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Abstract: In very large-scale integration circuit (VLSI) systems, microcontrollers are often implanted
to manage the whole system to complete the given computing tasks. They play an essential part
as regulators, which should allocate resources steadily and issue instructions promptly to drive
functional units. However, most of the recent research focuses on the operation at the software level
or the scheduling at the SoC level, ignoring the impact of the microarchitecture and the features of
controlled sub-modules. This paper analyzes the requirements of microcontrollers in the VLSI system
with various constraints and conditions that should be considered in the hardware implementation
of such microarchitecture. Furthermore, this paper takes an open-source design using RISC-V ISA as
the prototype to implement hardware microarchitecture. This design integrates the techniques of
out-of-order processing, which are usually used on superscalar processors. As a result, the design
quadruples the number of pipelined instructions, greatly alleviating the stalling of the instruction
stream with a maximum extra look up table utilization of 18.37% in FPGA implementation.

Keywords: microcontroller; out-of-order; microarchitecture; RISC-V; hardware implementation

1. Introduction

Generally, the microcontroller performs its role independently. It is embedded to
make serial communication or some simple calculating tasks, and meets the processing
requirements as well. However, as the requirements of machine learning tasks gradually
increase, the microcontroller itself cannot perform the tasks of large-scale parallel com-
puting. For example, the microcontroller plays a role in managing multiple coprocessors
to better complete the computing tasks in the AI processor [1–3]. The current research
is mostly limited to the scheduling at the software level and the SoC level [4–6], lacking
specific analysis of the micro-architecture inside the controller. The study discusses the
design of such a controller microarchitecture, starting with how the microcontroller can
better perform in a VLSI system.

The function of the microcontroller in a VLSI system can be mainly divided into two
parts: control and computing. As for the function of control, a microcontroller is required
to be able to schedule other processing units to work correctly, such as configuring the
registers of sub-modules, scheduling the data in memory, accepting interrupt requests
and processing interrupt transactions. In addition, the microcontroller inevitably needs to
perform some computing tasks in some cases. For example, in an AI processor, most of
the computations are performed by sub-modules in high-speed parallel processing. When
some operators adopt unusual data formats, or the computing mode is so complex, it is
difficult for the sub-modules to handle.

There are two main methods to control, which are shown in Figure 1a,b:

• Sub-modules work through register configuration: reading and writing registers make
up the major means of sub-module controlling. For example, NVDLA, an open-source
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deep learning accelerator from NVIDIA Corporation, works in this way [7]. The
controller configures registers in a certain order, and then the sub-module starts up
after the operation. This method is simple, but has high hardware portability since
each sub-module is linked directly through a standard bus.

• Issuing instructions through the custom instruction interface: in modern microarchi-
tecture, there will be a custom instruction interface for specific requirements. Processor
designers formulate custom instructions according to the computing characteristics.
In a general controlling flow, after a custom instruction is recognized in the processor
dispatch unit, it will be transmitted to the sub-module through the custom interface
directly. In return, the sub-module sends results back. In this method, the coupling
between the processor and the sub-module is tighter. Therefore, it is necessary to
consider the computing characteristics of the processor and the sub-modules, as well
as their interaction. The custom instruction interfaces are the key to realizing such
control, among which the most mature and popular is the ROCC interface in the
Rocket architecture [8].
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custom instruction interface.

RISC-V is an open-source instruction set, which was proposed by the University
of California, Berkeley in 2010 [9,10]. The original purpose of its design was to achieve
Turing completeness with the fewest instructions and to implement unique operations like
floating-point and vector computations in a modular and extensible way. RISC-V absorbs
the development experience of x86 [11], ARM [12] and other advanced architectures [13]. To
prevent the instruction set from becoming more complicated because of commercialization,
modular architecture is used in RISC-V innovatively. Therefore, RISC-V can apply a unified
architecture to modularize different parts of its instruction set to meet different applications.
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This feature is particularly suitable for microcontroller designs in VLSI systems, so the
following research will be based on RISC-V.

