), y(k))}
consists of the input BCG signal x(i) and label y(i), where x(i) ∈ Rn and y(i) ∈ {0, 1, 2}.
Here k represents the total number of BCG segments in the training set. The labels y(i) = 0,
y(i) = 1 and y(i) = 2 correspond to AF, SR and MA, respectively. The residual CNN
model constructed in this manuscript accepts x(i) as input and ŷ(i) as output, as shown in
Equation (2):

ŷ(i) = F(x(i); θ) (2)

where F(·) is the function of the model designed in this manuscript, θ are the related
parameters, and ŷ(i) is the predicted label of our model, with ŷ(i) ∈ {0, 1, 2}.

2.4.2. Model Architecture

BCG signals, similar to ECG signals, are time series signals that reflect cardiac activity.
The J wave in the BCG signal is similar to the R wave in the ECG signal, indicating that the
BCG signal has a certain periodicity. However, BCG signals have considerable individual
differences due to the physical conditions of the subjects and substantial variability due to
differences in the measurement environment. Thus, inspired by ECG-based AF detection, a
CNN with residual architecture consisting of 12 layers for detecting AF in BCG signals by
extracting local and global features was developed. As shown in Figure 6, this proposed
network has four modules, namely a downsampling convolutional module, a local feature
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learning module, a global feature learning module, and a classification module. The
detailed parameter configurations of the model are outlined in Table 3 (k, s, and p represent
kernel size, stride, and padding respectively, Conv-n represents the number of channels n).

Electronics 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

due to differences in the measurement environment. Thus, inspired by ECG-based AF 
detection, a CNN with residual architecture consisting of 12 layers for detecting AF in 
BCG signals by extracting local and global features was developed. As shown in Figure 6, 
this proposed network has four modules, namely a downsampling convolutional module, 
a local feature learning module, a global feature learning module, and a classification 
module. The detailed parameter configurations of the model are outlined in Table 3 (k, s, 
and p represent kernel size, stride, and padding respectively, Conv-n represents the num-
ber of channels n). 

 
Figure 6. The structure of the proposed residual CNN for AF detection. 

Table 3. The detailed parameters of the proposed residual CNN. 

Layer Name Parameter Value 
Layer 1 Conv-16, k = 100, s = 5, p = 0 
Layer 2 Conv-32, k = 3, s = 2, p = 1 
Layer 3 Conv-32, k = 3, s = 1, p = 1 
Layer 4 Conv-64, k = 3, s = 2, p = 1 
Layer 5 Conv-64, k = 3, s = 1, p = 1 
Layer 6 Conv-128, k = 3, s = 2, p = 1 
Layer 7 Conv-128, k = 3, s = 1, p = 1 
Layer 8 Conv-256, k = 3, s = 2, p = 1 
Layer 9 Conv-256, k = 3, s = 1, p = 1 

Layer 10 GlobalAvgPooling(1) 
Layer 11 Dense(64) 
Layer 12 Dense(3) 

The input of the model is the preprocessed BCG signal, which is a three-dimensional 
matrix with dimensions of (batch size, 1, 1250). The batch size is determined through ex-
periments. The other two dimensions are the channel number and signal length. The 

Figure 6. The structure of the proposed residual CNN for AF detection.

Table 3. The detailed parameters of the proposed residual CNN.

Layer Name Parameter Value

Layer 1 Conv-16, k = 100, s = 5, p = 0
Layer 2 Conv-32, k = 3, s = 2, p = 1
Layer 3 Conv-32, k = 3, s = 1, p = 1
Layer 4 Conv-64, k = 3, s = 2, p = 1
Layer 5 Conv-64, k = 3, s = 1, p = 1
Layer 6 Conv-128, k = 3, s = 2, p = 1
Layer 7 Conv-128, k = 3, s = 1, p = 1
Layer 8 Conv-256, k = 3, s = 2, p = 1
Layer 9 Conv-256, k = 3, s = 1, p = 1
Layer 10 GlobalAvgPooling(1)
Layer 11 Dense(64)
Layer 12 Dense(3)

