
Citation: Hu, Y.; Chen, J.; Zhu, K.;

Xing, Q.; Liu, W.; Shen, J.; Gao, G.

Specially-Designed Out-of-Order

Processor Architecture for

Microcontrollers. Electronics 2022, 11,

2989. https://doi.org/10.3390/

electronics11192989

Academic Editor: Juan M. Corchado

Received: 22 August 2022

Accepted: 15 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Specially-Designed Out-of-Order Processor Architecture for
Microcontrollers
Yunhao Hu 1,2, Jie Chen 1, Kaiben Zhu 1, Qijun Xing 1, Wei Liu 1,2,*, Junfeng Shen 3,* and Ge Gao 4,*

1 School of Physics and Technology, Wuhan University, Wuhan 430072, China
2 Hubei Luojia Laboratory, Wuhan 430072, China
3 College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
4 School of Computer Science, Wuhan University, Wuhan 430072, China
* Correspondence: wliu@whu.edu.cn (W.L.); jfshen@hgnu.edu.cn (J.S.); gaoge@whu.edu.cn (G.G.)

Abstract: In very large-scale integration circuit (VLSI) systems, microcontrollers are often implanted
to manage the whole system to complete the given computing tasks. They play an essential part
as regulators, which should allocate resources steadily and issue instructions promptly to drive
functional units. However, most of the recent research focuses on the operation at the software level
or the scheduling at the SoC level, ignoring the impact of the microarchitecture and the features of
controlled sub-modules. This paper analyzes the requirements of microcontrollers in the VLSI system
with various constraints and conditions that should be considered in the hardware implementation
of such microarchitecture. Furthermore, this paper takes an open-source design using RISC-V ISA as
the prototype to implement hardware microarchitecture. This design integrates the techniques of
out-of-order processing, which are usually used on superscalar processors. As a result, the design
quadruples the number of pipelined instructions, greatly alleviating the stalling of the instruction
stream with a maximum extra look up table utilization of 18.37% in FPGA implementation.

Keywords: microcontroller; out-of-order; microarchitecture; RISC-V; hardware implementation

1. Introduction

Generally, the microcontroller performs its role independently. It is embedded to
make serial communication or some simple calculating tasks, and meets the processing
requirements as well. However, as the requirements of machine learning tasks gradually
increase, the microcontroller itself cannot perform the tasks of large-scale parallel com-
puting. For example, the microcontroller plays a role in managing multiple coprocessors
to better complete the computing tasks in the AI processor [1–3]. The current research
is mostly limited to the scheduling at the software level and the SoC level [4–6], lacking
specific analysis of the micro-architecture inside the controller. The study discusses the
design of such a controller microarchitecture, starting with how the microcontroller can
better perform in a VLSI system.

The function of the microcontroller in a VLSI system can be mainly divided into two
parts: control and computing. As for the function of control, a microcontroller is required
to be able to schedule other processing units to work correctly, such as configuring the
registers of sub-modules, scheduling the data in memory, accepting interrupt requests
and processing interrupt transactions. In addition, the microcontroller inevitably needs to
perform some computing tasks in some cases. For example, in an AI processor, most of
the computations are performed by sub-modules in high-speed parallel processing. When
some operators adopt unusual data formats, or the computing mode is so complex, it is
difficult for the sub-modules to handle.

There are two main methods to control, which are shown in Figure 1a,b:

• Sub-modules work through register configuration: reading and writing registers make
up the major means of sub-module controlling. For example, NVDLA, an open-source

Electronics 2022, 11, 2989. https://doi.org/10.3390/electronics11192989 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11192989
https://doi.org/10.3390/electronics11192989
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11192989
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11192989?type=check_update&version=1

Electronics 2022, 11, 2989 2 of 17

deep learning accelerator from NVIDIA Corporation, works in this way [7]. The
controller configures registers in a certain order, and then the sub-module starts up
after the operation. This method is simple, but has high hardware portability since
each sub-module is linked directly through a standard bus.

• Issuing instructions through the custom instruction interface: in modern microarchi-
tecture, there will be a custom instruction interface for specific requirements. Processor
designers formulate custom instructions according to the computing characteristics.
In a general controlling flow, after a custom instruction is recognized in the processor
dispatch unit, it will be transmitted to the sub-module through the custom interface
directly. In return, the sub-module sends results back. In this method, the coupling
between the processor and the sub-module is tighter. Therefore, it is necessary to
consider the computing characteristics of the processor and the sub-modules, as well
as their interaction. The custom instruction interfaces are the key to realizing such
control, among which the most mature and popular is the ROCC interface in the
Rocket architecture [8].

Electronics 2022, 11, x FOR PEER REVIEW 2 of 18

There are two main methods to control, which are shown in Figure 1a,b:

• Sub-modules work through register configuration: reading and writing registers

make up the major means of sub-module controlling. For example, NVDLA, an open-

source deep learning accelerator from NVIDIA Corporation, works in this way [7].

The controller configures registers in a certain order, and then the sub-module starts

up after the operation. This method is simple, but has high hardware portability since

each sub-module is linked directly through a standard bus.

• Issuing instructions through the custom instruction interface: in modern microarchi-

tecture, there will be a custom instruction interface for specific requirements. Proces-

sor designers formulate custom instructions according to the computing characteris-

tics. In a general controlling flow, after a custom instruction is recognized in the pro-

cessor dispatch unit, it will be transmitted to the sub-module through the custom

interface directly. In return, the sub-module sends results back. In this method, the

coupling between the processor and the sub-module is tighter. Therefore, it is neces-

sary to consider the computing characteristics of the processor and the sub-modules,

as well as their interaction. The custom instruction interfaces are the key to realizing

such control, among which the most mature and popular is the ROCC interface in

the Rocket architecture [8].

(a)

(b)

Figure 1. (a) The CPU controls the sub-module by reading and writing registers through the data

bus and the control bus. (b) The CPU controls the sub-module by transmitting information through

the custom instruction interface.

RISC-V is an open-source instruction set, which was proposed by the University of

California, Berkeley in 2010 [9,10]. The original purpose of its design was to achieve Turing

completeness with the fewest instructions and to implement unique operations like float-

ing-point and vector computations in a modular and extensible way. RISC-V absorbs the

Figure 1. (a) The CPU controls the sub-module by reading and writing registers through the data bus
and the control bus. (b) The CPU controls the sub-module by transmitting information through the
custom instruction interface.

RISC-V is an open-source instruction set, which was proposed by the University
of California, Berkeley in 2010 [9,10]. The original purpose of its design was to achieve
Turing completeness with the fewest instructions and to implement unique operations like
floating-point and vector computations in a modular and extensible way. RISC-V absorbs
the development experience of x86 [11], ARM [12] and other advanced architectures [13]. To
prevent the instruction set from becoming more complicated because of commercialization,
modular architecture is used in RISC-V innovatively. Therefore, RISC-V can apply a unified
architecture to modularize different parts of its instruction set to meet different applications.

Electronics 2022, 11, 2989 3 of 17

This feature is particularly suitable for microcontroller designs in VLSI systems, so the
following research will be based on RISC-V.

2. Contributions

This paper makes the following contributions:

• Detailed analysis of the microarchitecture requirements of microcontrollers in VLSI
systems and the difficulties that microarchitecture hardware implementation needs to
address.

• Based on the analysis of an open-source industrial-grade microcontroller design,
this paper discusses the shortcomings, problems and improvement strategies of the
existing microarchitecture.

• This paper proposes a hardware design of the microarchitecture for a functional and
low power consumption microcontroller, which is implemented on the FPGA platform.

3. Challenges and Motivation

The problem that the microcontroller needs to solve to operate efficiently in a VLSI
system focuses on the coordination of multi-cycle instructions and the correct response to
abnormal conditions.

3.1. Analysis of Out-of-Order Processing

At present, the in-order design is mainly used in the microarchitecture design for
microcontrollers, i.e., instructions are sequentially entered into the processor in the order of
the assembly instructions compiled by the software. The microarchitecture of the in-order
design brings lower power, less hardware complexity and higher operating frequency.
However, the microarchitecture of in-order execution cannot adapt to the operation of
a large number of multi-cycle instructions. Since the cycles required for the multi-cycle
instruction’s execution to obtain the result are unknown, subsequent instructions must be
stalled due to in-order constraints, and can only be executed after the previous multi-cycle
instruction has finished execution.

