
Citation: Kong, X.; Chen, H.; Yu, M.;

Zhang, L. Boosting Code Search with

Structural Code Annotation.

Electronics 2022, 11, 3053. https://

doi.org/10.3390/electronics11193053

Academic Editors: Scott Uk-Jin Lee,

Sanghyuk Lee, Soo Kyun Kim, Asad

Abbas and Seokhun Kim

Received: 18 August 2022

Accepted: 21 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Boosting Code Search with Structural Code Annotation
Xianglong Kong 1,* , Hongyu Chen 1, Ming Yu 2 and Lixiang Zhang 1

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2 Shenyang Blower Works Group Corporation, Shenyang 110869, Chin
* Correspondence: xlkong@seu.edu.cn

Abstract: Code search is a process that takes a given query as input and retrieves relevant code
snippets from a code base. The relationship between query and code is commonly built on code
annotation, which is extracted from code comments or other documents. The current code search
studies approximately treat code annotation as a common natural language, regardless of its hidden
structural information. To address the information loss, this work proposes a code annotation model
to extract features from five perspectives, and further conduct a code search engine, i.e., CodeHunter.
CodeHunter is evaluated on a dataset of 7 million code snippets and query descriptions. The
experimental results show that CodeHunter obtains more effective results than Lucene and DeepCS.
And we also prove that the effectiveness comes from the rich features and search models, CodeHunter
can work well with different sizes of query descriptions.

Keywords: code search; code annotation; deep neural networks

1. Introduction

Code search is an important technique to improve effectiveness and efficiency of software
development [1–3]. Code search is firstly conducted by matching keyword text in a code
base, then researchers enrich the matching model with some descriptions about candidate
code snippets, i.e., code annotation [4,5]. Code annotation may contain a class name, method
name, API sequence, structural relationships among code blocks, and descriptions from code
comments and documents. The commonly used way to extract code annotation is using the
first sentence of annotations and words that are repeated within the code [4].

Although a lot of code search techniques are proposed in recent years, there are still
some problems in this area [6,7]: (1) The existing code search technology is not comprehen-
sive in the representation of code, most of them only pay attention to the information of
the code itself and ignore the code annotation information; (2) In terms of code annotation
information, the existing search technology simply regards all annotation information as
equally weighted information, ignoring the specificity of code annotation; (3) The search
content of the existing code search technology is simple, and there is no better strategy in
the face of more complex search conditions [8,9].

To address these three problems, we propose CodeHunter, which uses both code
and code annotation information to represent the code. Code annotation [10–13] can
be treated as an irreplaceable part of the software, it is also a core component of APIs
and frameworks for enterprise development. It plays a very important role in helping
communicate key program capabilities in software development. Effectively leveraging
code annotation information, or encouraging the use of code annotation information, is
not currently considered in code search. We propose using an abstract syntax tree-based
code analysis method to select and extract code features and annotation features; then,
we fuse the two types of features to generate multi-dimensional code annotations. We set
up and train deep annotation embedded networks and deep query embedded networks,
vectorize multidimensional code annotations, and user query bar statements with their

Electronics 2022, 11, 3053. https://doi.org/10.3390/electronics11193053 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193053
https://doi.org/10.3390/electronics11193053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2448-2214
https://doi.org/10.3390/electronics11193053
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193053?type=check_update&version=1

Electronics 2022, 11, 3053 2 of 16

corresponding network. By the end of the process, we calculate vector similarity measures
to determine the best code that meets the search conditions.

We select the top 100 open-source Java projects on Github, ranked by stars. Based on
7 million lines of Java code, we conduct experiments to evaluate CodeHunter. Experimental
results show that CodeHunter obtains higher accuracy and average reciprocal order than
Lucene (https://lucene.apache.org/ (accessed on 13 May 2019)) and DeepCS [14]. In terms
of A@1, A@5, and A@10, CodeHunter’s accuracy rate was 0.43, 0.78, and 0.89, respectively,
higher than the other two tools. CodeHunter ranked first among the three search tools with
an MRR of 0.56. Although the effectiveness of CodeHunter is limited by the integrity of
code features and annotation features, CodeHunter can still work well with different sizes
of query descriptions.

In summary, the paper makes the following contributions:

• We propose a structural code annotation method, which realizes the application of
code annotation and structure annotation in code search.

• We build and train deep-annotation and deep-query-embedded networks. We vector-
ize the code annotations and search conditions using their own respective networks
and match the codes that meet the search conditions by calculating the similarity
of vectors.

• CodeHunter obtains more effective results than Lucene and DeepCS in our exper-
iments. We also find out the optimal settings of the training model and prove the
effectiveness is not affected by the size of query descriptions.

The rest of this paper is organized as follows: The related work is in Section 2. The
technical details of CodeHunter are described in Section 3. The experimental validation for
our approach is shown in Section 4. The conclusion is outlined in the Section 5.

2. Related Work

A huge body of research effort has been dedicated to investigating effective and
efficient code search techniques. The current works can be divided into two categories,
i.e., information retrieval-based methods and machine learning-based methods according
to the construction of the search model. This section will discuss these academic studies
respectively.

2.1. Code Search Based On Information Retrieval

The code search technology based on information retrieval directly matches the sim-
ilarity of two parts of information by extracting text information and code information.
CodeHow [7] is a code search method based on an extended Boolean model. This method
extends the representation of the code while it is already identified. This technique focuses
on the description of the interface related to the code, combining the description with the
identity of the code itself as the extended code representation. Finally, a vector model is
used to vectorize the extended representation and query. The search results are obtained by
measuring the distance between vectors. Vinayakarao et al. [8] also have similar methods.
The difference is that they use Stack Overflow, a developer Q&A community, to gather
information. They use code identifiers to search in the Q&A community and find relevant
descriptions corresponding to code identifiers. This information is then used as an en-
hanced description of code identity for a more complete representation of the code. Finally,
the accuracy of the search is improved.

