i:;l?é electronics

Article

Formal Modeling and Verification of Smart Contracts with Spin

Zhe Yang 10, Meiyi Dai ! and Jian Guo %*

check for
updates

Citation: Yang, Z.; Dai, M.; Guo, J.
Formal Modeling and Verification of
Smart Contracts with Spin. Electronics
2022,11,3091. https://doi.org/
10.3390/ electronics11193091

Academic Editor: Domenico Ursino

Received: 25 July 2022
Accepted: 24 September 2022
Published: 27 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

MOoE Engineering Research Center for Software /Hardware Co-Design Technology and Application,
East China Normal University, Shanghai 200062, China

National Trusted Embedded Software Engineering Technology Research Center, East China Normal
University, Shanghai 200062, China

* Correspondence: jguo@sei.ecnu.edu.cn

Abstract: Smart contracts are the key software components to realize blockchain applications, from
single encrypted digital currency to various fields. Due to the immutable nature of blockchain,
any bugs or errors will become permanent once published and could lead to huge economic losses.
Recently, a great number of security problems have been exposed in smart contracts. It is important
to verify the correctness of smart contracts before they are deployed on the blockchain. This paper
aims to verify the correctness of smart contracts in Ethereum transactions, and the model checker
Spin is adopted for the formal verification of smart contracts in order to ensure their execution with
respect to parties’ willingness, as well as their reliable interaction with clients. In this direction, we
propose a formal method to construct the models for smart contracts. Then, the method is applied
to a study case in the Ethereum commodity market. Finally, a case model is implemented in Spin,
which can simulate the process’s execution and verify the properties that are abstracted from the
requirements. Compared with existing techniques, formal analysis can verify whether smart contracts
comply with the specifications for given behaviors and strengthen the credibility of smart contracts
in the transaction.

Keywords: formal verification; LTL; model checking; smart contract; blockchain; Spin

1. Introduction

Blockchain is a decentralized, distributed digital ledger [1], allowing transactions to
be processed without the necessity of a trusted third party. As a result, business activities
can be completed in an efficient manner. Moreover, the immutability of blockchain also
ensures distributed trust since it is impossible to tamper with any transactions stored in
blockchains and all the historical transactions are auditable and traceable [2]. Transactions
on the blockchain are recorded in the corresponding blocks, and the next block saves the
hash value of the previous block to ensure the immutability of transaction data. Since there
is no central node in the blockchain, some protocols are required to construct consensus
among different nodes to ensure the ledger is always consistent [3]. After consensus is
reached, valid blocks are added to the blockchain. Currently, blockchain technology is
maturing at a fast pace [4], which has attracted the interest of industry and academia [5] due
to the significant number of business benefits including transparency, traceability, security,
and efficiency. For instance, blockchain technology has been applied to the areas of health
care [6,7], logistics [8,9], and renewable energy [10].

Smart contracts were first proposed in the 1990s by Nick Szabo [11] and have become
one of the most important features of blockchain technology. In a smart contract, contract
clauses are defined as computer protocols, which allow credible agreements among partici-
pants without relying on third party authorities. When the trigger conditions are met, the
terms embedded in smart contracts are automatically executed [3]. Smart contracts have
been applied in many scenarios such as crowdfunding, voting, and medical research [12].
The most common development platform for smart contracts is Ethereum [13]. However,

Electronics 2022, 11, 3091. https://doi.org/10.3390/ electronics11193091

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193091
https://doi.org/10.3390/electronics11193091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9448-6344
https://doi.org/10.3390/electronics11193091
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193091?type=check_update&version=2

Electronics 2022, 11, 3091

20f18

smart contracts are also facing more and more attacks [14]. In June 2016, the DAO (the
world’s largest crowdfunding project deployed on Ethereum) was attacked by hackers,
causing more than ETH three million to be separated from the DAO resource pool [15]. In
September 2017, security vulnerabilities appeared in the Ethereum multi-signature wallet
Parity, which resulted in the embezzlement of more than ETH 150000 (about USD 30 mil-
lion) [16]. With such painful losses, how to ensure the security and correctness of smart
contracts is becoming increasingly important.