In the microarchitecture design of superscalar processors, the out-of-order technique
is often used to solve this problem [14,15]. In the absence of data hazard, multi-cycle
instructions will not stall the instruction stream, so subsequent instructions need not wait
for the early execution. However, the design of this kind of microarchitecture for out-
of-order processing is often too expensive to be directly applied to the microcontroller
aiming at lower power and less complexity. Moreover, many of the related technologies of
out-of-order processing are general concepts, not only applicable to superscalar processors.

We draw lessons from these ideas, through some unique design techniques to achieve
efficient work of in-order processors. In the current research, A. Hilton [16] applies the
technique of out-of-order processing to the in-order processor, and the design of “Flea-
Flicker” two-pass pipelining [17] combines the out-of-order processing technologies into
the in-order processor, which effectively avoids the stalling during the operation of the
instructions. The advanced performance can be achieved by integrating the ideas of out-
of-order processing into the microarchitecture of in-order processing with appropriate
software scheduling.

According to McFarlin [18]’s research, the ability of software scheduling is still limited.
Some scheduling must be realized through hardware out-of-order design. Because memory-
access latency, branch and other multi-cycle instruction execution information are not
transparent to the software, they can only be known during the actual execution of the
instruction stream. Therefore, the research aims to further integrate the idea of out-of-order
processing into the microarchitecture design of microcontrollers, and find the balance
between out-of-order processing design and low-power design.

The workflow of the microcontroller includes fetching instructions and then operating
the registers. Additionally, it controls the external sub-modules through memory-access
instructions or custom instructions. For the RISC-V instruction set, only two memory-access

Electronics 2022, 11, 2989 4 of 17

instructions (load and store) can interact externally, i.e., the microcontroller based on the
RISC-V instruction set mainly controls the sub-modules through these two memory-access
instructions [9]. Therefore, in the design of an out-of-order processor, additional attention
should be paid to an efficient stream of the memory-access instructions.

3.2. Analysis of Data Hazards

Although out-of-order processing can improve the operation of the instruction stream
in the processor, it brings the problem of data hazards and requires additional hardware
logic to deal with. The data hazards can be divided into three types:

• WAW (Write After Write): If the destination register index that the subsequent instruc-
tion needs to write back is the same as that of the previous one, then in the process of
out-of-order execution, the subsequent instruction may write back before the previous
one. The result of the previous instruction will overwrite the written back result of the
subsequent instruction.

• WAR (Write After Read): If the destination register index that the subsequent instruc-
tion needs to write back is the same as that which the previous instruction needs to
read, then in the process of out-of-order execution, the subsequent instruction may
write back before the previous one reads the register, at which point the previous
instruction reads the wrong data of source operands.

• RAW (Read After Write): If the source register index that the subsequent instruction
needs to read is the same as that which the previous instruction needs to write back,
then in the process of out-of-order execution, the subsequent instruction may read the
register before the previous one writes back, at which point the subsequent instruction
reads the wrong data of source operands.

3.3. Analysis of Static and Dynamic Hardware Scheduling in Abnormal Cases

The working environment for microcontrollers in VLSI system is diverse and complex.
To keep the processor in a stable working state, there must be some additional scheduling
designs in the hardware. There are two main types of scheduling at the hardware level:
static scheduling and dynamic scheduling. For instance, the static scheduling strategy for
branch instructions tends to be forward branches [19]. Since most instructions are forward
branches, static scheduling can meet most of the prediction requirements. To further
improve the prediction efficiency, a dynamic prediction strategy must be used at the cost of
complicated logic and extra power consumption [20]. However, in the microarchitecture
design of the microcontroller, its power consumption and complexity are often limited. To
sum up, static prediction designs are usually adopted in the scheduling strategy. But in
some cases, some dynamic scheduling designs can achieve very pleasant results without
major side effects.

In the hardware design of microcontrollers, a suitable scheduling strategy can coordi-
nate most of the operating states. But the scheduling strategy cannot resolve all the possible
exceptions. To ensure the correctness of the processor, it is necessary to have a relevant
hardware design to deal with abnormal situations.

4. Architecture and Analysis

The discussion will be based on the Nuclei Technology Corporation’s Hummingbird e203,
which is an open-source, low-power and industrial-grade microcontroller [21]. Detailed
processor core microarchitecture is shown in Figure 2. It reflects the microarchitecture
design considerations of existing industrial-grade microcontrollers, while exposing many
problems that can be optimized.

Electronics 2022, 11, 2989 5 of 17

Electronics 2022, 11, x FOR PEER REVIEW 5 of 18

Detailed processor core microarchitecture is shown in Figure 2. It reflects the microarchi-

tecture design considerations of existing industrial-grade microcontrollers, while expos-

ing many problems that can be optimized.

Figure 2. The overall hardware architecture diagram. Additional designs are marked in green color.

4.1. Pipeline of Original Microarchitecture

It can be said that the Hummingbird e203 adopts a two-stage pipeline structure. The

front-end unit (instruction-fetch) fetches instructions in order, and puts the fetched in-

structions into the instruction registers. Every cycle, the back-end will dispatch the in-

structions from the instruction registers to different execution units in order.

The instructions are divided into two types:

• Instructions executed in one cycle. Such instructions are executed, committed and

written back in one cycle on the second stage of the pipeline.

• Instructions executed in multiple cycles. When multi-cycle instructions are dis-

patched to the execution units and have not yet been written back, they are typically

known as Outstanding Instructions.

Since the e203 processor writes back in order, there is a module called Outstanding

Instruction Track FIFO (OITF). Every time a multi-cycle instruction is dispatched, an entry

is registered in the OITF module, and the entry information is sent to the multi-cycle in-

struction controller at the same time. In the multi-cycle instructions write-back stage, the

controller’s entry information will be compared with the one in the OITF. If matched, it

will be deregistered and written back, to ensure dispatch and write back in order.

In conclusion, the e203 processor adopts a microarchitecture of in-order issuing, out-

of-order execution and in-order write-back. By the way, we add the floating-point pro-

cessing unit and the vector processing unit to the original CPU design to meet some spe-

cial needs.

4.2. Order of the Instructions Matters

The order of multi-cycle instruction (MI) and single-cycle instruction (SI) has a large

impact on the data hazards. Two cases according to different orders are discussed:

• MI/SI after SI. Since the previous instruction completes all operations in one cycle,

the subsequent instruction does not produce data hazards with the previous one.

• MI/SI after MI. Since the previous instruction requires multiple cycles to be executed,

when the subsequent instruction operates on the register file, likely the previous one

has not been written back. This will result in a data hazard. We call these MAM and

SAM for short.

Figure 2. The overall hardware architecture diagram. Additional designs are marked in green color.

4.1. Pipeline of Original Microarchitecture

It can be said that the Hummingbird e203 adopts a two-stage pipeline structure.
The front-end unit (instruction-fetch) fetches instructions in order, and puts the fetched
instructions into the instruction registers. Every cycle, the back-end will dispatch the
instructions from the instruction registers to different execution units in order.

The instructions are divided into two types:

• Instructions executed in one cycle. Such instructions are executed, committed and
written back in one cycle on the second stage of the pipeline.

• Instructions executed in multiple cycles. When multi-cycle instructions are dispatched
to the execution units and have not yet been written back, they are typically known as
Outstanding Instructions.

Since the e203 processor writes back in order, there is a module called Outstanding
Instruction Track FIFO (OITF). Every time a multi-cycle instruction is dispatched, an entry
is registered in the OITF module, and the entry information is sent to the multi-cycle
instruction controller at the same time. In the multi-cycle instructions write-back stage, the
controller’s entry information will be compared with the one in the OITF. If matched, it
will be deregistered and written back, to ensure dispatch and write back in order.

In conclusion, the e203 processor adopts a microarchitecture of in-order issuing, out-of-
order execution and in-order write-back. By the way, we add the floating-point processing
unit and the vector processing unit to the original CPU design to meet some special needs.

4.2. Order of the Instructions Matters

The order of multi-cycle instruction (MI) and single-cycle instruction (SI) has a large
impact on the data hazards. Two cases according to different orders are discussed:

• MI/SI after SI. Since the previous instruction completes all operations in one cycle, the
subsequent instruction does not produce data hazards with the previous one.

• MI/SI after MI. Since the previous instruction requires multiple cycles to be executed,
when the subsequent instruction operates on the register file, likely the previous one
has not been written back. This will result in a data hazard. We call these MAM and
SAM for short.

4.3. Stalling in Pipeline

The original processor design adopted a simple stalling approach to deal with the
data hazards. Stalling in pipeline possibly occurs in both the instruction dispatch unit and
instruction writeback unit:

1. When the instruction dispatch unit dispatches a multi-cycle instruction, it compares
the source operand register index and result register index of the instruction with

Electronics 2022, 11, 2989 6 of 17

every entry in the OITF. If the data hazard gets checked, the dispatch stage will be
stalled.