The core of the above approach is an effective representation of code information.
On the other hand, there are ways to augment the user’s query information and make it
easier to find satisfactory code by supplementing requirements. Lemo et al. [15] proposed
a code search method based on a dictionary extended query. The innovation of this
approach is that the focus shifts from code to queries. The method expands the query by
searching for synonyms of keywords in the query. Finally, an expanded query is used
to complete the search. Nie et al. [16] proposed a code search method that enhances the
search text with question-and-answer information. This method combines the methods of

https://lucene.apache.org/

Electronics 2022, 11, 3053 3 of 16

Vinayakarao [8] and Lemo [15]. Based on the search information of question-and-answer
information, the query statement is extended. Although the expansion direction is different
from Vinayakarao’s method [8], they both have good effects. Lu et al. [17] proposed a code
search method based on a lexical network. This method uses a vocabulary network to deal
with queries, that is, through analysis of the query, the query vocabulary is extended with a
vocabulary network, to better represent the demand. Finally, through similarity matching,
the method outputs the final search code. Rahman et al. [18] proposed a tool that utilizes
Q&A community data to conduct code search recommendations. This method also uses
the question and answer community to find the corresponding description information
through the code. Unlike the Nie method [16], the description information does not directly
extend the query. Instead, it uses a Github search, a large open-source community, to
directly use the description to find relevant code.

2.2. Code Search Based on Machine Learning

With the development of recognition intelligence tools, many researchers have applied
some tools to code search. Haiduc et al. [19] designed queries based on machine learning.
In this method, the corresponding relationship between query and code signing is stud-
ied, and finally, the query is automatically performed. Nguyen et al. [20] applied deep
learning to API search and recommendation, that is, in each natural language query, the
method generated an API-based ordered search. Later, Gu et al. [14] put forward DeepCS,
which measures the similarity between code fragments and user queries through joint
embedded learning and deep learning, and finds their connection through training. Instead
of matching text similarity, DeepCS jointly embeds code snippets and natural language
descriptions into a high-dimensional vector space, in such a way that the code snippet and
its corresponding description have similar vectors. Using the unified vector representation,
code snippets related to a natural language query can be retrieved according to their vectors.
According to the latest research results, the accuracy of code searches based on machine
learning is higher than that based on information retrieval.

Chai et al. [21] proposed CDCS, a novel approach for domain-specific code search.
CDCS’s initial program representation model is pre-trained on a large corpus of common
programming languages (such as Java and Python) and is further adapted to domain-
specific languages such as Solidity and SQL. Unlike cross-language CodeBERT, which is
directly fine-tuned in the target language, CDCS adapts a few-shot meta-learning algorithm
called MAML to learn the good initialization of model parameters, which can be best
reused in a domain-specific language. Liu et al. [22] using the advantages of DeepCS (i.e.,
the capability of understanding the sequential semantics in important query words) and the
indexing technique in the IR-based model (accelerate the search response time substantially)
proposed an IR-based model CodeMatcher. CodeMatcher first collects metadata for query
words to identify irrelevant/noisy ones, then iteratively performs a fuzzy search with
important query words on the codebase that is indexed by the Elasticsearch tool, and finally
reranks a set of returned candidate code according to how the tokens in the candidate code
snippet sequentially matched the important words in a query.

Although the code search technology has been well developed in recent years, there
are still some problems such as misunderstanding of simple search statements, the quality
of candidate code, and incomplete code representation. This work provides a structural
code annotation method that uses two aspects of code and annotation information to
represent the code, so that the code representation contains effective multi-dimensional
information to improve the accuracy of search results.

3. Methodology
3.1. Motivating Example

As a centralized expression of code information, whether code annotations can com-
pletely show all the information within the code, directly affects the accuracy of code
search. In previous studies, researchers annotated codes mostly with information from

Electronics 2022, 11, 3053 4 of 16

the source code itself, such as Method Name or API sequence, including some identifiers
in the Method body. For example, in recent deep neural network-based code technology
DeepCS [14], the code feature that was extracted included: Method Name, API Sequence,
and Tokens. Figure 1 shows a simple example of Tokens generated by a Java method in
this technology.

Figure 1. DeepCS code annotates the results.

Figure 1 demonstrates that although the code annotation collected contains relatively
complete method body information, it did not collect annotation information. The an-
notation contains some important information such as interpretation of the parameters,
interpretation of the return value, and code exception information. This information can
help a coder interpret and understand the code. For example, Converts a Date into a Calendar
expresses what the code logically does. @param date the date to convert to a Calendar and
@return the created Calendar contain explanations of arguments and return values. @throws
NullPointerException if null is passed in describes the exceptions that can occur and why.
@since 3.0 identifies the particular version that the class, method, or another identifier that
was first added. In addition, this information may also be input by the user during the
search (for example, some users may restrict the parameters and return values of the search
code), so more comment information is needed for a more comprehensive code annotation.

To address this problem, the next section introduces a novel approach to code anno-
tation. Figure 2 shows the overall framework of our method. As can be seen from the
framework, the annotation method proposed in this paper not only uses the features of
the code body extracted from the abstract syntax tree, but also extracts the features of the
annotations, and finally completes the code annotation based on the two types of features.