The input of the model is the preprocessed BCG signal, which is a three-dimensional
matrix with dimensions of (batch size, 1, 1250). The batch size is determined through experi-
ments. The other two dimensions are the channel number and signal length. The signal first
enters the downsampling convolutional module, which consists of a one-dimensional con-
volutional (1D Conv) layer, a batch normalization (BN) [34] layer, and a rectified linear unit
(ReLU) [35] activation layer. The downsampling convolutional module quickly compresses
the long BCG signal into a considerably shorter series of feature vectors. This module
was designed to capture the contextual information of a BCG signal over a relatively long
window based on the fact that the BCG signal is approximately periodic. Furthermore, this



Electronics 2022, 11, 2974 9 of 16

module facilitates model training by preventing the stacking of too many convolutional
layers.

In the local feature learning module, four stacked residual convolutional blocks are
utilized to extract local features from the output of the downsampling convolutional
module. Each residual block consists of two 1D Conv layers, two BN layers, two ReLU
activation layers, and one shortcut connection. The feature vectors are halved as they pass
through a residual block, and the number of channels is doubled. A 1D Conv layer with a
convolution kernel of 1 and a stride of 2 is applied in the shortcut connection to match the
channel number of the input and output.

Then, the extracted feature vectors are input into a global average pooling (Global-
AvgPooling) [36] layer to learn the global features. This module reduces the number of
parameters, preventing overfitting. According to the extracted global features, the classi-
fication module divides the BCG signals into different classes. The classification module
consists of two dense layers, a ReLU activation layer, a dropout layer [37], and a softmax
layer. The first dense layer has 64 cells, while the second layer has 3 cells, corresponding
to the 3 classes. The dropout layer prevents overfitting by randomly discarding some
of the neurons, improving the generalizability of the model. Finally, the corresponding
classification probability is calculated by the softmax layer, as shown in Equation (3):

p(z(i)) =
exp(z(i))

∑j exp(z(i))
(3)

where z(i) is the output value of the last dense layer, and p(·) is the probability of the i-th
output label having an input value of z(i). To evaluate the performance of the model on the
training data, we use the cross-entropy loss, which is suitable for classification problems.
For a training set containing k BCG segments, the loss function can be defined as shown in
Equation (4):

L(X) = −1
k

k

∑
i=1

2

∑
j=0

I{y(i) = j} log p(z(i)) (4)

where I{·} is the indicator function. The remaining parameters are described in detail in
the Problem Formulation section.

2.5. Experimental Setup and Evaluation Metrics
2.5.1. Experimental Environment and Procedure

The neural network model proposed in this manuscript was developed by Python 3.8,
and trained and tested on the deep learning framework PyTorch 1.9.1 on an Ubuntu 20.04
operating system. The model training and testing were performed on a computing server
equipped with 4 NVIDIA RTX 3090 graphics cards with 24 GB memory each.

The experimental process included two steps. First, the three types of BCG signal
segments were divided randomly into a training set, validation set and test set at a ratio
of 7:1:2. The model was first evaluated with different numbers of residual blocks from
multiple perspectives to determine the final structure. Then, tenfold cross validation was
used to further evaluate the stability of the model. We randomly partitioned BCG segments
into 10 equal-sized complementary subsets. Of the 10 subsets, a single subset was retained
as the validation data for testing the model, and the remaining 9 subsets were used as
training data. The cross-validation process was then repeated 10 times, with each of the
10 subsets used exactly once as the validation data.

During the whole experiment, we set the number of epochs (the number of times the
entire BCG training set is trained) to 50 and the batch size (the number of BCG segments
used for each batch of model training) to 32. The network parameters were updated
using mini-batch gradient descent [38], and the Adam algorithm [39] was used to optimize
the network. The learning rate (initial value is 2 × 10−5) in the Adam algorithm uses a
piecewise function decay, that is, the decay is 0.1 times the original every 10 epochs.
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2.5.2. Evaluation Metrics

The confusion matrix of a certain class j(j ∈ {0, 1, 2}) in this manuscript is shown in
Table 4, where ŷ is the predicted label.

Table 4. Confusion matrix.