2. When the instruction write-back unit writes back a multi-cycle instruction, it cannot
be deregistered if the information in the multi-cycle instruction controller is different
from the entry information of the OITF, thus, stalling the write-back stage.

The disadvantage of such a design is that it will stall the pipeline and prevent subse-
quent instructions operation frequently when operating numbers of multi-cycle instructions,
e.g., when the controller configures the registers of the sub-module by the store instructions,
and, due to stalling, the store instructions can only be issued one by one (as shown in
Figure 3).

Electronics 2022, 11, x FOR PEER REVIEW 6 of 18

4.3. Stalling in Pipeline

The original processor design adopted a simple stalling approach to deal with the

data hazards. Stalling in pipeline possibly occurs in both the instruction dispatch unit and

instruction writeback unit:

1. When the instruction dispatch unit dispatches a multi-cycle instruction, it compares

the source operand register index and result register index of the instruction with

every entry in the OITF. If the data hazard gets checked, the dispatch stage will be

stalled.

2. When the instruction write-back unit writes back a multi-cycle instruction, it cannot

be deregistered if the information in the multi-cycle instruction controller is different

from the entry information of the OITF, thus, stalling the write-back stage.

The disadvantage of such a design is that it will stall the pipeline and prevent subse-

quent instructions operation frequently when operating numbers of multi-cycle instruc-

tions, e.g., when the controller configures the registers of the sub-module by the store in-

structions, and, due to stalling, the store instructions can only be issued one by one (as

shown in Figure 3).

(a)

(b)

Figure 3. (a) Assuming that the store instruction takes five cycles to respond, they can only be exe-

cuted one by one because of stalling. (b) Added store-queue, multiple store instructions can be exe-

cuted consecutively without stalling.

4.4. Differences Caused by Different Multi-Cycle Instruction Dispatch Modes

There are many kinds of multi-cycle instructions, e.g., load & store instructions, mul-

tiply and divide instructions, vector instructions and floating-point instructions.

The dispatching methods of multi-cycle instructions may be completely different,

and they can be divided into two types:

1. Stalled Multi-cycle Instruction Unit: the execution unit can no longer accept instruc-

tions when operating one instruction. The next instruction can only be accepted after

the current operation is completed, e.g., a divider that continuously loops and calcu-

lates the result by using a serial technique.

2. Pipelined Multi-cycle Instruction Unit: the execution unit has a pipeline structure. It

can execute multiple instructions at the same time, expanding the throughput of in-

structions by the technique of the pipeline. Therefore, multi-cycle instructions can be

Figure 3. (a) Assuming that the store instruction takes five cycles to respond, they can only be
executed one by one because of stalling. (b) Added store-queue, multiple store instructions can be
executed consecutively without stalling.

4.4. Differences Caused by Different Multi-Cycle Instruction Dispatch Modes

There are many kinds of multi-cycle instructions, e.g., load & store instructions,
multiply and divide instructions, vector instructions and floating-point instructions.

The dispatching methods of multi-cycle instructions may be completely different, and
they can be divided into two types:

1. Stalled Multi-cycle Instruction Unit: the execution unit can no longer accept instruc-
tions when operating one instruction. The next instruction can only be accepted
after the current operation is completed, e.g., a divider that continuously loops and
calculates the result by using a serial technique.

2. Pipelined Multi-cycle Instruction Unit: the execution unit has a pipeline structure.
It can execute multiple instructions at the same time, expanding the throughput of
instructions by the technique of the pipeline. Therefore, multi-cycle instructions can be
continuously dispatched to the execution unit in the pipeline style unless the pipeline
is full or stalling.

According to the different dispatching methods of execution units, targeted design is
required to achieve better parallel operation of multi-cycle instructions.

Electronics 2022, 11, 2989 7 of 17

5. Implementation

To verify the above analysis and discussion, we propose a specific hardware design
in terms of multi-cycle instruction scheduling, which enables microcontrollers to achieve
higher performance in the control and computing tasks in the VLSI system. Next, we’ll
discuss the details of the hardware implementation.

5.1. Designs for Instruction Flow

Aiming at the hardware design requirements of microcontrollers in VLSI system, this
paper analyzes the existing industrial microcontroller design in Section 4. Due to the stalling
problem, the existing microcontroller designs fail to perform control and computation tasks
smoothly and efficiently when handling multiple multi-cycle instructions and controlling
a large number of sub-modules. The microarchitecture is designed to avoid the stalling
of the instruction issue queue, the stalling of the instruction write-back register and the
latency of the memory-access instructions.

The stalling problem in the instruction issue queue is mainly due to the data hazards
of RAW and WAW, i.e., while the register data that the previous instruction needs to write
has not been written yet, the subsequent instruction that has related data requirements
needs to be stalled. Since the operand has been fetched from the register file before issuing
due to the microarchitecture of the processor, which is a two-stage pipeline, the data hazard
of WAR can be ignored. Such stalling is necessary to prevent incorrect processing results.

However, if there is no data hazard in the instruction queue after the stalled instruction
at this time, it can bypass the stalled instruction and perform processing operations in
advance. A waiting queue is designed to alleviate the stalling of issuing instructions. As
shown in Figure 4a, if the issue queue is stalled, the stalled instructions will be rerouted
to the waiting queue first. When the problem of the data hazard is solved, waiting queue
instructions can be fired and executed normally. The hardware design proposes a clever
solution without the side effect of high consumption. Abella Ferrer [22] researches and
summarizes similar hardware designs for optimizing instruction issue queues.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 18

continuously dispatched to the execution unit in the pipeline style unless the pipeline

is full or stalling.

According to the different dispatching methods of execution units, targeted design is

required to achieve better parallel operation of multi-cycle instructions.

5. Implementation

To verify the above analysis and discussion, we propose a specific hardware design

in terms of multi-cycle instruction scheduling, which enables microcontrollers to achieve

higher performance in the control and computing tasks in the VLSI system. Next, we’ll

discuss the details of the hardware implementation.

5.1. Designs for Instruction Flow

Aiming at the hardware design requirements of microcontrollers in VLSI system, this

paper analyzes the existing industrial microcontroller design in Section 4. Due to the

stalling problem, the existing microcontroller designs fail to perform control and compu-

tation tasks smoothly and efficiently when handling multiple multi-cycle instructions and

controlling a large number of sub-modules. The microarchitecture is designed to avoid

the stalling of the instruction issue queue, the stalling of the instruction write-back register

and the latency of the memory-access instructions.

The stalling problem in the instruction issue queue is mainly due to the data hazards

of RAW and WAW, i.e., while the register data that the previous instruction needs to write

has not been written yet, the subsequent instruction that has related data requirements

needs to be stalled. Since the operand has been fetched from the register file before issuing

due to the microarchitecture of the processor, which is a two-stage pipeline, the data haz-

ard of WAR can be ignored. Such stalling is necessary to prevent incorrect processing re-

sults.

However, if there is no data hazard in the instruction queue after the stalled instruc-

tion at this time, it can bypass the stalled instruction and perform processing operations

in advance. A waiting queue is designed to alleviate the stalling of issuing instructions.

As shown in Figure 4a, if the issue queue is stalled, the stalled instructions will be rerouted

to the waiting queue first. When the problem of the data hazard is solved, waiting queue

instructions can be fired and executed normally. The hardware design proposes a clever

solution without the side effect of high consumption. Abella Ferrer [22] researches and

summarizes similar hardware designs for optimizing instruction issue queues.

Figure 4. Schematic diagram of instruction flow. The green color marks the additionally added path
for instructions, while the red color marks the main path. (a) Waiting queue. (b) Shadow register.
(c) Load-Store queue. (d) Execution queue.

In addition, we increase the lanes of instruction flow by adding physical registers,
which further solves the risk of the WAW data hazard. In the RISC-V instruction set specifi-
cation, the processor has only 32 standard registers [9], which are called logic registers. Due
to the limitation of registers’ amount, the WAW data hazard occurs when two instructions

Electronics 2022, 11, 2989 8 of 17

write to the same register successively. In essence, this data hazard is a completely avoid-
able false data hazard, because there is no data exchange between the two. The technique
of adding physical registers is applied to deal with it. Such technique is very common in
the microarchitecture design of superscalar processors [23,24], but the consumption is too
large for microcontrollers targeting lower power areas.