2. Contributions

This paper makes the following contributions:

• Detailed analysis of the microarchitecture requirements of microcontrollers in VLSI
systems and the difficulties that microarchitecture hardware implementation needs to
address.

• Based on the analysis of an open-source industrial-grade microcontroller design,
this paper discusses the shortcomings, problems and improvement strategies of the
existing microarchitecture.

• This paper proposes a hardware design of the microarchitecture for a functional and
low power consumption microcontroller, which is implemented on the FPGA platform.

3. Challenges and Motivation

The problem that the microcontroller needs to solve to operate efficiently in a VLSI
system focuses on the coordination of multi-cycle instructions and the correct response to
abnormal conditions.

3.1. Analysis of Out-of-Order Processing

At present, the in-order design is mainly used in the microarchitecture design for
microcontrollers, i.e., instructions are sequentially entered into the processor in the order of
the assembly instructions compiled by the software. The microarchitecture of the in-order
design brings lower power, less hardware complexity and higher operating frequency.
However, the microarchitecture of in-order execution cannot adapt to the operation of
a large number of multi-cycle instructions. Since the cycles required for the multi-cycle
instruction’s execution to obtain the result are unknown, subsequent instructions must be
stalled due to in-order constraints, and can only be executed after the previous multi-cycle
instruction has finished execution.

In the microarchitecture design of superscalar processors, the out-of-order technique
is often used to solve this problem [14,15]. In the absence of data hazard, multi-cycle
instructions will not stall the instruction stream, so subsequent instructions need not wait
for the early execution. However, the design of this kind of microarchitecture for out-
of-order processing is often too expensive to be directly applied to the microcontroller
aiming at lower power and less complexity. Moreover, many of the related technologies of
out-of-order processing are general concepts, not only applicable to superscalar processors.

We draw lessons from these ideas, through some unique design techniques to achieve
efficient work of in-order processors. In the current research, A. Hilton [16] applies the
technique of out-of-order processing to the in-order processor, and the design of “Flea-
Flicker” two-pass pipelining [17] combines the out-of-order processing technologies into
the in-order processor, which effectively avoids the stalling during the operation of the
instructions. The advanced performance can be achieved by integrating the ideas of out-
of-order processing into the microarchitecture of in-order processing with appropriate
software scheduling.

According to McFarlin [18]’s research, the ability of software scheduling is still limited.
Some scheduling must be realized through hardware out-of-order design. Because memory-
access latency, branch and other multi-cycle instruction execution information are not
transparent to the software, they can only be known during the actual execution of the
instruction stream. Therefore, the research aims to further integrate the idea of out-of-order
processing into the microarchitecture design of microcontrollers, and find the balance
between out-of-order processing design and low-power design.

The workflow of the microcontroller includes fetching instructions and then operating
the registers. Additionally, it controls the external sub-modules through memory-access
instructions or custom instructions. For the RISC-V instruction set, only two memory-access
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instructions (load and store) can interact externally, i.e., the microcontroller based on the
RISC-V instruction set mainly controls the sub-modules through these two memory-access
instructions [9]. Therefore, in the design of an out-of-order processor, additional attention
should be paid to an efficient stream of the memory-access instructions.

3.2. Analysis of Data Hazards

Although out-of-order processing can improve the operation of the instruction stream
in the processor, it brings the problem of data hazards and requires additional hardware
logic to deal with. The data hazards can be divided into three types:

• WAW (Write After Write): If the destination register index that the subsequent instruc-
tion needs to write back is the same as that of the previous one, then in the process of
out-of-order execution, the subsequent instruction may write back before the previous
one. The result of the previous instruction will overwrite the written back result of the
subsequent instruction.

• WAR (Write After Read): If the destination register index that the subsequent instruc-
tion needs to write back is the same as that which the previous instruction needs to
read, then in the process of out-of-order execution, the subsequent instruction may
write back before the previous one reads the register, at which point the previous
instruction reads the wrong data of source operands.

• RAW (Read After Write): If the source register index that the subsequent instruction
needs to read is the same as that which the previous instruction needs to write back,
then in the process of out-of-order execution, the subsequent instruction may read the
register before the previous one writes back, at which point the subsequent instruction
reads the wrong data of source operands.