Predicted Condition
y = j y 6= j

True Condition
ŷ = j True positive (TP) False negative (FN)
ŷ 6= j False positive (FP) True negative (TN)

To evaluate the classification effect of the model from multiple perspectives, the
precision (Pre), sensitivity (Sen), specification (Spe), F1 score (F1), and accuracy (Acc) [40]
were used as evaluation metrics in this manuscript. On the basis of Table 4, the evaluation
metrics can be defined as shown in Equations (5)–(9):

Pre =
TP

TP + FP
(5)

Sen =
TP

TP + FN
(6)

Spe =
TN

TN + FP
(7)

F1 = 2
Pre× Sen
Pre + Sen

(8)

Acc =
1
k

k

∑
i=1

I{y(i) = ŷ(i)} (9)

3. Results

The effect of the number of residual blocks on the experimental results was explored
to determine the final model structure first (Table 5).

Table 5. The impact of the number of residual blocks.

Number of Residual
Blocks 2 3 4 5 6

Pre

AF 93.3% 96.3% 95.3% 95.6% 96.3%
SR 93.4% 92.1% 94.6% 92.4% 92.1%

MA 100.0% 100.0% 100.0% 100.0% 100.0%
mean 95.6% 96.1% 96.6% 96.0% 96.1%

Sen

AF 93.3% 91.6% 94.5% 91.9% 91.6%
SR 93.4% 96.6% 95.4% 95.9% 96.6%

MA 100.0% 100.0% 100.0% 100.0% 100.0%
mean 95.6% 96.1% 96.6% 95.9% 96.1%

Spe

AF 96.6% 98.5% 97.7% 97.9% 98.2%
SR 96.6% 95.6% 97.2% 95.9% 95.7%

MA 100.0% 100.0% 100.0% 100.0% 100.0%
mean 97.7% 98.0% 98.3% 97.9% 98.0%

F1

AF 93.3% 93.9% 94.9% 93.8% 93.9%
SR 93.4% 94.4% 95.0% 94.1% 94.3%

MA 100.0% 100.0% 100.0% 100.0% 100.0%
mean 95.6% 96.1% 96.6% 96.0% 96.1%

Acc 95.5% 96.1% 96.6% 95.9% 96.0%
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For models with number of residual blocks ranging from 2 to 6, the performance for
each class, as well as the mean performance over all classes, are given. We highlighted the
best results for each performance measure. When the number of residual blocks was set to
4, most of the metrics achieved the best performance. In particular, the sensitivity of AF is
significantly better than others, which is an important screening metric because it measures
the ability of the method to correctly detect AF.

To further evaluate the generalizability and stability of the model, we used tenfold
cross validation when the number of residual blocks was set to 4. The final cross validation
confusion matrix (the sum of the results of 10 computational experiments) and performance
evaluation are shown in Tables 6 and 7. The ROC curves shown in Figure 7 provides a
graphical representation of the classification results of all 10 folds.

Table 6. Confusion matrix of tenfold cross validation.

True Condition
Predicted Condition

AF SR MA

AF 8844 594 0
SR 297 9273 0

MA 0 0 9206

Table 7. Performance evaluation (mean ± STD).

AF SR MA

Pre 96.8% ± 0.8% 94.0% ± 1.4% 100.0% ± 0.0%
Sen 93.7% ± 1.6% 96.9% ± 0.8% 100.0% ± 0.0%
Spe 98.4% ± 0.4% 96.8% ± 0.8% 100.0% ± 0.0%
F1 95.2% ± 0.8% 95.4% ± 0.7% 100.0% ± 0.0%

Acc 96.8% ± 0.5%
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The data in Tables 6 and 7 indicate that MA could be identified without error, while
AF and SR were sometimes misidentified. This result may have occurred because the MA
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among subjects generally has much larger amplitudes than the two other classes (Figure 5),
which tends to be easily identified due to strong feature extraction ability of the CNN model.
The AF and SR signals are closer in amplitude, and the BCG signal itself has considerable
individual variability, which contributes to the confusion between them. In addition, the
sensitivity was observed to be lower than the specificity in AF, which indicates that AF
is more likely to be misjudged than SR. This result may be due to the high variability of
BCG signals. When AF occurs, complex and diverse internal forces cause the BCG signal to
exhibit very irregular waveforms, which are difficult to interpret. At the same time, the
rhythm of some SR BCG signals is not very regular (Figure 5), which makes AF more likely
to be misjudged as SR. Table 7 shows that the model has good stability, with low standard
deviations for all metrics.