3.2. Code Feature Extraction Method Based on an Abstract Syntax Tree

This section introduces a code feature extraction method based on an abstract syntax
tree. Firstly, the concept and construction method of an abstract syntax tree are intro-
duced. Then, the required code features are extracted according to the constructed abstract
syntax tree. The extracted code features will be used to generate multidimensional code
annotations later. Figure 3 shows the framework of the code annotation method.

Electronics 2022, 11, 3053 5 of 16

Start

The source code

Code feature
extraction method
based on abstract

syntax tree

Annotation feature
extraction method
based on classifi-
cation annotation

Code
features

Annotation
features

Code feature
and Annotation
feature fusion

Multidimensional
code annotation

Code search engine

End

Figure 2. The overall framework of our approach.

Start

The source code

Abstract
syntax tree

construction

Method
name

extraction

Method
parameter
extraction

Method
return value

extraction

Method
body

extraction

Method body
separated by

the hump
method

The sequence
of method
API calls
extraction

Code features:
1..2..3..4..

End

Figure 3. Code Annotation framework.

3.2.1. Program Analysis Based on Abstract Syntax Tree

Abstract syntax tree (AST) or “syntax tree” is an intermediate representation of the gram-
matical structure of the source code. Compared with the common code information in search
technology, the code information obtained by abstract syntax trees is more comprehensive.
There are many mature tools for converting source code into abstract syntax trees. This is
commonly used by, for example, JDT, ANTLR, RECODER, and JavaCC. In this paper, JDT
(i.e., Eclipse Java Development Tools) is selected for the construction of the abstract syntax
tree of the source code. JDT is a component in Eclipse, which organizes, compiles, debugs,
and runs Java programs. As Eclipse has evolved, JDT has gained more and more capabilities,
including the construction of abstract syntax trees. Today, the Eclipse AST is an important
component of the Eclipse JDT, defined in the package org.eclipse.jdt.core.dom, which allows
researchers and developers to quickly generate abstract syntax trees.

Electronics 2022, 11, 3053 6 of 16

3.2.2. Code Feature Extraction

After building the abstract syntax tree of the source code, the information on the
abstract syntax tree nodes is obtained through access functions in the org.eclipse.jdt.
core.dom.ASTVisitor class. As the object of this search uses Java methods, the upper
node information, such as files and packages, is ignored during the access, and only
the information in the org.eclipse.jdt.core.dom.ASTNode class is considered. Once the
method level, method name, method parameter, method return value, and API sequence
are extracted as code features, method annotations are extracted to generate annotation
features in the next section.

The details of extracting the required information from the AST are described below.

• Method name. It is extracted by the getName() method in the MethodDeclaration
class. After the method description is obtained, the words are separated in the method
name according to the Java-based hump rule.

• Method parameter. It is extracted by the parameters() method in the MethodDeclara-
tion class.

• Return value. It is extracted by the getReturnType() method in the MethodDeclaration class.
• Method annotation. It is extracted by the getJavadoc() method in the MethodDeclara-

tion class.
• API sequence. The AST does not provide an API sequence interface for a method,

so the getBody() method in the MethodDeclaration class is first called to extract the
method body, and then the API sequence is extracted according to the extraction rules.
The specific extraction rules are as follows: When a method call is used as a parameter,
the parameter method is added to the API sequence first, and then the main method
is added to the API sequence. For sequential statements, extract the APIs used in
each statement and add the extracted APIs to the API sequence in the order of the
statements. For conditional branch statements, extract the APIs used in each statement
in i f − then− else order, and add the extracted APIs to the API sequence. For loop
statements, add the API in the loop body to the API sequence only once. According to
the above rules, each statement in the method body is processed to generate the API
sequence for that method.

The detailed algorithm of extracting code features via an AST tree is shown as
Algorithm 1. The code features of the source code are extracted via extraction Algorithm 1
and include method name, method parameters, method return value, and API sequence of
four features.

Algorithm 1: Code feature extraction.
Input : Java source code address
Output :Code characteristics of Java methods
Begin :Define codeFeature {name, para, return, APIsequence}
Begin : Initial List(codeFeature)
Begin :BulidAST(address) as ast
for method ∈ ast.methods do

name←getName().split() ;
para←parameters();
return←getReturnType() ;
body←getBody() ;
for method ∈ body do

APIsequence.add (method.getName()) ;
end
List.add(codeFeature{name, para, return, APIsequence});

end
return List(codeFeature)

Electronics 2022, 11, 3053 7 of 16

3.3. Annotation Feature Extraction Method

This section introduces an annotation feature extraction method. First, a content-
based annotation classification and recognition method are proposed. Then, the annotation
features of the source code are extracted according to the classified annotations, and the
extracted annotation features will be used for the generation of code annotations later.
Figure 4 shows the overall flow chart.

Start

Code annotations

Annotations
classification and

identification

Word segmentation &
Stop word removal &

pos tagging

Functional
feature

Usage
feature

Development
feature

Structure
feature

Exception
feature

Annotation features:
1..2..3..4..5..

End

Figure 4. Code Annotation flowchart.

3.3.1. Classification of Annotation

Code annotations play an important role in software development. They can help
developers understand the source code effectively; they also play a very important role in
software maintenance [23]. Reading and understanding annotations is an essential activity
in a developer’s daily tasks, and in practice, developers typically spend more time reading
and understanding code than editing it [24]. There have been studies on the analysis and
classification of annotation contents, and they have classified the content in annotations
according to their respective research purposes [25–28]. However, in the field of code
search, the annotation of these different contents has not been considered sufficiently by
researchers, and most of the research work on code annotation is focused on the function
description of code [29,30]. Annotations describing functionality are indeed an important
part of annotations, but the content of annotations may also include many other types of
annotations [25]. Different types of annotations provide a more complete description of
code when building code annotations or code indexes.