Therefore, we make a small trade-off. According to the analysis in Section 4, we only
try to solve the SAM problem, while the MAM problem can be left to the waiting queue to
handle. OITF has to judge every multi-cycle instruction to solve the MAM problem, which
takes N ∗ (N-1) times (as shown in Figure 5a), while the SAM problem takes only N times
(as shown in Figure 5b). Leaving the MAM problem in the waiting queue can minimize the
logic complexity from O(N2) to O(N).

Electronics 2022, 11, x FOR PEER REVIEW 8 of 18

Figure 4. Schematic diagram of instruction flow. The green color marks the additionally added path

for instructions, while the red color marks the main path. (a) Waiting queue. (b) Shadow register.

(c) Load-Store queue. (d) Execution queue.

In addition, we increase the lanes of instruction flow by adding physical registers,

which further solves the risk of the WAW data hazard. In the RISC-V instruction set spec-

ification, the processor has only 32 standard registers [9], which are called logic registers.

Due to the limitation of registers’ amount, the WAW data hazard occurs when two in-

structions write to the same register successively. In essence, this data hazard is a com-

pletely avoidable false data hazard, because there is no data exchange between the two.

The technique of adding physical registers is applied to deal with it. Such technique is

very common in the microarchitecture design of superscalar processors [23,24], but the

consumption is too large for microcontrollers targeting lower power areas.

Therefore, we make a small trade-off. According to the analysis in Section 4, we only

try to solve the SAM problem, while the MAM problem can be left to the waiting queue

to handle. OITF has to judge every multi-cycle instruction to solve the MAM problem,

which takes N*(N-1) times (as shown in Figure 5a), while the SAM problem takes only N

times (as shown in Figure 5b). Leaving the MAM problem in the waiting queue can min-

imize the logic complexity from O(N²) to O(N).

Figure 5. (a) Each multi-cycle instruction in an entry of depth N is compared with each other. (b)

The instruction outside the entry only needs to be compared N times.

In Figure 4b, in addition to the original 32 physical registers and logical registers cor-

responding one by one, we call the newly added registers shadow register. Once a WAW

occurs, the subsequent instructions are written back to the shadow register first. Data is

updated from the shadow register to the logical register when the data hazard situation

is resolved. If the shadow register is in the full state, the data hazard caused by the new

instructions will be passed forward to the issue waiting queue for solution. Moreover, if

the issue waiting queue is also in the full state, the pipeline will be stalled until the idle

state occurs and then the pipeline will continue.

5.2. Design of the Multi-Cycle Instruction Queues

Control and part of the computation function are the indispensable functions of the

microcontroller. Since the processor is based on the RISC-V ISA, this paper takes full ad-

vantage of its modular features, and implements the configurable characteristics of the

hardware design. For example, in the AI processor, part of the algorithm cannot be opti-

mized by the compiler (delivered to the domain-specific accelerator to compute), so the

microcontroller needs to add support for floating-point operation instructions or vector

operation instructions to meet this part of the demand.

Figure 5. (a) Each multi-cycle instruction in an entry of depth N is compared with each other. (b) The
instruction outside the entry only needs to be compared N times.

In Figure 4b, in addition to the original 32 physical registers and logical registers
corresponding one by one, we call the newly added registers shadow register. Once a WAW
occurs, the subsequent instructions are written back to the shadow register first. Data is
updated from the shadow register to the logical register when the data hazard situation
is resolved. If the shadow register is in the full state, the data hazard caused by the new
instructions will be passed forward to the issue waiting queue for solution. Moreover, if
the issue waiting queue is also in the full state, the pipeline will be stalled until the idle
state occurs and then the pipeline will continue.

5.2. Design of the Multi-Cycle Instruction Queues

Control and part of the computation function are the indispensable functions of the
microcontroller. Since the processor is based on the RISC-V ISA, this paper takes full
advantage of its modular features, and implements the configurable characteristics of
the hardware design. For example, in the AI processor, part of the algorithm cannot be
optimized by the compiler (delivered to the domain-specific accelerator to compute), so the
microcontroller needs to add support for floating-point operation instructions or vector
operation instructions to meet this part of the demand.

As discussed in Section 4, different multi-cycle instructions have different dispatch
modes, so the separate queues are designed according to the characteristics of each multi-
cycle instruction. In Figure 4c, we have specially designed a memory-access queue for the
instructions to meet a large number of memory-access requirements. In Figure 4d, we can
effectively adapt to different dispatch modes of multi-cycle instructions by configuring
the depth of instruction queues. For example, we can configure the depth of the memory-
access queue according to the number of sub-modules to be controlled, or configure a
specific instruction queue depth based on the dispatch mode of the multi-cycle instruction
execution unit. These specially-designed instruction queues enhance the flexibility and
extensibility of the microcontroller.

Electronics 2022, 11, 2989 9 of 17

5.3. Design of System Architecture

Additional modules and complex buses make the simple system architecture unable
to meet the new requirements. Therefore, we also design the system architecture and the
access interface with ingenuity (as shown in Figure 6). In a VLSI system, due to the large
number of modules to be scheduled, the bus is often very complex, and then the biggest
problem is that it will bring additional memory access latency.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 18

As discussed in Section 4, different multi-cycle instructions have different dispatch

modes, so the separate queues are designed according to the characteristics of each multi-

cycle instruction. In Figure 4c, we have specially designed a memory-access queue for the

instructions to meet a large number of memory-access requirements. In figure 4d, we can

effectively adapt to different dispatch modes of multi-cycle instructions by configuring

the depth of instruction queues. For example, we can configure the depth of the memory-

access queue according to the number of sub-modules to be controlled, or configure a

specific instruction queue depth based on the dispatch mode of the multi-cycle instruction

execution unit. These specially-designed instruction queues enhance the flexibility and

extensibility of the microcontroller.

5.3. Design of System Architecture

Additional modules and complex buses make the simple system architecture unable

to meet the new requirements. Therefore, we also design the system architecture and the

access interface with ingenuity (as shown in Figure 6). In a VLSI system, due to the large

number of modules to be scheduled, the bus is often very complex, and then the biggest

problem is that it will bring additional memory access latency.

The design is mainly reflected in the following two parts:

1. The fast access interface that directly bypasses the bus is additionally developed. This

fast access interface is used for some sub-modules requiring high responsiveness con-

trol, while the general access interface needs to step across the multi-level bus.

2. Separate access interface for vector processor. Due to the huge memory demand of

the vector processor, a large number of data streams may affect the execution of the

basic memory instructions. Therefore, as shown in Figure 6, we decouple the access

interface of the vector processor from that of the microcontroller, so the vector com-

puting data streams are separated from the control streams.

Figure 6. Schematic diagram of system architecture.

6. Results

6.1. Function Analysis

The impact on the operation of pipeline is shown in the pseudocode in Figure 7.

Without the waiting queue and the shadow registers, issuing instructions and operating

the registers may result in stalling. Causes for the stalling could include the stalling cor-

relation being a WAW hazard or RAW hazard or a full multi-cycle instruction queue (dis-

cussed in Section 5.2). The stalling will prevent the subsequent instructions from issuing

or being fetched, delaying the entire pipeline for several, or even dozens, of clock cycles.

Figure 6. Schematic diagram of system architecture.

The design is mainly reflected in the following two parts:

1. The fast access interface that directly bypasses the bus is additionally developed. This
fast access interface is used for some sub-modules requiring high responsiveness
control, while the general access interface needs to step across the multi-level bus.

2. Separate access interface for vector processor. Due to the huge memory demand
of the vector processor, a large number of data streams may affect the execution of
the basic memory instructions. Therefore, as shown in Figure 6, we decouple the
access interface of the vector processor from that of the microcontroller, so the vector
computing data streams are separated from the control streams.

6. Results
6.1. Function Analysis

The impact on the operation of pipeline is shown in the pseudocode in Figure 7.
Without the waiting queue and the shadow registers, issuing instructions and operating the
registers may result in stalling. Causes for the stalling could include the stalling correlation
being a WAW hazard or RAW hazard or a full multi-cycle instruction queue (discussed in
Section 5.2). The stalling will prevent the subsequent instructions from issuing or being
fetched, delaying the entire pipeline for several, or even dozens, of clock cycles.

To address the issue of stalling, the waiting queue and the shadow registers are
implemented in the design. They can avoid pipeline stalling in most scenarios, costing not
more than one clock cycle for each instruction.