3.3. Analysis of Static and Dynamic Hardware Scheduling in Abnormal Cases

The working environment for microcontrollers in VLSI system is diverse and complex.
To keep the processor in a stable working state, there must be some additional scheduling
designs in the hardware. There are two main types of scheduling at the hardware level:
static scheduling and dynamic scheduling. For instance, the static scheduling strategy for
branch instructions tends to be forward branches [19]. Since most instructions are forward
branches, static scheduling can meet most of the prediction requirements. To further
improve the prediction efficiency, a dynamic prediction strategy must be used at the cost of
complicated logic and extra power consumption [20]. However, in the microarchitecture
design of the microcontroller, its power consumption and complexity are often limited. To
sum up, static prediction designs are usually adopted in the scheduling strategy. But in
some cases, some dynamic scheduling designs can achieve very pleasant results without
major side effects.

In the hardware design of microcontrollers, a suitable scheduling strategy can coordi-
nate most of the operating states. But the scheduling strategy cannot resolve all the possible
exceptions. To ensure the correctness of the processor, it is necessary to have a relevant
hardware design to deal with abnormal situations.

4. Architecture and Analysis

The discussion will be based on the Nuclei Technology Corporation’s Hummingbird e203,
which is an open-source, low-power and industrial-grade microcontroller [21]. Detailed
processor core microarchitecture is shown in Figure 2. It reflects the microarchitecture
design considerations of existing industrial-grade microcontrollers, while exposing many
problems that can be optimized.
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4.1. Pipeline of Original Microarchitecture

It can be said that the Hummingbird e203 adopts a two-stage pipeline structure.
The front-end unit (instruction-fetch) fetches instructions in order, and puts the fetched
instructions into the instruction registers. Every cycle, the back-end will dispatch the
instructions from the instruction registers to different execution units in order.

The instructions are divided into two types:

• Instructions executed in one cycle. Such instructions are executed, committed and
written back in one cycle on the second stage of the pipeline.

• Instructions executed in multiple cycles. When multi-cycle instructions are dispatched
to the execution units and have not yet been written back, they are typically known as
Outstanding Instructions.

Since the e203 processor writes back in order, there is a module called Outstanding
Instruction Track FIFO (OITF). Every time a multi-cycle instruction is dispatched, an entry
is registered in the OITF module, and the entry information is sent to the multi-cycle
instruction controller at the same time. In the multi-cycle instructions write-back stage, the
controller’s entry information will be compared with the one in the OITF. If matched, it
will be deregistered and written back, to ensure dispatch and write back in order.

In conclusion, the e203 processor adopts a microarchitecture of in-order issuing, out-of-
order execution and in-order write-back. By the way, we add the floating-point processing
unit and the vector processing unit to the original CPU design to meet some special needs.

4.2. Order of the Instructions Matters

The order of multi-cycle instruction (MI) and single-cycle instruction (SI) has a large
impact on the data hazards. Two cases according to different orders are discussed:

• MI/SI after SI. Since the previous instruction completes all operations in one cycle, the
subsequent instruction does not produce data hazards with the previous one.

• MI/SI after MI. Since the previous instruction requires multiple cycles to be executed,
when the subsequent instruction operates on the register file, likely the previous one
has not been written back. This will result in a data hazard. We call these MAM and
SAM for short.

4.3. Stalling in Pipeline

The original processor design adopted a simple stalling approach to deal with the
data hazards. Stalling in pipeline possibly occurs in both the instruction dispatch unit and
instruction writeback unit:

1. When the instruction dispatch unit dispatches a multi-cycle instruction, it compares
the source operand register index and result register index of the instruction with
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every entry in the OITF. If the data hazard gets checked, the dispatch stage will be
stalled.

2. When the instruction write-back unit writes back a multi-cycle instruction, it cannot
be deregistered if the information in the multi-cycle instruction controller is different
from the entry information of the OITF, thus, stalling the write-back stage.