This study proposes a content-based annotation classification, which is used for code
annotation generation and later code search-related work. This classification divides anno-
tations into five categories, namely functional annotations, usage annotations, structure
annotations, development annotations, and exception annotations. The details of each
category are as follows:

• Functional annotations: This type of annotation contains a short description of the
source code being referenced. Typically, developers use such annotations as code
summaries to help other developers understand the behavior of the code without
having to read the code to analyze it themselves.

• Use annotations: This type of annotation provides information about the use of the
code to users who may want to use the code. Typically, annotations are preceded by
metadata tags, such as @param or @return.

Electronics 2022, 11, 3053 8 of 16

• Structural annotations: This type of annotation describes the relationship between this
code entity and other code entities. Common tags are @see and @link.

• Development annotations: This type of annotation contains development-related
information, including developer information, date, and version. Common tags are
@author and @version.

• Exception annotations: This type of annotation describes the exceptions that can occur
and why. The common labels are @throws and @Exception.

3.3.2. Annotation Recognition

After introducing the annotation classification, we propose an annotation recognition
method to identify different types of annotations. Because the annotations extracted from
the abstract syntax tree are method-level Javadoc annotations, the object of this annotation
recognition method is Javadoc annotation specific. In addition, the granularity of this
method is at the statement level, that is, every natural statement will be classified into the
five types of annotations proposed above.

Because Javadoc annotations have their own annotation specifications, they are identi-
fied according to the key identifiers specified in the annotation specifications as follows:

• If the sentence in the annotation contains “@param” or “@return,” then the sentence
is annotated.

• Sentences in annotations that contain “@link” or “@see” indicate their relationship to
other resources, which are structural annotations.

• If the sentence in the annotation contains “@author” and “@date”, then the annotation
describes the author and ownership; If the sentences in the annotation include “@ver-
sion”, and “@since”, they describe information about the version. These sentences are
development annotations.

• If the sentences in the annotation contain “@throws” or “@Exception”, the exceptions that
may be thrown by this method are displayed. These sentences are exception annotations.

• In practice, functional annotations are usually at the beginning of the annotation
section. If the first or first sentences in an annotation do not contain the standard
identifiers, identified in the bulleted items above, then they are functional annotations.

3.3.3. Annotation Feature Extraction

After identifying the annotation types, annotations are presented as different cat-
egories. This section will extract annotation features of annotation feature generation
methods from annotations of different categories. Because annotations are from Natural
Language text, it is necessary to use some Natural Language processing tools to preprocess
the five types of annotations. Thus, NLTK (Natural Language Toolkit) is used for processing.
NLTK is primarily English oriented, but many of its Natural Language Processing (NLP)
models or modules are Language independent, so many of NLTK’s toolkits can be reused
if a Language has initial Tokenization or word segmentation.

The process of NLTK preprocessing annotation can be divided into three steps: word
segmentation, stop word removal, and pos tagging. After preprocessing, each type of
annotation has been processed into a word bag with part-of-speech tagging. Now, extraction
rules are formulated according to different types of annotations to extract the word features
of each type of annotation, as shown below:

• For functional annotations, verbs, and non-proper nouns are extracted as features of
functional annotations. Verbs include VB, VBD, VBG, VBN, VBP, VBZ, and nouns
include NN and NNS.

• For usage annotation, extract non-proper nouns as usage annotation features, includ-
ing NN, NNS;

• For development notes, nouns (including proper nouns), cardinal words, and loanwords
are extracted as development notes features, including NN, NNS, NNP, CD, FW;

• For exception annotations, extract non-proper nouns as features of exception annota-
tions, including NN and NNS.

Electronics 2022, 11, 3053 9 of 16

A detailed annotation feature extraction algorithm is shown in Algorithm 2. Specifi-
cally, each line of code annotation is spanned, and annotations are classified according to a
keyword. Then, NLTK is used to preprocess annotations, and word features are extracted
according to different types of annotations. Finally, all kinds of extracted word features are
integrated to complete the extraction of code annotations.

Algorithm 2: Annotation feature extraction algorithm.
Input : Java method code annotations
Output :Method annotation feature
Begin :Define annotationFeature
{ f unction, usage, structure, development, exception};
Begin : ImportNLTK;
for method ∈ ast.methods do

if “@param”or“@return”∈ sentence then
wordssentence.tokenize();
words.drop(stepwords);
usagewords.pos_tag().selece(NN, NNS);

end
else if “@link”or“@see”∈ sentence then

wordssentence.tokenize();
words.drop(stepwords);
structurewords.pos_tag().selece(NN, NNS);

end
else if “@author”or“@date”or“@version”or“@since”∈ sentence then

wordssentence.tokenize();
words.drop(stepwords);
developmentwords.pos_tag().selece(NN, NNS, NNP, CD, FW);

end
else if “@throws”or“@exception”∈ sentence then

wordssentence.tokenize();
words.drop(stepwords);
exceptionwords.pos_tag().selece(NN, NNS);

end
else if annotationsbeginwithsentence then

wordssentence.tokenize();
words.drop(stepwords);
f unctionwords.pos_tag().selece(VB, VBD, VBG, VBN, VBP, VBZ, NN, NNS);

end
annotationFeature.add(f unction, usage, structure, development, exception)

end
return annotationFeature;

3.4. Multi-Dimensional Code Annotation Generation Based on Code Feature and Annotation Feature

Multidimensional code annotation describes code from four aspects, including func-
tion annotation, usage annotation, method body annotation, and development annotation.
The content of multidimensional code annotation is composed of code features and annota-
tion features. The specific content is shown in Table 1.