For example, when the WAW hazard occurs, the data will be written into the shadow
registers rather than the physical registers. Though the previous instructions have not
returned the result, the pipeline can move on. The data stored in the shadow registers
will be written into the physical registers after the WAW hazard is resolved. The shadow
registers eliminate the WAW data dependencies directly to avoid stalling. Therefore, it
does not take any extra clock cycle. The shortcoming is that it can only handle the stalling
caused by the WAW hazard.

Electronics 2022, 11, 2989 10 of 17

Electronics 2022, 11, x FOR PEER REVIEW 10 of 18

To address the issue of stalling, the waiting queue and the shadow registers are im-

plemented in the design. They can avoid pipeline stalling in most scenarios, costing not

more than one clock cycle for each instruction.

Figure 7. Pseudocode of the operation of pipeline.

For example, when the WAW hazard occurs, the data will be written into the shadow

registers rather than the physical registers. Though the previous instructions have not re-

turned the result, the pipeline can move on. The data stored in the shadow registers will

be written into the physical registers after the WAW hazard is resolved. The shadow reg-

isters eliminate the WAW data dependencies directly to avoid stalling. Therefore, it does

not take any extra clock cycle. The shortcoming is that it can only handle the stalling

caused by the WAW hazard.

Unlike the shadow registers, the waiting queue handles the stalling by changing the

order of the issuing instructions. When a stalling correlation between instructions occurs,

Figure 7. Pseudocode of the operation of pipeline.

Unlike the shadow registers, the waiting queue handles the stalling by changing the
order of the issuing instructions. When a stalling correlation between instructions occurs,
the current instruction will be stored in the waiting queue, waiting for the stalling to be
resolved. In this process, it takes one cycle to store the instruction in the waiting queue and
takes another cycle to fetch it (as shown in the pseudocode on line 14). Thus, it takes one
more clock cycle to operate each waiting instruction in the pipeline.

By contrast, the waiting queue can work in any stalling situation, while the shadow
registers can only avoid the stalling caused by WAW. The waiting queue takes one cycle to
address one stalling issue, while the shadow registers do not cost extra cycles. The contrast
of both designs shows that WAW hazards should be solved by shadow registers. Only if
the shadow registers are full should the waiting queue work. The shadow registers play
the roles of assistant and pioneer. This strategy reduces the waste of the clock cycle and
prevents the waiting queue from being too busy to handle other stalling.

Electronics 2022, 11, 2989 11 of 17

6.2. Performance

The performance of the hardware microarchitecture is greatly affected by the actual
operating environment, e.g., different implementations of the algorithm, compiler optimiza-
tion and actual memory access latency all make a difference. To evaluate the performance of
the hardware optimization, the theoretical and practical aspects are analyzed and evaluated.

The case shown in Figure 8 assumes that the stalling correlation occurs between instr(3)
and instr(2). Instr(2) needs N cycles to return the result. In the common case, the pipeline
will stall for N cycles. Under the action of the waiting queue, the order of instructions
is changed. The subsequent instructions will be issued continuously. Instr(3) enters the
waiting queue and is issued and executed again after instr(2) returns the result. In this case,
the pipeline stalls for only one cycle, saving N-1 clock cycles.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 18

the current instruction will be stored in the waiting queue, waiting for the stalling to be

resolved. In this process, it takes one cycle to store the instruction in the waiting queue

and takes another cycle to fetch it (as shown in the pseudocode on line 14). Thus, it takes

one more clock cycle to operate each waiting instruction in the pipeline.

By contrast, the waiting queue can work in any stalling situation, while the shadow

registers can only avoid the stalling caused by WAW. The waiting queue takes one cycle

to address one stalling issue, while the shadow registers do not cost extra cycles. The con-

trast of both designs shows that WAW hazards should be solved by shadow registers.

Only if the shadow registers are full should the waiting queue work. The shadow registers

play the roles of assistant and pioneer. This strategy reduces the waste of the clock cycle

and prevents the waiting queue from being too busy to handle other stalling.

6.2. Performance

The performance of the hardware microarchitecture is greatly affected by the actual

operating environment, e.g., different implementations of the algorithm, compiler optimi-

zation and actual memory access latency all make a difference. To evaluate the perfor-

mance of the hardware optimization, the theoretical and practical aspects are analyzed

and evaluated.

The case shown in Figure 8 assumes that the stalling correlation occurs between in-

str(3) and instr(2). Instr(2) needs N cycles to return the result. In the common case, the

pipeline will stall for N cycles. Under the action of the waiting queue, the order of instruc-

tions is changed. The subsequent instructions will be issued continuously. Instr(3) enters

the waiting queue and is issued and executed again after instr(2) returns the result. In this

case, the pipeline stalls for only one cycle, saving N-1 clock cycles.

Figure 8. Theoretical analysis of the waiting queue. (a) Without waiting queue. (b) Optimized with

waiting queue.

As shown in Figure 9, the WAW data hazard occurs between instr(3) and instr(2).

The execution results of instr(2) and instr(3) both need to be written into register2, while

result(2) needs N cycles to return. In the common case, the pipeline will stall for N cycles.

Due to the shadow registers eliminating the WAW data dependencies, result(3) enters the

shadow registers and will be written into register2 after the result(2) is written. In this

case, the pipeline does not stall, saving N clock cycles.

Figure 8. Theoretical analysis of the waiting queue. (a) Without waiting queue. (b) Optimized with
waiting queue.

As shown in Figure 9, the WAW data hazard occurs between instr(3) and instr(2).
The execution results of instr(2) and instr(3) both need to be written into register2, while
result(2) needs N cycles to return. In the common case, the pipeline will stall for N cycles.
Due to the shadow registers eliminating the WAW data dependencies, result(3) enters the
shadow registers and will be written into register2 after the result(2) is written. In this case,
the pipeline does not stall, saving N clock cycles.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 18

Figure 9. Theoretical analysis of the shadow register. (a) Without shadow register. (b) Optimized

with shadow register.

To evaluate the theoretical maximum speedup, the processing time under different

conditions is listed in Table 1. In a total of M instructions, we use m to denote the number

of hazards and n to denote the average stalling cycles.

Table 1. Theoretical cycle consumption under different designs. Assuming that the number of in-

structions is M, the number of WAW hazard is m1, the WAW extra cycle cost is n1, the number of

RAW is m2 and the RAW extra cycle cost is n2.

Hardware Design Stalling Cycle Total Cycles

Original m1*n1 + m2*n2 M+m1*n1 + m2*n2

Shadow Register m2*n2 M + m2*n2

Waiting Queue m1 + m2 M + m1 + m2

Shadow Register + Waiting

Queue
m2 M + m2

The theoretical speedup rate of the shadow registers is:

SpeedUpRate = (
M +m1 ∗ n1 + m2 ∗ n2

M +m2 ∗ n2
− 1) × 100% (1)

Compared to the original design, the stalling cycles of WAW are saved. Because m1

represents the number of WAW hazards, and n1 represents the average number of clock

cycles consumed per WAW hazard, this means that the more cycles WAW hazards con-

sume, the higher the speedup rate provided by the shadow registers in the system.

The theoretical speedup rate of the waiting queue is:

SpeedUpRate = (
M +m1 ∗ n1 + m2 ∗ n2

M +m1 +m2
− 1) × 100% (2)

With the operation of waiting queue, the clock cycles consumed by a single hazard

(n1 and n2) have almost no effect on the pipeline. The result depends on the total number

of hazards. Therefore, in the case of few hazards (m1 and m2) with a large number of

WAW cycle cost, the shadow registers perform better than the waiting queue.

The most theoretical speedup rate of the coordination between the waiting queue

and shadow registers is:

SpeedUpRate = (
M +m1 ∗ n1 + m2 ∗ n2

M +m2
− 1) × 100% (3)

Figure 9. Theoretical analysis of the shadow register. (a) Without shadow register. (b) Optimized
with shadow register.

Electronics 2022, 11, 2989 12 of 17

To evaluate the theoretical maximum speedup, the processing time under different
conditions is listed in Table 1. In a total of M instructions, we use m to denote the number
of hazards and n to denote the average stalling cycles.

Table 1. Theoretical cycle consumption under different designs. Assuming that the number of
instructions is M, the number of WAW hazard is m1, the WAW extra cycle cost is n1, the number of
RAW is m2 and the RAW extra cycle cost is n2.