In order to deal with such issues, many formal verification methods have been pro-
posed and several tools have been developed to check the correctness of the program in
smart contracts. In [17], the author proposed a verification method based on a program-
ming language. They converted smart contracts written in Solidity into the F* language to
check the security of the smart contracts. A framework named ZEUS in [18] was designed
to automatically verify the correctness of smart contracts and their fairness by abstract
interpretation and symbolic model detection. However, these rarely test the behavior of
smart contracts interacting with clients under specific scenarios.

For this purpose, model checking is well adopted to verify whether smart contracts
can interact with clients in a reliable way or not. Given a finite-state model of a system and
a formal property, model checking is an automated technique, which systemically checks
whether this property holds for that model [19]. The verification is performed with model
checking tools such as NuSMV [20] and Spin [21]. The model checker checks automatically
if each state of the model satisfies the specifications given by the user. In case there is a
property that is not satisfied, the model checker provides a counterexample that can help
us identify mistakes. On the other hand, if each state of the model satisfies the specification,
the model is formally verified for that specific property.

The paper aims to establish a generic modeling method for Ethereum transactions,
in order to apply a model-checking approach on smart contracts and their execution
environment. A transition system is proposed for Ethereum transactions, and general
formal models are built for smart contracts and clients based on it. Then, the method is
applied to a study case in the Ethereum commodity market. All of the smart contracts
and clients in the Ethereum commodity market are modeled, and the time characteristic of
transaction is also taken into account. The formal models describe the interaction between
smart contracts and clients in detail, which are presented with the Promela language.
Moreover, some important properties are extracted from the transaction and specified
using Linear Temporal Logic (LTL) formulae [22] and assertions, which are verified by the
model checker Spin. The paper makes the following contributions:

* According to the specifications of blockchain transactions, we build general formal
models for smart contracts and clients in the transaction. The method can describe the
behavior the characteristics of smart contracts interacting with clients in the form of a
state diagram under specific scenarios.

* A formal verification method of smart contracts based on Spin is proposed. The formal
models of smart contracts and clients in the transaction can be presented with the
Promela language. Spin can run the Promela model to simulate the process execution
and verify whether the model caters to these LTL formulae and assertions.

The rest of the paper is organized as follows. Section 2 gives a presentation of the
related proposals carried out in the area of smart contract modeling and verification. We
propose a formal method to build the general model for Ethereum transactions in Section 3.
Section 4 presents the considered study case in which the approach is applied and con-
structs the framework of the Ethereum commodity market. Thereafter, the transaction
behavior of clients and smart contracts in the Ethereum commodity market are modeled in
Section 5. In Section 6, the formal model of the transaction is presented with the Promela
language, and Spin is used to simulate and verify the achieved model with its properties.
Section 7 discusses the advantages and disadvantages of the proposed approach. Finally,
the conclusions and future work are discussed in Section 8.

Electronics 2022, 11, 3091

30f18

2. Related Works

Multiple efforts have been carried out in the current literature for the modeling and
verification of smart contracts. The research related to the verification of smart contracts
can be divided into two aspects, the first being related to the correctness of smart contracts
and the second focusing on the security assurance of smart contracts [23].

2.1. Modeling of Smart Contracts

The immutability property of smart contracts establishes the non-alteration of blockchain
network data after clauses of the contract are approved. For this reason, the design and
development of smart contracts require more effort and care. Several solutions for smart
contract modeling have been proposed to address the challenge.

Hamdaqa et al. [24] proposed a Domain-Specific Language (DSL) to help software
developers create smart contracts and deploy them on a blockchain network. Software
developers will be able to define models that will later generate code for different blockchain
platforms including Ethereum, Hyperledger Composer, Azure, and DAML. This allows
users to abstract which blockchain they are using and what peculiarities each one has.