The disadvantage of such a design is that it will stall the pipeline and prevent subse-
quent instructions operation frequently when operating numbers of multi-cycle instructions,
e.g., when the controller configures the registers of the sub-module by the store instructions,
and, due to stalling, the store instructions can only be issued one by one (as shown in
Figure 3).
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4.4. Differences Caused by Different Multi-Cycle Instruction Dispatch Modes

There are many kinds of multi-cycle instructions, e.g., load & store instructions,
multiply and divide instructions, vector instructions and floating-point instructions.

The dispatching methods of multi-cycle instructions may be completely different, and
they can be divided into two types:

1. Stalled Multi-cycle Instruction Unit: the execution unit can no longer accept instruc-
tions when operating one instruction. The next instruction can only be accepted
after the current operation is completed, e.g., a divider that continuously loops and
calculates the result by using a serial technique.

2. Pipelined Multi-cycle Instruction Unit: the execution unit has a pipeline structure.
It can execute multiple instructions at the same time, expanding the throughput of
instructions by the technique of the pipeline. Therefore, multi-cycle instructions can be
continuously dispatched to the execution unit in the pipeline style unless the pipeline
is full or stalling.

According to the different dispatching methods of execution units, targeted design is
required to achieve better parallel operation of multi-cycle instructions.
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5. Implementation

To verify the above analysis and discussion, we propose a specific hardware design
in terms of multi-cycle instruction scheduling, which enables microcontrollers to achieve
higher performance in the control and computing tasks in the VLSI system. Next, we’ll
discuss the details of the hardware implementation.

5.1. Designs for Instruction Flow

Aiming at the hardware design requirements of microcontrollers in VLSI system, this
paper analyzes the existing industrial microcontroller design in Section 4. Due to the stalling
problem, the existing microcontroller designs fail to perform control and computation tasks
smoothly and efficiently when handling multiple multi-cycle instructions and controlling
a large number of sub-modules. The microarchitecture is designed to avoid the stalling
of the instruction issue queue, the stalling of the instruction write-back register and the
latency of the memory-access instructions.

The stalling problem in the instruction issue queue is mainly due to the data hazards
of RAW and WAW, i.e., while the register data that the previous instruction needs to write
has not been written yet, the subsequent instruction that has related data requirements
needs to be stalled. Since the operand has been fetched from the register file before issuing
due to the microarchitecture of the processor, which is a two-stage pipeline, the data hazard
of WAR can be ignored. Such stalling is necessary to prevent incorrect processing results.

However, if there is no data hazard in the instruction queue after the stalled instruction
at this time, it can bypass the stalled instruction and perform processing operations in
advance. A waiting queue is designed to alleviate the stalling of issuing instructions. As
shown in Figure 4a, if the issue queue is stalled, the stalled instructions will be rerouted
to the waiting queue first. When the problem of the data hazard is solved, waiting queue
instructions can be fired and executed normally. The hardware design proposes a clever
solution without the side effect of high consumption. Abella Ferrer [22] researches and
summarizes similar hardware designs for optimizing instruction issue queues.
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In addition, we increase the lanes of instruction flow by adding physical registers,
which further solves the risk of the WAW data hazard. In the RISC-V instruction set specifi-
cation, the processor has only 32 standard registers [9], which are called logic registers. Due
to the limitation of registers’ amount, the WAW data hazard occurs when two instructions
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write to the same register successively. In essence, this data hazard is a completely avoid-
able false data hazard, because there is no data exchange between the two. The technique
of adding physical registers is applied to deal with it. Such technique is very common in
the microarchitecture design of superscalar processors [23,24], but the consumption is too
large for microcontrollers targeting lower power areas.

Therefore, we make a small trade-off. According to the analysis in Section 4, we only
try to solve the SAM problem, while the MAM problem can be left to the waiting queue to
handle. OITF has to judge every multi-cycle instruction to solve the MAM problem, which
takes N ∗ (N-1) times (as shown in Figure 5a), while the SAM problem takes only N times
(as shown in Figure 5b). Leaving the MAM problem in the waiting queue can minimize the
logic complexity from O(N2) to O(N).
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instruction outside the entry only needs to be compared N times.