Hardware Design Stalling Cycle Total Cycles

Original m1 ∗ n1 + m2 ∗ n2 M + m1 ∗ n1 + m2 ∗ n2

Shadow Register m2 ∗ n2 M + m2 ∗ n2

Waiting Queue m1 + m2 M + m1 + m2

Shadow Register + Waiting Queue m2 M + m2

The theoretical speedup rate of the shadow registers is:

SpeedUpRate =

(
M + m1∗n1 + m2∗n2

M + m2∗n2
− 1

)
× 100% (1)

Compared to the original design, the stalling cycles of WAW are saved. Because m1
represents the number of WAW hazards, and n1 represents the average number of clock
cycles consumed per WAW hazard, this means that the more cycles WAW hazards consume,
the higher the speedup rate provided by the shadow registers in the system.

The theoretical speedup rate of the waiting queue is:

SpeedUpRate =

(
M + m1∗n1 + m2∗n2

M + m1 + m2
− 1

)
× 100% (2)

With the operation of waiting queue, the clock cycles consumed by a single hazard
(n1 and n2) have almost no effect on the pipeline. The result depends on the total number
of hazards. Therefore, in the case of few hazards (m1 and m2) with a large number of WAW
cycle cost, the shadow registers perform better than the waiting queue.

The most theoretical speedup rate of the coordination between the waiting queue and
shadow registers is:

SpeedUpRate =

(
M + m1∗n1 + m2∗n2

M + m2
− 1

)
× 100% (3)

The above two designs work together to maximize optimization. As a result, the
stalling cycles are reduced to m2, and the total cycles are reduced to only N + m2. Since in
most cases m2 is much smaller than m1f ∗ n1 + m2 ∗ n2, the theoretical speedup rate can
be (m1 ∗ n1 + n2)/N and the final actual speedup rate can be close to 20%, which is quite
impressive for microcontrollers.

What is also worth noticing is that when m1 = 1, n1 = n and m2 = 0 (there is only
1 WAW hazard), the theoretical speedup rate is:

SpeedUpRate =

(
M + n

M
− 1

)
× 100% =

n
M
× 100% (4)

For instance, if N = 100, n = 10 (pipeline will stall for n cycles because of the hazard)
and the speedup rate will be 10%.

The computation of SAXPY (Scalar Alpha X Plus Y) is one of the most important and
frequent AI computing operators. From a practical point of view, the processing of SAXPY
computation is analyzed to evaluate the actual performance of the hardware optimization.
The assembly codes are shown in Figure 10.

Electronics 2022, 11, 2989 13 of 17
Electronics 2022, 11, x FOR PEER REVIEW 14 of 18

Figure 10. Assembly codes of SAXPY computation. Left, the handwritten assembly codes. Right, the

assembly codes compiled by GCC compiler with optimized level of −O3 (the most).

6.3 Hardware Utilization

The hardware design has been implemented in the XILINX XC7A200T-2FBG484I

FPGA platform [25]. The results are shown in Table 2 below. The hardware resource con-

sumption mainly lies in OITF (introduced in Section 4.1), recording the execution of multi-

cycle instructions and catching data hazards. OITF is, essentially, a FIFO-structure mod-

ule. The depth of OITF means the number of the entries it owns to record the multi-cycle

instructions, which indicates the number of multi-cycle instructions that can be executed

simultaneously.

Additional data lanes have been added to optimize stalling by out-of-order pro-

cessing of the instruction stream. However, to prevent data hazard caused by out-of-order

processing, increased hardware logic complexity to judge the multi-cycle instructions rec-

orded in OITF is essential. As shown in Figure 5b, each additional judgment will increase

N logical constraints.

Table 2. Extending the depth of OITF to 8, the table contains the experimental data in applying

optimized designs to the original design. For example, when extending the instruction stream lanes

to 12 with full functions, the consumption of look up table (LUT) is 4209, flip-flop (FF) is 2204 and

multiplexers (MUX) is 332.

Utilization Functions

LUT FF MUX Lanes
Max-Pipelined

Instructions

Write-Back Op-

timized

Issuing Opti-

mized

Original 3832 1832 289 2 2 × ×

Extended_OITF 3972 2076 328 2 8 × ×

Extended_OITF

+ Waiting Queue
4106 2134 332 3 8 √ ×

Extended_OITF

+ Shadow Register
3997 2124 328 3 8 × √

Extended_OITF 4131 2162 332 4 8 √ √

Figure 10. Assembly codes of SAXPY computation. Left, the handwritten assembly codes. Right, the
assembly codes compiled by GCC compiler with optimized level of −O3 (the most).

In the handwritten assembly codes of the implementation of SAXPY, three instructions
consecutively accessing memory causes stalling because the load queue is full. With the
waiting queue, the stalling instruction is pushed to the waiting queue to issue later instead
of stalling the operation of the multiply instruction, which has no stalling correlation. With
the memory access latency of 4 cycles (that can operate two load instructions simultaneously,
as discussed in Section 4.3), multiplication of 5 cycles and the addition of 1 cycle, the cycles
consumed in the computation loop are optimized from 18 cycles to 16 cycles, which is
12.5% speedup.

The assembly codes produced by the compiler are enlarged because, to address the
data for computing in arrays (X[i], Y[i]), the calculation of the address is added. In the
optimization of the compiler, it reorders the order of the multiply instruction and memory
access instruction, i.e., placing the multiplication before the memory load for Y[i]. As
discussed in Section 3.1, the compiler plays a role in reordering the instructions, but
without accurate information of hardware processing, the optimization is limited. As
shown in Figure 10, the stalling is unavoidable because the computation of multiplication
and addition must wait until the data is accessed from the memory. In addition, to optimize
the use of registers (the number of physical registers is limited in RISC-V ISA), the compiler
usually reuses the same register, i.e., register a5 in this piece of assembly codes, which
causes a WAW data hazard. After optimizing the hardware microarchitecture, the cycles
assumed in the computation loop are optimized from 40 cycles to 30 cycles, which is
33.3% speedup.

6.3. Hardware Utilization

The hardware design has been implemented in the XILINX XC7A200T-2FBG484I
FPGA platform [25]. The results are shown in Table 2 below. The hardware resource
consumption mainly lies in OITF (introduced in Section 4.1), recording the execution of
multi-cycle instructions and catching data hazards. OITF is, essentially, a FIFO-structure
module. The depth of OITF means the number of the entries it owns to record the multi-
cycle instructions, which indicates the number of multi-cycle instructions that can be
executed simultaneously.

Electronics 2022, 11, 2989 14 of 17

Table 2. Extending the depth of OITF to 8, the table contains the experimental data in applying
optimized designs to the original design. For example, when extending the instruction stream lanes
to 12 with full functions, the consumption of look up table (LUT) is 4209, flip-flop (FF) is 2204 and
multiplexers (MUX) is 332.

Utilization Functions

LUT FF MUX Lanes Max-Pipelined
Instructions

Write-Back
Optimized

Issuing
Optimized

Original 3832 1832 289 2 2 × ×
Extended_OITF 3972 2076 328 2 8 × ×
Extended_OITF

+ Waiting Queue 4106 2134 332 3 8
√

×

Extended_OITF
+ Shadow Register 3997 2124 328 3 8 ×

√

Extended_OITF
+ Shadow Register
+ Waiting Queue

4131 2162 332 4 8
√ √

Extended_OITF
+ Shadow Register
+ Waiting Queue

+ More Lanes

4209 2204 332 12 8
√ √

Additional data lanes have been added to optimize stalling by out-of-order processing
of the instruction stream. However, to prevent data hazard caused by out-of-order process-
ing, increased hardware logic complexity to judge the multi-cycle instructions recorded
in OITF is essential. As shown in Figure 5b, each additional judgment will increase N
logical constraints.

Extra supports for different multi-cycle instructions mean more pipelined instruc-
tions and more lanes for data streams. In addition, the demand of maximum pipelined
instructions registered in OITF will naturally increase. Therefore, predictably, the proba-
bility of stalling inflates steeply as more and more operations are embedded for complex
applications. The direct consequence is lower efficiency.

Two designs work to keep subsequent instructions flowing continuously: a waiting
queue handling both WAW and RAW stalling problems, and shadow registers assisting
to relieve the WAW stalling further. The former one takes all possible situations into
consideration so that it has outstanding performance in alleviating stalling, while the latter
one consumes only on average half of the LUT utilization compared to the former one (as
shown in Figure 11), as a supplement for WAW.

Simultaneously, both a shadow register and waiting queue could develop one addi-
tional data lane for instructions with only 134 and 25 extra LUT consumption. If the two
designs are both equipped as such, there will be four lanes for instructions (the result could
be linear superposed) with only extra 159 LUT, 86 FF and 4 MUX consumption when the
depth of OITF is eight.