In [25], the authors proposed such an approach that, in combination with the Unified
Modeling Language (UML) Class and State machine diagrams, allows the smart contract
and behavior logic to be modeled in several abstraction layers. The approach was evaluated
by using three different smart contract examples from the official Solidity documentation.
The results of the comparison of the code metrics and generated smart contracts tended to
be quite similar. As a result, developers can focus on the structural and behavioral design
of smart contracts, rather than on technique details.

In [26], the authors proposed an FSM-based approach for the design of secure smart
contracts. They aimed at closing the semantic gap in Solidity by developing the FSolidM
tool, which allows users to design a smart contract as a Finite State Machine (FSM), which is
then automatically transformed into a Solidity smart contract. In addition, the framework
extends a set of security plugins that can prevent some common vulnerabilities by patterns.

In [27], the authors developed a unifying model defining the essential components
of fully specified legal smart contracts. The main goal of the approach is to compare and
assess existing modeling languages for legal smart contracts” development with regard to
the proposed unifying model. They introduced a set of eight existing modeling languages
and demonstrated how the unifying model can be used as a basis for a holistic comparison
of the languages’ expressiveness.

2.2. Correctness Verification of Smart Contracts

The correctness verification is about respecting the specifications that determine how
clients can interact with smart contracts and how smart contracts should behave when
used correctly.

In [28], the authors used the theorem prover Isabelle/HOL and the existing EVM-
formal model to verify the bytecode of smart contracts. The goal was to create a sound
program logic and to use the resulting program logic for verification. A framework was
created for expressing the EVM bytecode using logic, which was successfully applied to a
case study. However, the framework does not support the full syntax of Solidity.

Grishchenko et al. [29] proposed the first sound static analyzer for the EVM bytecode.
The tool supports reachability properties, which contain the most important security prop-
erties of smart contracts, such as single-entrancy and transaction environment dependency.
This approach does not detect vulnerabilities, but provides guarantees that the code is free
of certain ones.

In [30], the authors proposed a generic modeling method of smart-contract-based
Ethereum applications, the model checking approach was then considered to verify the
implementation’s compliance with the specification. The proposed model is written in
the NuSMV input language, and the properties to check are formalized into the temporal
logicCTL [31]. It has three components: the kernel layer, which captures the blockchain

Electronics 2022, 11, 3091

40f18

behavior, the application layer, which models the smart contracts, and the environment
layer, which determines an execution framework for the application.

In [32], the authors proposed a tool chain for a seamless translation of smart contracts
from the level of specifications toward the level of operations. The last step of this tool
chain generates a code representation in Promela, which can be verified by the model
checker Spin. However, the tool chain is limited to the correctness of individual contracts
and needs an extension towards networks of smart contracts that interact.

2.3. Security Assurance of Smart Contracts

Any bugs or errors in the smart contract will become permanent once published on
the blockchain and could cause huge economic losses. To avoid this, the security assurance
aims at improving the security of smart contracts through vulnerability detection methods.

OYENTE [33] is a static analysis tool, which can detect security vulnerabilities. The
tool uses symbolic execution to check for the following vulnerabilities: transaction ordering
dependency, reentrancy, timestamp dependence, and unhandled exceptions.

Osiris [34] is a static analysis tool that combines symbolic execution and taint analysis
to detect integer bugs in smart contracts. The tool covers three different types of integer
bugs: arithmetic bugs, truncation bugs, and signedness bugs. Its architecture consists of
three components: symbolic analysis, taint analysis, and integer error detection.

Chen et al. [35] developed a static analysis tool named Gasper, which focuses on gas
costpatterns from existing smart contracts. Gasper looks for patterns such as dead code or
expensive operations in loops to help contract developers reduce gas costs. The authors
of [35] identified seven gas costpatterns.