In Figure 4b, in addition to the original 32 physical registers and logical registers
corresponding one by one, we call the newly added registers shadow register. Once a WAW
occurs, the subsequent instructions are written back to the shadow register first. Data is
updated from the shadow register to the logical register when the data hazard situation
is resolved. If the shadow register is in the full state, the data hazard caused by the new
instructions will be passed forward to the issue waiting queue for solution. Moreover, if
the issue waiting queue is also in the full state, the pipeline will be stalled until the idle
state occurs and then the pipeline will continue.

5.2. Design of the Multi-Cycle Instruction Queues

Control and part of the computation function are the indispensable functions of the
microcontroller. Since the processor is based on the RISC-V ISA, this paper takes full
advantage of its modular features, and implements the configurable characteristics of
the hardware design. For example, in the AI processor, part of the algorithm cannot be
optimized by the compiler (delivered to the domain-specific accelerator to compute), so the
microcontroller needs to add support for floating-point operation instructions or vector
operation instructions to meet this part of the demand.

As discussed in Section 4, different multi-cycle instructions have different dispatch
modes, so the separate queues are designed according to the characteristics of each multi-
cycle instruction. In Figure 4c, we have specially designed a memory-access queue for the
instructions to meet a large number of memory-access requirements. In Figure 4d, we can
effectively adapt to different dispatch modes of multi-cycle instructions by configuring
the depth of instruction queues. For example, we can configure the depth of the memory-
access queue according to the number of sub-modules to be controlled, or configure a
specific instruction queue depth based on the dispatch mode of the multi-cycle instruction
execution unit. These specially-designed instruction queues enhance the flexibility and
extensibility of the microcontroller.
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5.3. Design of System Architecture

Additional modules and complex buses make the simple system architecture unable
to meet the new requirements. Therefore, we also design the system architecture and the
access interface with ingenuity (as shown in Figure 6). In a VLSI system, due to the large
number of modules to be scheduled, the bus is often very complex, and then the biggest
problem is that it will bring additional memory access latency.
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The design is mainly reflected in the following two parts:

1. The fast access interface that directly bypasses the bus is additionally developed. This
fast access interface is used for some sub-modules requiring high responsiveness
control, while the general access interface needs to step across the multi-level bus.

2. Separate access interface for vector processor. Due to the huge memory demand
of the vector processor, a large number of data streams may affect the execution of
the basic memory instructions. Therefore, as shown in Figure 6, we decouple the
access interface of the vector processor from that of the microcontroller, so the vector
computing data streams are separated from the control streams.

6. Results
6.1. Function Analysis

The impact on the operation of pipeline is shown in the pseudocode in Figure 7.
Without the waiting queue and the shadow registers, issuing instructions and operating the
registers may result in stalling. Causes for the stalling could include the stalling correlation
being a WAW hazard or RAW hazard or a full multi-cycle instruction queue (discussed in
Section 5.2). The stalling will prevent the subsequent instructions from issuing or being
fetched, delaying the entire pipeline for several, or even dozens, of clock cycles.

To address the issue of stalling, the waiting queue and the shadow registers are
implemented in the design. They can avoid pipeline stalling in most scenarios, costing not
more than one clock cycle for each instruction.

For example, when the WAW hazard occurs, the data will be written into the shadow
registers rather than the physical registers. Though the previous instructions have not
returned the result, the pipeline can move on. The data stored in the shadow registers
will be written into the physical registers after the WAW hazard is resolved. The shadow
registers eliminate the WAW data dependencies directly to avoid stalling. Therefore, it
does not take any extra clock cycle. The shortcoming is that it can only handle the stalling
caused by the WAW hazard.
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Unlike the shadow registers, the waiting queue handles the stalling by changing the
order of the issuing instructions. When a stalling correlation between instructions occurs,
the current instruction will be stored in the waiting queue, waiting for the stalling to be
resolved. In this process, it takes one cycle to store the instruction in the waiting queue and
takes another cycle to fetch it (as shown in the pseudocode on line 14). Thus, it takes one
more clock cycle to operate each waiting instruction in the pipeline.