Figure 7 indicates that the model achieved an AUC score of 0.995, 0.995, and 1.000
for AF, SR and MA, respectively, which shows good performance of the algorithm. To
summarize, the final performance of the proposed residual CNN model achieved a mean
precision, sensitivity, specificity, F1 score, and accuracy of 96.8%, 93.7%, 98.4%, 95.2%, and
96.8%, respectively.

4. Discussion
4.1. Method Analysis

In this study, we focused on developing a BCG-based method for household daily AF
screening, which is mainly required by people with paroxysmal AF or with a high risk of
AF. We first constructed a balanced BCG signal dataset containing AF, SR, and MA through
data acquisition, preprocessing, labeling, and segmentation. The number of BCG segments
in our dataset is larger than any other previous BCG-based study, ensuring enough BCG
data for training the model. In previous studies [31–33], MA BCG signals were discarded
during data preprocessing to focus on classification between AF and SR. We added the MA
to dataset for two reasons. First, incorporating MA into the dataset allows the algorithm
to handle the MA signals common in BCG recordings in real scenes, which improves the
robustness of the algorithm. Second, the binary classification has the characteristics of
either-or and three-class classification task is more challenging.

We applied the residual CNN to AF detection based on BCG segments for the first time
in related studies. The proposed model has four modules: the downsampling convolutional
module, local feature learning module, global feature learning module, and classification
module. The downsampling convolutional module mainly undertakes two functions:
to quickly reduce the dimension of the feature vector and to concentrate the contextual
information of the BCG signal to prevent overfitting. The local and global feature learning
modules are core components of the model. Stacked residual blocks are used for local
feature extraction, and GlobalAvgPooling layer can capture global features from the feature
vectors output by local feature learning module, which attempts more in-depth feature
learning of BCG segment. We explored the impact of different numbers of residual blocks
on the classification performance to determine the final network structure. Tenfold cross
validation was applied to further confirm the stability of the model. The final confusion
matrix and the values of various metrics show that our proposed method achieved good
performance on the task of off-line BCG segment-based AF detection.

4.2. Method Comparison

We compared the proposed method with four previously published methods [30–33].
All four methods are based on the noncontact acquisition of BCG signals for AF detection.
The methods published in [30–32] are based on traditional machine learning, which require
artificial feature engineering. Jiang et al. [33] applied a DNN consisting of CNN and
Bi-LSTM into BCG-AF detection. A detailed comparison is shown in Table 8.
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Table 8. Method comparison.

Methods Brüser et al. [30] Yu et al. [31] Wen et al. [32] Jiang et al. [33] The Proposed

Segment length 30 s 30 s 60 s 24 s, 1 s 10 s
Number of segments 856 807 2915 2000 28,214
Number of subjects 10 12 37 59 45
Number of classes 3 2 2 2 3

Pre 90.7% 94.6% 92.8% 93.7% 96.8%
Sen 93.8% 97.0% 96.8% 95.9% 93.7%
Spe 98.2% 89.1% 92.0% 93.5% 98.4%
F1 92.1% - 94.4% - 95.2%

Acc 92.1% 94.4% 94.5% 94.7% 96.8%

The data in Table 8 clearly show that the proposed method performs better than
the previous methods in terms of the Pre, Spe, F1, and Acc, which indicates that our
method is suitable for AF screening. In addition, we compared the segment length, number
of segments, number of subjects, and number of classes to evaluate the feasibility and
credibility of our method from multiple perspectives. Our BCG data were collected from
45 subjects and divided into 28,214 ten-second segments after preprocessing. The dataset
contains a similar number of signals for all three signal types. The increased number
of segments increases the size and diversity of the BCG dataset and the balanced data
distribution improves the model training efficiency while ensuring that the generalizability
of the classification algorithm is not reduced due to too much data from a certain class. In
this manuscript, we completed a three-class classification task similar to Brüser et al. [30],
which is more difficult than the two-class (only AF and SR) classification problem [31–33].
The addition of a motion artifacts class allows our method to handle motion artifacts
that are common in BCG recordings, thus enabling unsupervised processing of the BCG
signal [30]. The results show that the ability of our method to detect AF is not reduced
by motion artifacts, which indicates that the method performs well in terms of anti-noise
interference.