3. The Proposed Approach

Transactions enabled by smart contracts are executed in accordance with the
agreements made by participants. In order to ensure their trustworthiness, a method
is proposed to build general formal models for smart contracts and clients in
Ethereum transactions.

3.1. Transition System of Ethereum Transactions
The behavior of smart contracts interacting with clients is modeled by tuple
M = (§,%,6,I), where:
. S, the set of states.
. Y= ActUt U Comm, the set of actions, where:

Act represents the internal action.

- represents the change of time.

Comm = {clv, c?x}, the communication action, where ¢ denotes the channel, c!v
denotes the message v sent by channel ¢, and c?x denotes that the variable x
receives the message from channel c.

e S CSxCond(V)x X xS, the transition relation, where:

Cond (V') represents the transition condition, where V' = var U t, in which var is
the set of internal variables and t represents the set of discrete time variables.

. I C S, the set of initial states.

We constructed the model M = (S,%,6,1) to represent the the behavior of the
Ethereum transaction. S represents the states of clients and smart contracts during the
interaction. X represents the actions of clients interacting with smart contracts, which
can be divided into three categories: the internal actions of clients and smart contracts,
the communication actions between clients and smart contracts, and the change of time.
6 represents the transition relation, which is related to transition conditions and actions.
Transition conditions are related to the internal variables and time variables, and there
is also unconditional transition in the model. The actions trigger the transition between

Electronics 2022, 11, 3091

50f18

states including internal actions, communication actions, and the change of time. Time is
abstracted as discrete time in the model.

3.2. General Model for Ethereum Transactions

Ethereum is an open-source public blockchain platform with a smart contract function.
The roles of the transaction in Ethereum can be abstracted as clients and smart contracts.
In order to model the behavior between clients and smart contracts, we considered a
simple interaction scenario. In the scenario, there are two clients A and B, who build smart
contracts to ensure the credibility of transactions. If client A wants to trade with client B, it
needs to trigger the terms embedded in smart contracts. In the process of the transaction,
smart contracts can terminate the transaction automatically in case of an abnormal situation.

As shown in Figure 1, the interaction scenario between clients and smart contracts
is divided into four parts. In the Initialization phase, client A, client B, and the smart
contracts are initialized to prepare the transaction. During the Triggering phase, once client
A satisfies the trigger conditions, smart contracts automatically execute the terms and both
parties enter the Transaction phase. In the Transaction phase, client A will trade with client
B under the supervision of the smart contracts. When the transaction ends successfully,
they enter the Termination phase. If clients violate the rules of the transaction, the smart
contracts terminate the transaction and both parties enter the Termination phase. According
to the analysis of the four stages in the transaction scenario, the general models of the
clients and smart contracts can be built, respectively.

Let the client A model be Cy,, = (51,%1, 1, I1), where:
e Sy = {start, request, wait, trade}.
e X1 = {chl,ch2,succeed, fail,end}.
* /4 is the transition relation, as shown in Figure 2.
e I} = {start}.

Let the client B model be Cyy, = (S2, X2, 2, Io), where:
e S, = {idle,ready, trade}.
o Y, = {chl,ch3, fail,end}.
* § is the transition relation, as shown in Figure 3.
b L = {zdle}

Let the smart contract model be SC,, = (S3,%3, d3, I3), where:
e Sz = {initiate, judge, execute}.
e Y5 = {ch2,ch3,succeed, fail, }.
* /3 is the transition relation, as shown in Figure 4.
e [z = {initiate}.

Client A Initialization Smart
Client B Contracts

Triggering

Transaction

Termination

Figure 1. Interaction between clients and smart contracts.

Electronics 2022, 11, 3091

6 of 18

succeed

ch3 ? m3

Figure 4. The smart contract model.

In the set of actions, chl is the communication actions between client A and B, ch2
is the communication actions between client A and the smart contracts, and ch3 is the
communication actions between client B and the smart contracts. Meanwhile, we use
succeed to represent the actions under normal circumstances; fail represents the actions
under abnormal circumstances; end represents the actions when the transaction is over.