By contrast, the waiting queue can work in any stalling situation, while the shadow
registers can only avoid the stalling caused by WAW. The waiting queue takes one cycle to
address one stalling issue, while the shadow registers do not cost extra cycles. The contrast
of both designs shows that WAW hazards should be solved by shadow registers. Only if
the shadow registers are full should the waiting queue work. The shadow registers play
the roles of assistant and pioneer. This strategy reduces the waste of the clock cycle and
prevents the waiting queue from being too busy to handle other stalling.
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6.2. Performance

The performance of the hardware microarchitecture is greatly affected by the actual
operating environment, e.g., different implementations of the algorithm, compiler optimiza-
tion and actual memory access latency all make a difference. To evaluate the performance of
the hardware optimization, the theoretical and practical aspects are analyzed and evaluated.

The case shown in Figure 8 assumes that the stalling correlation occurs between instr(3)
and instr(2). Instr(2) needs N cycles to return the result. In the common case, the pipeline
will stall for N cycles. Under the action of the waiting queue, the order of instructions
is changed. The subsequent instructions will be issued continuously. Instr(3) enters the
waiting queue and is issued and executed again after instr(2) returns the result. In this case,
the pipeline stalls for only one cycle, saving N-1 clock cycles.
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As shown in Figure 9, the WAW data hazard occurs between instr(3) and instr(2).
The execution results of instr(2) and instr(3) both need to be written into register2, while
result(2) needs N cycles to return. In the common case, the pipeline will stall for N cycles.
Due to the shadow registers eliminating the WAW data dependencies, result(3) enters the
shadow registers and will be written into register2 after the result(2) is written. In this case,
the pipeline does not stall, saving N clock cycles.
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To evaluate the theoretical maximum speedup, the processing time under different
conditions is listed in Table 1. In a total of M instructions, we use m to denote the number
of hazards and n to denote the average stalling cycles.

Table 1. Theoretical cycle consumption under different designs. Assuming that the number of
instructions is M, the number of WAW hazard is m1, the WAW extra cycle cost is n1, the number of
RAW is m2 and the RAW extra cycle cost is n2.

Hardware Design Stalling Cycle Total Cycles

Original m1 ∗ n1 + m2 ∗ n2 M + m1 ∗ n1 + m2 ∗ n2

Shadow Register m2 ∗ n2 M + m2 ∗ n2

Waiting Queue m1 + m2 M + m1 + m2

Shadow Register + Waiting Queue m2 M + m2

The theoretical speedup rate of the shadow registers is:

SpeedUpRate =

(
M + m1∗n1 + m2∗n2

M + m2∗n2
− 1

)
× 100% (1)

Compared to the original design, the stalling cycles of WAW are saved. Because m1
represents the number of WAW hazards, and n1 represents the average number of clock
cycles consumed per WAW hazard, this means that the more cycles WAW hazards consume,
the higher the speedup rate provided by the shadow registers in the system.

The theoretical speedup rate of the waiting queue is:

SpeedUpRate =

(
M + m1∗n1 + m2∗n2

M + m1 + m2
− 1

)
× 100% (2)

With the operation of waiting queue, the clock cycles consumed by a single hazard
(n1 and n2) have almost no effect on the pipeline. The result depends on the total number
of hazards. Therefore, in the case of few hazards (m1 and m2) with a large number of WAW
cycle cost, the shadow registers perform better than the waiting queue.

The most theoretical speedup rate of the coordination between the waiting queue and
shadow registers is:

SpeedUpRate =

(
M + m1∗n1 + m2∗n2

M + m2
− 1

)
× 100% (3)

The above two designs work together to maximize optimization. As a result, the
stalling cycles are reduced to m2, and the total cycles are reduced to only N + m2. Since in
most cases m2 is much smaller than m1f ∗ n1 + m2 ∗ n2, the theoretical speedup rate can
be (m1 ∗ n1 + n2)/N and the final actual speedup rate can be close to 20%, which is quite
impressive for microcontrollers.

What is also worth noticing is that when m1 = 1, n1 = n and m2 = 0 (there is only
1 WAW hazard), the theoretical speedup rate is:

SpeedUpRate =

(
M + n

M
− 1

)
× 100% =

n
M
× 100% (4)

For instance, if N = 100, n = 10 (pipeline will stall for n cycles because of the hazard)
and the speedup rate will be 10%.