Both annotation features and code features exist in the form of word features, and the
repeated words will be filtered out in the fusion process.

Electronics 2022, 11, 3053 10 of 16

Table 1. Multidimensional code annotates content.

Function Usage Method Development
Annotation Annotation Annotation Annotation

Method names Parameters Call sequence Development features
(Code features) (Code features) (Code features) (Annotation features)

Functional features Return value Exception features
(Annotation features) (Code features) (Annotation features)

Usage features Structural features
(Code features) (Annotation features)

3.5. Code Search Based on Multi-Dimensional Code Annotation

In the search framework, the multi-dimensional code annotation of the source code
is generated based on the original code. After finding the code mark, by matching the
network code annotation and the query statement of the user input, including the code
marked by deep annotations, embedded networks will be entered by the user query line
statement through deep natural language query embedded networks. This is done to
quantify, then calculate vector lengths and find vector similarity measures. Finally, the
ranking results based on similarity will output the search results.

4. Results and Discussion

In this work, we aim to answer the following research questions:

• RQ1: Can CodeHunter generate accurate results for the given query descriptions?
• RQ2: Does CodeHunter perform more effective than other selected techniques?
• RQ3: How do the influencing factors impact the effectiveness of CodeHunter?

The experiment environment is as follows: 64-bit Windows-10 operating system, the
host CPU is Intel core i7-8700k, the GPU is Nvidia K40 G, the Java version is Java8, the
running environment is JDK1.8 with the Eclipse IDE, the Python version is 3.4 with the
Pycharm IDE, and the database is MySQL.

4.1. Datasets
4.1.1. Collection of Experimental Data

GitHub is a large-scale open-source software hosting platform, and many developers
and development teams have stored a large number of open-source projects and version
history for users to call, including a large number of excellent java projects and codes; thus,
this experiment also extracted these projects and codes as experimental data. First of all, the
items are screened. In this experiment, the top 100 items in Github, whose programming
language is Java, are sorted by star rating. After downloading the project, a query-code pair
is generated according to the project. The method body of the code is extracted through
an abstract syntax tree, and then the code annotations are extracted. There are two cases,
according to whether the code has annotations or not:

(1) The method code contains code annotations. For this kind of situation, the abstract
syntax tree of the code is constructed, and the method body and code annotations
are extracted. After that, the code annotations are simply processed, the “@” tags in
the code annotations are removed, and the remaining statements are combined as
code queries.

(2) The method code contains no code annotations. In real-world environments, some
methods lack code annotations. For this kind of situation, the abstract syntax tree is
still constructed to extract the method body; then, the method name is segmented
according to java naming rules and the segmentation result is taken as the query
statement of the method.

With this methodology, a total of 7,337,263 query-code pairs were generated from
100 projects.

Electronics 2022, 11, 3053 11 of 16

4.1.2. Division of Experimental Data

After collecting query-code pair data, 7,337,263 query-code pairs were collected. To train
the matching network of tools and measure the index of search, this experiment divides the
data into a training set and a testing set according to the ratio of 20–80%. As for the training set,
the input model is a ternary combination of code-positive description-negative description, so
it is necessary to modify the query-code pair. The query corresponding to the code itself is
taken as the positive description, and 10 positive descriptions of the 10th, 20th, 30th, . . . , 100th
method code after the method code are selected as their own negative descriptions.

Once the search database is finally generated, there are 7,337,726 total methods (in-
cluding queries). The data for training CodeHunter to match the network is 5,869,810
(80% of the total number of methods). There are 58,698,100 < code, positive-description,
negative-description > triples composed of query-code pairs. There are 1,468,453 queries
for measuring indicators (20% of the total number of methods).

4.2. Baselines

(1) Lucene is an open-source java full-text search engine. It has a complete query engine
and index engine, and some text word segmentation engines. Lucene aims to provide
a simple and easy-to-use toolkit for software developers, which facilitates the full-text
retrieval function in the target system or helps to build a complete full-text retrieval
engine based on it. Lucene is a subproject of Apache, which can be downloaded and
used directly.

(2) DeepCS [14] is an effective code search tool in academia, which does not depend on
information retrieval technology. It measures the similarity between code fragments
and user queries through the collection of code information and deep learning. Ac-
cording to the latest research results, the code search accuracy of DeepCS is higher
than that of the search method using code information for information retrieval. This
tool provides an open-source download address on Github, which can be downloaded
and used directly.

4.3. Metrics

This section introduces two indicators to measure search results in this experiment.

(1) Accuracy (accuracy is abbreviated as A)

In this experiment, the accuracy rate refers to the ratio of correct search results appear-
ing among the top k results [31], and its calculation formula is as shown in Equation (1):

Accuracy@K =
1
S

S

∑
s=1

f (s < k) (1)

where S refers to the total number of searches and f () is a judgment function. The value is
1 when the correct search result is in the first K of the list, or 0 otherwise. In the experiment,
the value of K is 1, 5, 10, and the corresponding preparation rate is expressed as A@1, A@5,
and A@10. Finally, the higher the accuracy value, the better the search performance.

(2) Mean Reciprocal Rank (MRR)

In this experiment, the recommended results are presented in a sorted list, and another
metric for evaluating a search in the search and recommendation domain is the position
of the correct results in the list of results. In the measurement of accuracy, as long as the
result appears, whether the first position or the last position has the same influence on
the result; however, the reality is that the evaluation of the search tool is likely related to
the ranking position. Therefore, it is necessary to introduce a weighted factor of position
into the evaluation system. The MRR method is mainly used in Navigational Search or
Question Answering [32,33], which is insensitive to recall rate and pays more attention to

Electronics 2022, 11, 3053 12 of 16

whether the correct document retrieved by the Search tool is ranked at the top of the list of
results. The calculation formula is

MRR =
1
S

S

∑
s=1

1
N

(2)

where, S refers to the total number of searches, and N is the position of the correct result
in the list. For example, if the correct result is the first, N is 1. In this experiment, the
maximum number of result lists is 10. If no correct answer appears in the result list, N is 11.
Thus, the larger the MRR value, the better the search performance.