According to the experiment, adding two extra concurrent operations in the execution
unit (Figure 4d) will triple the number of data lanes. As a result, the data lanes increase
by six times, and the max-pipelined instructions increase fourfold, while write-back and
issuing stalling problems are both substantially optimized at the extra cost of 377 (+9.83%)
LUT, 372(+20.31%) FF and 43(+14.88%) MUX.

Electronics 2022, 11, 2989 15 of 17

Electronics 2022, 11, x FOR PEER REVIEW 15 of 18

+ Shadow Register

+ Waiting Queue

Extended_OITF

+ Shadow Register

+ Waiting Queue

+ More Lanes

4209 2204 332 12 8 √ √

Extra supports for different multi-cycle instructions mean more pipelined instruc-

tions and more lanes for data streams. In addition, the demand of maximum pipelined

instructions registered in OITF will naturally increase. Therefore, predictably, the proba-

bility of stalling inflates steeply as more and more operations are embedded for complex

applications. The direct consequence is lower efficiency.

Two designs work to keep subsequent instructions flowing continuously: a waiting

queue handling both WAW and RAW stalling problems, and shadow registers assisting

to relieve the WAW stalling further. The former one takes all possible situations into con-

sideration so that it has outstanding performance in alleviating stalling, while the latter

one consumes only on average half of the LUT utilization compared to the former one (as

shown in Figure 11), as a supplement for WAW.

Simultaneously, both a shadow register and waiting queue could develop one addi-

tional data lane for instructions with only 134 and 25 extra LUT consumption. If the two

designs are both equipped as such, there will be four lanes for instructions (the result

could be linear superposed) with only extra 159 LUT, 86 FF and 4 MUX consumption

when the depth of OITF is eight.

According to the experiment, adding two extra concurrent operations in the execu-

tion unit (Figure 4d) will triple the number of data lanes. As a result, the data lanes in-

crease by six times, and the max-pipelined instructions increase fourfold, while write-back

and issuing stalling problems are both substantially optimized at the extra cost of 377

(+9.83%) LUT, 372(+20.31%) FF and 43(+14.88%) MUX.

Figure 11. Comparison of hardware resource utilization of the optimizing designs and the combined

design with different depths of OITF. Because of reused resources, the combined design consumes

less than the individual optimizing designs of the two.

The hardware implementation results show the consumption caused by additional

data lanes in issuing stage and write-back stage. The designs quadruple the number of

pipelined instructions and increase the number of lanes by six times, greatly alleviating

the stalling of the instruction stream without huge consumption of hardware resources.

As shown in Figure 12, the maximum number of pipelined multi-cycle instructions is

the most significant cost to the hardware design. For example, if the depth of OITF is 2,

Figure 11. Comparison of hardware resource utilization of the optimizing designs and the combined
design with different depths of OITF. Because of reused resources, the combined design consumes
less than the individual optimizing designs of the two.

The hardware implementation results show the consumption caused by additional
data lanes in issuing stage and write-back stage. The designs quadruple the number of
pipelined instructions and increase the number of lanes by six times, greatly alleviating the
stalling of the instruction stream without huge consumption of hardware resources.

As shown in Figure 12, the maximum number of pipelined multi-cycle instructions is
the most significant cost to the hardware design. For example, if the depth of OITF is 2,
the maximum extra LUT utilization is 4.02%, FF utilization is 3.82% and MUX utilization
is 1.38%, while the depth of OITF is 16, the maximum extra LUT utilization is 18.37%,
FF utilization is 44.65% and MUX utilization is 41.87% (with full function and extending
lanes to 12). Therefore, this indicator has to be considered carefully in the hardware design
tradeoff. In general scenarios, different multi-cycle instructions will not be executed in
large numbers at the same time. To reduce hardware consumption, a maximum number
of pipelined multi-cycle instructions does not need to satisfy the state that all multi-cycle
instruction queues are fully loaded.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 18

the maximum extra LUT utilization is 4.02%, FF utilization is 3.82% and MUX utilization

is 1.38%, while the depth of OITF is 16, the maximum extra LUT utilization is 18.37%, FF

utilization is 44.65% and MUX utilization is 41.87% (with full function and extending lanes

to 12). Therefore, this indicator has to be considered carefully in the hardware design

tradeoff. In general scenarios, different multi-cycle instructions will not be executed in

large numbers at the same time. To reduce hardware consumption, a maximum number

of pipelined multi-cycle instructions does not need to satisfy the state that all multi-cycle

instruction queues are fully loaded.

Figure 12. The percentage of increased utilization with different depths of OITF.

7. Conclusions

To adapt the requirements of AI computing, more and more sub-modules and extra

instruction set extensions in microcontrollers are calling for improvement of the microar-

chitecture design. Out-of-order microarchitecture is worth considering to satisfy the de-

mands.

Out-of-order processing techniques significantly boost the efficiency of the instruc-

tion stream’s execution. However, side-effects include data hazards and the heavy con-

sumption of logical resources. Therefore, an out-of-order microarchitecture for low-power

implementation with slight consumption is significant and valuable.

According to the analysis of existing industrial-grade microcontrollers, the stalling

problems during processing are exposed. An out-of-order processing microarchitecture is

proposed to solve these problems without heavy consumption. The experimental results

based on a RISC-V prototype to evaluate the consumption of hardware resources and the

performance improvement in pipelines prove the feasibility.

This design quadruples the number of pipelined instructions and increases the data

lanes by six times while greatly alleviating the stalling of the instruction stream, which

makes it possible for microcontrollers to handle complex AI computing tasks as supersca-

lar processors do.

8. Future Work

In the VLSI system, the primary mission of the microcontroller is to cooperate and

coordinate the work of the sub-modules, and its performance highly depends on the char-

acteristics of the sub-modules. Therefore, software tests like SPEC2017 for individual

Figure 12. The percentage of increased utilization with different depths of OITF.

Electronics 2022, 11, 2989 16 of 17

7. Conclusions

To adapt the requirements of AI computing, more and more sub-modules and extra
instruction set extensions in microcontrollers are calling for improvement of the microarchi-
tecture design. Out-of-order microarchitecture is worth considering to satisfy the demands.

Out-of-order processing techniques significantly boost the efficiency of the instruction
stream’s execution. However, side-effects include data hazards and the heavy consumption
of logical resources. Therefore, an out-of-order microarchitecture for low-power implemen-
tation with slight consumption is significant and valuable.

According to the analysis of existing industrial-grade microcontrollers, the stalling
problems during processing are exposed. An out-of-order processing microarchitecture is
proposed to solve these problems without heavy consumption. The experimental results
based on a RISC-V prototype to evaluate the consumption of hardware resources and the
performance improvement in pipelines prove the feasibility.

This design quadruples the number of pipelined instructions and increases the data
lanes by six times while greatly alleviating the stalling of the instruction stream, which
makes it possible for microcontrollers to handle complex AI computing tasks as superscalar
processors do.

8. Future Work

In the VLSI system, the primary mission of the microcontroller is to cooperate and
coordinate the work of the sub-modules, and its performance highly depends on the
characteristics of the sub-modules. Therefore, software tests like SPEC2017 for individual
CPUs are not convincing because they only measure the performance of the processor
individually and ignore the impact of the operation of sub-modules on the processor. Due to
various situations, a complete test will be complicated, e.g., whether the compiler considers
the processor’s microarchitecture information when optimizing the code, whether the
processing characteristics of sub-modules and processing units are met during the test, etc.
Further research is needed to explore a dependable benchmark considering the impact
of the AI algorithm, compiler optimization and the compute pattern of the different sub-
modules.

Author Contributions: Conceptualization, Y.H. and W.L.; methodology, Y.H.; software, Y.H., J.C.
and K.Z.; validation, Y.H., J.C. and K.Z.; formal analysis, Y.H.; investigation, Y.H.; resources, W.L.;
data curation, Y.H., J.C., Q.X. and K.Z.; writing—original draft preparation, Y.H.; writing—review
and editing, Y.H., J.C., Q.X., K.Z. and W.L.; visualization, Y.H.; supervision, Y.H. and W.L.; project
administration, W.L.; funding acquisition, W.L., J.S. and G.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Special Fund of Hubei Luojia Laboratory (Grant No.
220100025), the Key Project of Hubei Province (Grant No. 2021BAA179), the Key Projects of Science
and Technology to Help the Economy 2020 (Grant No. SQ2020YFF0426493) and the Frontier Projects
of Applied Foundation in Wuhan (2019010701011386).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vasiljevic, J.; Bajic, L.; Capalija, D.; Sokorac, S.; Ignjatovic, D.; Bajic, L.; Trajkovic, M.; Hamer, I.; Matosevic, I.; Cejkov, A. Compute

substrate for Software 2.0. IEEE Micro 2021, 41, 50–55. [CrossRef]
2. Fleischer, B.; Shukla, S.; Ziegler, M.; Silberman, J.; Oh, J.; Srinivasan, V.; Choi, J.; Mueller, S.; Agrawal, A.; Babinsky, T. A scalable

multi-TeraOPS deep learning processor core for AI trainina and inference. In Proceedings of the 2018 IEEE Symposium on VLSI
Circuits, Honolulu, HI, USA, 18–22 June 2018; pp. 35–36.