The computation of SAXPY (Scalar Alpha X Plus Y) is one of the most important and
frequent AI computing operators. From a practical point of view, the processing of SAXPY
computation is analyzed to evaluate the actual performance of the hardware optimization.
The assembly codes are shown in Figure 10.
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Figure 10. Assembly codes of SAXPY computation. Left, the handwritten assembly codes. Right, the
assembly codes compiled by GCC compiler with optimized level of −O3 (the most).

In the handwritten assembly codes of the implementation of SAXPY, three instructions
consecutively accessing memory causes stalling because the load queue is full. With the
waiting queue, the stalling instruction is pushed to the waiting queue to issue later instead
of stalling the operation of the multiply instruction, which has no stalling correlation. With
the memory access latency of 4 cycles (that can operate two load instructions simultaneously,
as discussed in Section 4.3), multiplication of 5 cycles and the addition of 1 cycle, the cycles
consumed in the computation loop are optimized from 18 cycles to 16 cycles, which is
12.5% speedup.

The assembly codes produced by the compiler are enlarged because, to address the
data for computing in arrays (X[i], Y[i]), the calculation of the address is added. In the
optimization of the compiler, it reorders the order of the multiply instruction and memory
access instruction, i.e., placing the multiplication before the memory load for Y[i]. As
discussed in Section 3.1, the compiler plays a role in reordering the instructions, but
without accurate information of hardware processing, the optimization is limited. As
shown in Figure 10, the stalling is unavoidable because the computation of multiplication
and addition must wait until the data is accessed from the memory. In addition, to optimize
the use of registers (the number of physical registers is limited in RISC-V ISA), the compiler
usually reuses the same register, i.e., register a5 in this piece of assembly codes, which
causes a WAW data hazard. After optimizing the hardware microarchitecture, the cycles
assumed in the computation loop are optimized from 40 cycles to 30 cycles, which is
33.3% speedup.

6.3. Hardware Utilization

The hardware design has been implemented in the XILINX XC7A200T-2FBG484I
FPGA platform [25]. The results are shown in Table 2 below. The hardware resource
consumption mainly lies in OITF (introduced in Section 4.1), recording the execution of
multi-cycle instructions and catching data hazards. OITF is, essentially, a FIFO-structure
module. The depth of OITF means the number of the entries it owns to record the multi-
cycle instructions, which indicates the number of multi-cycle instructions that can be
executed simultaneously.
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Table 2. Extending the depth of OITF to 8, the table contains the experimental data in applying
optimized designs to the original design. For example, when extending the instruction stream lanes
to 12 with full functions, the consumption of look up table (LUT) is 4209, flip-flop (FF) is 2204 and
multiplexers (MUX) is 332.

Utilization Functions

LUT FF MUX Lanes Max-Pipelined
Instructions

Write-Back
Optimized

Issuing
Optimized

Original 3832 1832 289 2 2 × ×
Extended_OITF 3972 2076 328 2 8 × ×
Extended_OITF

+ Waiting Queue 4106 2134 332 3 8
√

×

Extended_OITF
+ Shadow Register 3997 2124 328 3 8 ×

√

Extended_OITF
+ Shadow Register
+ Waiting Queue

4131 2162 332 4 8
√ √

Extended_OITF
+ Shadow Register
+ Waiting Queue

+ More Lanes

4209 2204 332 12 8
√ √

Additional data lanes have been added to optimize stalling by out-of-order processing
of the instruction stream. However, to prevent data hazard caused by out-of-order process-
ing, increased hardware logic complexity to judge the multi-cycle instructions recorded
in OITF is essential. As shown in Figure 5b, each additional judgment will increase N
logical constraints.

Extra supports for different multi-cycle instructions mean more pipelined instruc-
tions and more lanes for data streams. In addition, the demand of maximum pipelined
instructions registered in OITF will naturally increase. Therefore, predictably, the proba-
bility of stalling inflates steeply as more and more operations are embedded for complex
applications. The direct consequence is lower efficiency.