4.4. Experimental Process

For each studied subject, we performed the following steps:

• Construct multi-dimensional code annotations of all experimental data through Code-
Hunter;

• Use the code of the training set to mark and query the training CodeHunter matching
network to determine the weight of the matching network;

• The method in the data set of this experiment is used as the common search code set
of Lucene, DeepCS, and CodeHunter;

• Input the test set query into Lucene, DeepCS, and CodeHunter. For CodeHunter, the
similarity of all code annotations is calculated via the matching network. The search
results of the top ten similar queries are retained and output, and then the top ten
search results of the three are counted;

• Calculate metrics A@1, A@5, A@10, and MRR based on the correct and actual results
of the query.

4.5. RQ1: Effectiveness of CodeHunter Search Results

After the output of the results, the distribution of correct results in the CodeHunter
search results is shown in Figure 5.

Figure 5. CodeHunter distribution of correct result locations.

As can be seen from Figure 5, in CodeHunter’s test queries, there are 621 K queries
with correct search results in the first recommended position, 1145 K queries with correct
search results in the top 5 recommended position, 1306 K queries with correct search results,
and 162 K queries with no correct search results. Based on the search results, the values of
the metrics are shown in Table 2.

As can be seen from Table 2, the average probability of correct results appearing in the
first search result is 0.43. The average probability of correct results in the first five results is
0.78, that is, the average probability of correct results in the second to fifth place is 0.35; The
average probability of a correct result appearing in the top 10 search results is 0.89, which
means the average probability of a correct result appearing in the 6th to 10th places is 0.12.

Electronics 2022, 11, 3053 13 of 16

MRR has a draw value of 0.56, which means that the average correct search result ranks 1.8
in the list.

Table 2. The evaluation of CodeHunter search results.

A@1 A@5 A@10 MRR

0.43 0.78 0.89 0.56

4.6. RQ2: The Comparison of the Studied Code Search Techniques

Figure 6 shows the distribution comparison of correct results among the search results
of the three tools.

Figure 6. The distribution of Lucene, DeepCS, CodeHunter correct result.

As you can see from Figure 6, CodeHunter is significantly better than the other two
tools for correct results in the first and second place. Search results are output in the form
of ranking, and users get the answers they want at the forefront of ranking, which will
significantly improve user experience and more accurately measure the index results as
shown in Table 3.

Table 3. The evaluation of Lucene, DeepCS and CodeHunter search results.

Luence DeepCS CodeHunter

A@1 0.23 0.49 0.43
A@5 0.47 0.72 0.78
A@10 0.59 0.84 0.89
MRR 0.32 0.52 0.56

The metrics show that CodeHunter’s search performance is significantly better than
Lucene’s, and slightly better than DeepCS’s. As a tool for searching using deep neural
networks, DeepCS only considers the information of the code body and does not consider
the code annotations when forming code annotations, and DeepCS only considers the
simple functional statements when setting query statements. CodeHunter not only includes
the code information but also considers the code annotation information when generating
code annotations. In addition, in the setting of queries, CodeHunter’s query statements can
be multiple natural statements containing all aspects of code information. As a result, the
actual CodeHunter search performed better when the test set of queries varied in length
according to the developer’s requirements. It can also be seen that CodeHunter is superior
in actual query results in the face of more complex query contents.

Electronics 2022, 11, 3053 14 of 16

4.7. RQ3: Analysis of Influencing Factors of CodeHunter
4.7.1. Training Set Size

To evaluate the influence of the size of training data on CodeHunter, 40%, 50%, 60%,
70%, 80%, and 90% data sets were used to construct training sets respectively, and 10% of
the remaining data sets were extracted as test sets to analyze the influence. Table 4 shows
the accuracy of training data of different sizes.

Table 4. The effectiveness of CodeHunter with different sizes of the training set.

A@1 A@5 A@10

40% 0.35 0.63 0.71
50% 0.36 0.64 0.73
60% 0.39 0.71 0.79
70% 0.41 0.76 0.84
80% 0.43 0.77 0.88
90% 0.43 0.76 0.82

Table 5 demonstrates that the accuracy rate is the highest when the training set is
about 80% of the data set, which is also the reason why the training test set is divided into
20–80% in this study.

4.7.2. User Query Complexity

In the test query, some query statements are short, while some query statements
are long and contain more content. To analyze the impact of user query complexity on
CodeHunter’s accuracy, query statements are divided according to length. Thus, the query
statements with larger lengths are more complex, and vice versa. In the test set, query
statements are divided into six groups of 1–5, 6–10, 11–15, 16–20, 21–25, and 26+ according
to the number of query statements. The accuracy results are shown in Table 5.

Table 5. The effectiveness of CodeHunter with different complexity of query descriptions.

A@1 A@5 A@10

1–5 0.38 0.67 0.79
6–10 0.41 0.73 0.85
11–15 0.43 0.79 0.90
16–20 0.44 0.79 0.89
21–25 0.42 0.75 0.87
26+ 0.41 0.74 0.86

Table 5 shows the search accuracy will be slightly reduced when the user query is
short with too few words. However, in general, CodeHunter is not sensitive to the change
in query statement complexity and can better complete the search task for query statements
of different lengths.