3. Fowers, J.; Ovtcharov, K.; Papamichael, M.; Massengill, T.; Liu, M.; Lo, D.; Alkalay, S.; Haselman, M.; Adams, L.; Ghandi, M.
A configurable cloud-scale DNN processor for real-time AI. In Proceedings of the 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018; pp. 1–14.

4. Saha, S.S.; Sandha, S.S.; Srivastava, M. Machine Learning for Microcontroller-Class Hardware—A Review. arXiv 2022,
arXiv:2205.14550.

http://doi.org/10.1109/MM.2021.3061912

Electronics 2022, 11, 2989 17 of 17

5. Parai, M.K.; Das, B.; Das, G. An overview of microcontroller unit: From proper selection to specific application. Int. J. Soft Comput.
Eng. IJSCE 2013, 2, 228–231.

6. Babiuch, M.; Foltýnek, P.; Smutný, P. Using the ESP32 microcontroller for data processing. In Proceedings of the 2019 20th
International Carpathian Control Conference (ICCC), Kraków, Poland, 26–29 May 2019; pp. 1–6.

7. Corporation, NVIDIA. NVDLA Open Source Hardware, Version 1.0. Available online: https://github.com/nvdla/hw (accessed
on 8 July 2022).

8. Asanovic, K.; Avizienis, R.; Bachrach, J.; Beamer, S.; Biancolin, D.; Celio, C.; Cook, H.; Dabbelt, D.; Hauser, J.; Izraelevitz, A. The
Rocket Chip Generator; Technical Report UCB/EECS-2016-17; EECS Department, University of California: Berkeley, CA, USA, 2016;
p. 4.

9. Waterman, A.; Asanović, K. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2019121. Available
online: https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf (accessed on 8 July 2022).

10. Asanović, K.; Patterson, D.A. Instruction Sets Should Be Free: The Case for risc-v; Technical Report UCB/EECS-2014-146; EECS
Department, University of California: Berkeley, CA, USA, 2014.

11. Blem, E.; Menon, J.; Sankaralingam, K. Power struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86
architectures. In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), Washington, DC, USA, 23–27 February 2013; pp. 1–12.

12. Blem, E.; Menon, J.; Sankaralingam, K. A Detailed Analysis of Contemporary Arm and x86 Architectures. UW-Madison Technical
Report. 2013. Available online: https://caxapa.ru/thumbs/788118/10.1.1.364.1145.pdf (accessed on 8 July 2022).

13. Liu, S.; Du, Z.; Tao, J.; Han, D.; Luo, T.; Xie, Y.; Chen, Y.; Chen, T. Cambricon: An instruction set architecture for neural networks.
In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea,
18–22 June 2016; pp. 393–405.

14. Celio, C.P. A Highly Productive Implementation of an Out-of-Order Processor Generator; University of California: Berkeley, CA, USA,
2017.

15. Palacharla, S.; Jouppi, N.P.; Smith, J.E. Complexity-effective superscalar processors. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, Denver, CO, USA, 2–4 June 1997; pp. 206–218.

16. Hilton, A.; Nagarakatte, S.; Roth, A. iCFP: Tolerating all-level cache misses in in-order processors. In Proceedings of the 2009
IEEE 15th International Symposium on High Performance Computer Architecture, Raleigh, NC, USA, 14–18 February 2009;
pp. 431–442.

17. Barnes, R.D.; Sias, J.W.; Nystrom, E.M.; Patel, S.J.; Navarro, J.; Hwu, W.-m.W. Beating in-order stalls with “flea-flicker” two-pass
pipelining. IEEE Trans. Comput. 2005, 55, 18–33. [CrossRef]

18. McFarlin, D.S.; Tucker, C.; Zilles, C. Discerning the dominant out-of-order performance advantage: Is it speculation or dynamism?
ACM SIGARCH Comput. Archit. News 2013, 41, 241–252. [CrossRef]

19. Kulkarni, K.N.; Mekala, V.R. A Review of Branch Prediction Schemes and a Study of Branch Predictors in Modern Microprocessors.
2016. Available online: https://www.researchgate.net/profile/Venkata-Mekala/publication/266891966_A_Review_of_Branch_
Prediction_Schemes_and_a_Study_of_Branch_Predictors_in_Modern_Microprocessors/links/545ac9ed0cf2c46f6643898c/A-
Review-of-Branch-Prediction-Schemes-and-a-Study-of-Branch-Predictors-in-Modern-Microprocessors.pdf (accessed on 8 July
2022).

20. Mittal, S. A survey of techniques for dynamic branch prediction. Concurr. Comput. Pract. Exp. 2019, 31, e4666. [CrossRef]
21. Technology, N.S. Hummingbirdv2 E203 Core and SoC. Available online: https://github.com/riscv-mcu/e203_hbirdv2 (accessed

on 8 July 2022).
22. Abella Ferrer, J.; Canal Corretger, R.; González Colás, A.M. Power-and complexity-aware issue queue designs. IEEE Micro 2003,

23, 50–58. [CrossRef]
23. Mittal, S. A survey of techniques for designing and managing CPU register file. Concurr. Comput. Pract. Exp. 2017, 29, e3906.

[CrossRef]
24. Yeager, K.C. The MIPS R10000 superscalar microprocessor. IEEE Micro 1996, 16, 28–41. [CrossRef]
25. Inc, X. 7 Series FPGAs Configuration (UG470 v1.13.1). Available online: https://docs.xilinx.com/v/u/en-US/ug470_7Series_

Config (accessed on 8 July 2022).

https://github.com/nvdla/hw
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://caxapa.ru/thumbs/788118/10.1.1.364.1145.pdf
http://doi.org/10.1109/TC.2006.4
http://doi.org/10.1145/2490301.2451143
https://www.researchgate.net/profile/Venkata-Mekala/publication/266891966_A_Review_of_Branch_Prediction_Schemes_and_a_Study_of_Branch_Predictors_in_Modern_Microprocessors/links/545ac9ed0cf2c46f6643898c/A-Review-of-Branch-Prediction-Schemes-and-a-Study-of-Branch-Predictors-in-Modern-Microprocessors.pdf
https://www.researchgate.net/profile/Venkata-Mekala/publication/266891966_A_Review_of_Branch_Prediction_Schemes_and_a_Study_of_Branch_Predictors_in_Modern_Microprocessors/links/545ac9ed0cf2c46f6643898c/A-Review-of-Branch-Prediction-Schemes-and-a-Study-of-Branch-Predictors-in-Modern-Microprocessors.pdf
https://www.researchgate.net/profile/Venkata-Mekala/publication/266891966_A_Review_of_Branch_Prediction_Schemes_and_a_Study_of_Branch_Predictors_in_Modern_Microprocessors/links/545ac9ed0cf2c46f6643898c/A-Review-of-Branch-Prediction-Schemes-and-a-Study-of-Branch-Predictors-in-Modern-Microprocessors.pdf
http://doi.org/10.1002/cpe.4666
https://github.com/riscv-mcu/e203_hbirdv2
http://doi.org/10.1109/MM.2003.1240212
http://doi.org/10.1002/cpe.3906
http://doi.org/10.1109/40.491460
https://docs.xilinx.com/v/u/en-US/ug470_7Series_Config
https://docs.xilinx.com/v/u/en-US/ug470_7Series_Config

	Introduction
	Contributions
	Challenges and Motivation
	Analysis of Out-of-Order Processing
	Analysis of Data Hazards
	Analysis of Static and Dynamic Hardware Scheduling in Abnormal Cases

	Architecture and Analysis
	Pipeline of Original Microarchitecture
	Order of the Instructions Matters
	Stalling in Pipeline
	Differences Caused by Different Multi-Cycle Instruction Dispatch Modes

	Implementation
	Designs for Instruction Flow
	Design of the Multi-Cycle Instruction Queues
	Design of System Architecture

	Results
	Function Analysis
	Performance
	Hardware Utilization

	Conclusions
	Future Work
	References