Two designs work to keep subsequent instructions flowing continuously: a waiting
queue handling both WAW and RAW stalling problems, and shadow registers assisting
to relieve the WAW stalling further. The former one takes all possible situations into
consideration so that it has outstanding performance in alleviating stalling, while the latter
one consumes only on average half of the LUT utilization compared to the former one (as
shown in Figure 11), as a supplement for WAW.

Simultaneously, both a shadow register and waiting queue could develop one addi-
tional data lane for instructions with only 134 and 25 extra LUT consumption. If the two
designs are both equipped as such, there will be four lanes for instructions (the result could
be linear superposed) with only extra 159 LUT, 86 FF and 4 MUX consumption when the
depth of OITF is eight.

According to the experiment, adding two extra concurrent operations in the execution
unit (Figure 4d) will triple the number of data lanes. As a result, the data lanes increase
by six times, and the max-pipelined instructions increase fourfold, while write-back and
issuing stalling problems are both substantially optimized at the extra cost of 377 (+9.83%)
LUT, 372(+20.31%) FF and 43(+14.88%) MUX.
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Figure 11. Comparison of hardware resource utilization of the optimizing designs and the combined
design with different depths of OITF. Because of reused resources, the combined design consumes
less than the individual optimizing designs of the two.

The hardware implementation results show the consumption caused by additional
data lanes in issuing stage and write-back stage. The designs quadruple the number of
pipelined instructions and increase the number of lanes by six times, greatly alleviating the
stalling of the instruction stream without huge consumption of hardware resources.

As shown in Figure 12, the maximum number of pipelined multi-cycle instructions is
the most significant cost to the hardware design. For example, if the depth of OITF is 2,
the maximum extra LUT utilization is 4.02%, FF utilization is 3.82% and MUX utilization
is 1.38%, while the depth of OITF is 16, the maximum extra LUT utilization is 18.37%,
FF utilization is 44.65% and MUX utilization is 41.87% (with full function and extending
lanes to 12). Therefore, this indicator has to be considered carefully in the hardware design
tradeoff. In general scenarios, different multi-cycle instructions will not be executed in
large numbers at the same time. To reduce hardware consumption, a maximum number
of pipelined multi-cycle instructions does not need to satisfy the state that all multi-cycle
instruction queues are fully loaded.
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7. Conclusions

To adapt the requirements of AI computing, more and more sub-modules and extra
instruction set extensions in microcontrollers are calling for improvement of the microarchi-
tecture design. Out-of-order microarchitecture is worth considering to satisfy the demands.

Out-of-order processing techniques significantly boost the efficiency of the instruction
stream’s execution. However, side-effects include data hazards and the heavy consumption
of logical resources. Therefore, an out-of-order microarchitecture for low-power implemen-
tation with slight consumption is significant and valuable.

According to the analysis of existing industrial-grade microcontrollers, the stalling
problems during processing are exposed. An out-of-order processing microarchitecture is
proposed to solve these problems without heavy consumption. The experimental results
based on a RISC-V prototype to evaluate the consumption of hardware resources and the
performance improvement in pipelines prove the feasibility.

This design quadruples the number of pipelined instructions and increases the data
lanes by six times while greatly alleviating the stalling of the instruction stream, which
makes it possible for microcontrollers to handle complex AI computing tasks as superscalar
processors do.

8. Future Work

In the VLSI system, the primary mission of the microcontroller is to cooperate and
coordinate the work of the sub-modules, and its performance highly depends on the
characteristics of the sub-modules. Therefore, software tests like SPEC2017 for individual
CPUs are not convincing because they only measure the performance of the processor
individually and ignore the impact of the operation of sub-modules on the processor. Due to
various situations, a complete test will be complicated, e.g., whether the compiler considers
the processor’s microarchitecture information when optimizing the code, whether the
processing characteristics of sub-modules and processing units are met during the test, etc.
Further research is needed to explore a dependable benchmark considering the impact
of the AI algorithm, compiler optimization and the compute pattern of the different sub-
modules.
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