5. Conclusions

This work proposes a code search technique, i.e., CodeHunter to improve the effective-
ness of search results. Different from existing methods, CodeHunter constructs code features
from both code and code annotation information and uses deep neural networks to match
code annotations with query statements, and finally obtains search results. The code annota-
tion model is conducted based on the information from five perspectives, i.e., functionality,
usage, structure, development, and exception handling. CodeHunter is evaluated on more
than 7 million code snippets and the experimental results show that it is more effective than
other code search techniques, i.e., DeepCS and Luence. CodeHunter obtains an average 5%
improvement over other selected techniques in terms of Accuracy@K and MRR values. we

Electronics 2022, 11, 3053 15 of 16

also find that the improvements come from the high quality of code and annotation features.
And CodeHunter cannot be impacted by the various sizes of query descriptions.

In the future, we plan to continuously optimize the matching network and feature
selection to improve the accuracy of the search. There is also some space for improvements
on applicability, e.g., extending the model to other programming languages or different
granularity of code snippets. The related experiments will be extended to more subject
projects and more code search techniques.

Author Contributions: Conceptualization, X.K. and H.C.; methodology, X.K.; software, M.Y.; val-
idation, X.K., L.Z. and M.Y.; investigation, X.K.; resources, M.Y.; data curation, M.Y.; writing—
original draft preparation, X.K.; writing—review and editing, H.C.; visualization, L.Z.; supervision,
X.K.; project administration, X.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, L.; Li, Y.; Wen, M.; Liu, Y. KG4Py: A toolkit for generating Python knowledge graph and code semantic search. Connect.

Sci. 2022, 34, 1384–1400. [CrossRef]
2. Xie, Y.; Shibata, K.; Mizoguchi, T. A brute-force code searching for cell of non-identical displacement for CSL grain boundaries

and interfaces. Comput. Phys. Commun. 2022, 273, 108260. [CrossRef]
3. Brandt, J.; Guo, P.J.; Lewenstein, J.; Dontcheva, M.; Klemmer, S.R. Two Studies of Opportunistic Programming: Interleaving Web

Foraging, Learning, and Writing Code. In Proceedings of the 27th International Conference on Human Factors in Computing
Systems, Boston, MA, USA, 4–9 April 2009; pp. 1589–1598.

4. Gkonis, P.K.; Trakadas, P.T.; Sarakis, L.E. Non-orthogonal multiple access in multiuser MIMO configurations via code reuse and
principal component analysis. Electronics 2020, 9, 1330. [CrossRef]

5. Yu, H.; Zhang, Y.; Zhao, Y.; Zhang, B. Incorporating Code Structure and Quality in Deep Code Search. Appl. Sci. 2022, 12, 2051.
[CrossRef]

6. Chatterjee, S.; Juvekar, S.; Sen, K. SNIFF: A Search Engine for Java Using Free-Form Queries; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 385–400.

7. Lv, F.; Zhang, H.; Lou, J.; Wang, S.; Zhang, D.; Zhao, J. CodeHow: Effective Code Search Based on API Understanding
and Extended Boolean Model (E). In Proceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering, Lincoln, NE, USA, 9–13 November 2015; pp. 260–270.

8. Vinayakarao, V. Spotting familiar code snippet structures for program comprehension. In Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering, Bergamo, Italy, 31 August–4 September 2015; pp. 1054–1056.

9. Reiss, S.P. Semantics-based code search. In Proceedings of the International Conference on Software Engineering, Edmonton, AB,
Canada, 20–26 September 2009; pp. 243–253.

10. Pinheiro, P.; Viana, J.C.; Fernandes, L.; Ribeiro, M.; Ferrari, F.; Fonseca, B.; Gheyi, R. Mutation Operators for Code Annotations.
In Proceedings of the Brazilian Symposium on Systematic and Automated Software Testing, Sao Carlos, Brazil, 17–21 September
2018; pp. 77–86.

11. Lima, P.; Guerra, E.; Nardes, M.; Mocci, A.; Bavota, G.; Lanza, M. An Annotation-Based API for Supporting Runtime Code
Annotation Reading. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Meta-Programming Techniques and
Reflection, Vancouver, BC, Canada, 23–27 October 2017; pp. 6–14.

12. Schramme, M.; Macías, J.A. Analysis and measurement of internal usability metrics through code annotations. Softw. Qual. J.
2019, 27, 1505–1530. [CrossRef]

13. Pinheiro, P.; Viana, J.C.; Ribeiro, M.; Fernandes, L.; Ferrari, F.C.; Gheyi, R.; Fonseca, B. Mutating code annotations: An empirical
evaluation on Java and C# programs. Sci. Comput. Program. 2020, 191, 102418.

14. Gu, X.; Zhang, H.; Kim, S. Deep Code Search. In Proceedings of the 40th International Conference on Software Engineering,
Gothenburg, Sweden, 27 May–3 June 2018; pp. 933–944.

15. Lemos, O.; Paula, A.; Zanichelli, S.; Lopes, C.V. Thesaurus-Based Automatic Query Expansion for Interface-Driven Code Search.
In Proceedings of the 36th International Conference on Software Engineering, Hyderabad India, 31 May–1 June 2014; pp. 212–221.