Compared with traditional machine learning algorithms, one advantage of the pro-
posed method is that there is no need to manually extract features of BCG signals [30–32].
Compared with the deep learning method proposed by Jiang et al. [33], the proposed
method has two distinct advantages. First, the number of segments is considerably larger,
which is of great significance for training a deep learning model and improving the credi-
bility of the method. Second, the subjects in [33] all suffered from paroxysmal AF, while
the subjects in our research consisted of 19 people suffering from paroxysmal AF and
26 non-AF patients. Such an experimental setup enables MA BCG signals from both AF
patients and non-AF individuals, increasing the diversity of the BCG dataset and making
the AF detection experiments closer to real scenarios. The standard deviations of all metrics
in Table 7 were less than 0.02, demonstrating that our method performs well in terms of
preventing overfitting and improving generalizability.

4.3. Application Issues and Limitations

Compared with ECG, the advantage of BCG is that the signals can be acquired in a
noncontact way, which ensures comfort and convenience of signal acquisition. However,
unlike ECG, for which there are already well-defined diagnostic criteria, the use of BCG to
detect arrhythmias such as AF is still in its infancy. BCG is accompanied by a high degree
of variability and suffers from inadequate interpretation, as the relationship between BCG
and cardiac activity has not been fully elucidated. Therefore, BCG may not replace ECG as
the gold standard for clinical diagnosis at the current stage.

The proposed method in this manuscript provides a feasible solution for detect AF in
BCG segments. Considering the easy acquisition of BCG, this method can be applied to AF
screening, providing tools for timely detection of AF and follow-up after AF drug or device
treatment. In clinical application, it may be used to determine whether AF occurs during
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the sleep of the subject, and how many 10 s segments of AF have occurred. At the same
time, it can also assist in determining whether these 10 s segments of AF are continuous,
which all contribute to initial screening and subsequent more accurate clinical diagnosis
and treatment of AF.

Furthermore, there are a few limitations to the proposed method. First, although we
constructed a BCG dataset of 28,214 ten-second segments, which is greater in number than
any other BCG study, and the number of subjects is considerable among related studies, the
database still needs to be expanded to further evaluate the robustness of the deep learning
algorithm. Second, the database mostly included older subjects. Third, arrhythmias other
than AF were not considered.

4.4. Future Work

The purpose of our study is to apply an offline DNN model to identify AF segments
based on BCG signals for long-term household AF screening. Considering practical appli-
cation scenarios, we will continue to conduct research in the following aspects. First, due
to the individual differences of BCG signals, we will attempt to collect more BCG signals of
subjects of different ages to increase the size and diversity of the dataset. Different acquisi-
tion devices, acquisition conditions, and subject postures will also be taken into account
to analyze performance of the method in different scenarios. Second, we will explore the
structure and training method of the DNN model to accommodate the expansion of the
dataset. Since ECG-based methods are relatively mature, DNNs that were widely used
in the ECG detection of AF will be given priority. Third, other arrhythmias, which may
cause false positives in AF discrimination, should be considered during classification if
a big enough dataset can be built. Thus, we may expand the method to more classes of
cardiac diseases in future research.

5. Conclusions

In this manuscript, we proposed a feasible method for AF detection by BCG signals
of 10 s length. We collected BCG signals from 45 inpatients and constructed a large BCG
dataset containing 28,214 ten-second nonoverlapping segments, including AF, SR, and
MA. An offline residual CNN model was designed to classify the three types of BCG
signals. The model has an end-to-end classification structure, with a downsampling
convolutional module, a local feature learning module, a global feature learning module,
and a classification module. The model achieved precision, sensitivity, specificity, F1 score,
and accuracy of 96.8%, 93.7%, 98.4%, 95.2%, and 96.8%, respectively. The results suggest
that the proposed method may be used as a tool for AF screening in long-term household
cardiac monitoring devices.
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