16. Nie, L.; He, J.; Ren, Z.; Sun, Z.; Li, X. Query Expansion Based on Crowd Knowledge for Code Search. IEEE Trans. Serv. Comput.
2017, 9, 771–783. [CrossRef]

17. Lu, M.; Sun, X.; Wang, S.; Lo, D.; Duan, Y. Query expansion via WordNet for effective code search. In Proceedings of the 22nd
IEEE International Conference on Software Analysis, Montreal, QC, Canada, 2–6 March 2015; pp. 545–549.

http://doi.org/10.1080/09540091.2022.2072471
http://dx.doi.org/10.1016/j.cpc.2021.108260
http://dx.doi.org/10.3390/electronics9081330
http://dx.doi.org/10.3390/app12042051
http://dx.doi.org/10.1007/s11219-019-09455-4
http://dx.doi.org/10.1109/TSC.2016.2560165

Electronics 2022, 11, 3053 16 of 16

18. Rahman, M.M.; Roy, C.K.; Lo, D. RACK: Code Search in the IDE using Crowdsourced Knowledge. In Proceedings of the 2017
IEEE/ACM 39th International Conference on Software Engineering Companion, Buenos Aires, Argentina, 20–28 May 2017;
pp. 51–54.

19. Haiduc, S.; Bavota, G.; Marcus, A.; Oliveto, R.; Lucia, A.D.; Menzies, T. Automatic query reformulations for text retrieval in
software engineering. In Proceedings of the 35th IEEE/ACM International Conference on Software Engineering, Silicon Valley,
CA, USA, 11–15 November 2013; pp. 842–851.

20. Nguyen, T.T.; Pham, H.V.; Vu, P.M.; Nguyen, T.T. Learning API usages from bytecode: A statistical approach. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, 14–22 May 2016; Dillon, L.K., Visser, W.,
Williams, L.A., Eds.; IEEE: Piscataway, NJ, USA, 2016; pp. 416–427.

21. Chai, Y.; Zhang, H.; Shen, B.; Gu, X. Cross-Domain Deep Code Search with Meta Learning. In Proceedings of the 44th IEEE/ACM
International Conference on Software Engineering, Pittsburgh, PA, USA, 22–24 May 2022; pp. 487–498.

22. Liu, C.; Xia, X.; Lo, D.; Liu, Z.; Hassan, A.E.; Li, S. CodeMatcher: Searching Code Based on Sequential Semantics of Important
Query Words. ACM Trans. Softw. Eng. Methodol. 2022, 31, 12:1–12:37. [CrossRef]

23. Maalej, W.; Robillard, M.P. Patterns of Knowledge in API Reference Documentation. IEEE Trans. Softw. Eng. 2013, 39, 1264–1282.
[CrossRef]

24. Marcus, A.; Maletic, J.I.; Sergeyev, A. Recovery of Traceability Links between Software Documentation and Source Code. Int. J.
Softw. Eng. Knowl. Eng. 2005, 15, 811–836. [CrossRef]

25. Pascarella, L.; Bruntink, M.; Bacchelli, A. Classifying code comments in Java software systems. Empir. Softw. Eng. 2019,
24, 1499–1537. [CrossRef]

26. Padioleau, Y.; Tan, L.; Zhou, Y. Listening to programmers — Taxonomies and characteristics of comments in operating system
code. In Proceedings of the 31st International Conference on Software Engineering, Washington, DC, USA, 16–24 May 2009;
pp. 331–341.

27. Steidl, D.; Hummel, B.; Jürgens, E. Quality analysis of source code comments. In Proceedings of the 21st International Conference
on Program Comprehension, San Francisco, CA, USA, 20–21 May 2013; pp. 83–92.

28. Subramanian, S.; Inozemtseva, L.; Holmes, R. Live API Documentation. In Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 643–652.

29. Hammad, M.; Babur, Ö.; Basit, H.A.; van den Brand, M. Clone-Seeker: Effective Code Clone Search Using Annotations. IEEE
Access 2022, 10, 11696–11713. [CrossRef]

30. Yao, Z.; Peddamail, J.R.; Sun, H. CoaCor: Code Annotation for Code Retrieval with Reinforcement Learning. In Proceedings of
the The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2203–2214.

31. Kong, X.; Han, W.; Liao, L.; Li, B. An analysis of correctness for API recommendation: Are the unmatched results useless? Sci.
China Inf. Sci. 2020, 63, 190103. [CrossRef]

32. Li Xuan, W.Q.; Zhi, J. Code search method based on enhanced description. J. Softw. 2017, 1–11.
33. Ye, X.; Bunescu, R.C.; Liu, C. Learning to rank relevant files for bug reports using domain knowledge. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China, 16–21 November 2014;
pp. 689–699.

http://dx.doi.org/10.1145/3465403
http://dx.doi.org/10.1109/TSE.2013.12
http://dx.doi.org/10.1142/S0218194005002543
http://dx.doi.org/10.1007/s10664-019-09694-w
http://dx.doi.org/10.1109/ACCESS.2022.3145686
http://dx.doi.org/10.1007/s11432-019-2929-9

	Introduction
	Related Work
	Code Search Based On Information Retrieval
	Code Search Based on Machine Learning

	Methodology
	Motivating Example
	Code Feature Extraction Method Based on an Abstract Syntax Tree
	Program Analysis Based on Abstract Syntax Tree
	Code Feature Extraction

	Annotation Feature Extraction Method
	Classification of Annotation
	Annotation Recognition
	Annotation Feature Extraction

	Multi-Dimensional Code Annotation Generation Based on Code Feature and Annotation Feature
	Code Search Based on Multi-Dimensional Code Annotation

	Results and Discussion
	Datasets
	Collection of Experimental Data
	Division of Experimental Data

	Baselines
	Metrics
	Experimental Process
	RQ1: Effectiveness of CodeHunter Search Results
	RQ2: The Comparison of the Studied Code Search Techniques
	RQ3: Analysis of Influencing Factors of CodeHunter
	Training Set Size
	User Query Complexity

	Conclusions
	References