4. The Ethereum Commodity Market

The method proposed in Section 2 was applied to a typical study case in the Ethereum
commodity market. The framework of the transaction in the Ethereum commodity market
was constructed.

4.1. The Ethereum Transaction

The roles in the study case include a factory, a supplier, a logistics company, and
Ethereum. Participants can build smart contracts according to the agreement reached by
them and deploy them on Ethereum. Due to the immutability of blockchain, transaction
results cannot be changed once recorded. Therefore, the terms embedded in smart contracts
must be credible, so that smart contracts are executed accurately. The transaction scenario
is shown in Figure 5.

Electronics 2022, 11, 3091 7 of 18
o L]
R i (2
L
Smart Contract
Factory Supplier
‘\) Smart Contract
— Ethereum
(-]
Truck
. Truck
(-]

Logistics company
Figure 5. Transaction scenario in the Ethereum commodity market.

There are two transactions. The first transaction is requested by the factory to the
supplier. After the supplier accepts the request, the factory judges whether the account
balance meets the payment. If satisfied, the factory transfers the payment to the smart
contract account. When the smart contract receives the payment, it notifies the supplier of
the delivery.

The second transaction is executed by the supplier and the logistics company. The
supplier transports goods to the factory by renting trucks from the logistics company. The
offline trading time is from 9 a.m. to 5 p.m. If the logistics company has spare trucks and
the current time is suitable, it accepts the request. After the logistics company accepts the
request, the supplier judges whether the account balance meets the fare. If satisfied, the
supplier transfers the fare to the smart contract account. When the smart contract receives
the fare, it notifies the logistics company to transport the goods.

Only when the identity information and working hours of the truck are accurate can
the delivery be successful. Once the factory receives the goods successfully, it confirms
the receipt and the smart contract transfers the payment to the supplier. After that, the
supplier confirms the shipment, and then, the smart contract transfers the fare to the
logistics company, which makes the transaction end successfully.

The successful execution of the transaction needs to satisfy many conditions, and any
exception leads to failure. For example, if the logistics company has no spare truck, it
refuses the request from the supplier, and then, the supplier informs the factory that the
transaction has failed. When the smart contract receives the confirmation from the supplier,
it returns the payment to the factory. Whether normal or abnormal circumstances, the
accurate execution of smart contracts ensures the credibility of the transaction.

It is worth mentioning that the whole procedure of the transaction is conducted
without the intervention of a third party. Smart contracts stored in Ethereum can be
automatically triggered in a decentralized way, which cuts down the service cost from the
third party and improves the efficiency of the business process.

4.2. Framework

The framework is shown in Figure 6. We abstracted the whole transaction process as
three clients and two smart contracts. The three clients are the factory, the supplier, and
the logistics company, which are represented as factory, supplier, and truck in the model.
Each smart contract corresponds to a transaction. The smart contract between factory
and supplier is represented as SCa, and the smart contract between supplier and truck

Electronics 2022, 11, 3091

8 of 18

is represented as SCb. At the beginning, factory applies for a transaction with supplier.
When factory triggers the terms embedded in SCa, the transaction between factory and
supplier officially begins. Afterwards, supplier applies for transaction with fruck. When
supplier triggers the terms embedded in SCb, the transaction between supplier and truck
officially begins.

trade

transfer

carry transfer

Figure 6. Framework of Ethereum commodity market.

5. Modeling the Ethereum Commodity Market

In order to verify the correctness of smart contracts, the reliability of the transac-
tion is analyzed. The transaction behaviors of factory, supplier, truck, and Ethereum are
modeled, respectively.

5.1. Factory Modeling

The behaviors of factory mainly include requesting a transaction, transferring the
payment to SCa, and receiving the goods. The factory model is shown in Figure 7, and the
main behaviors of it are described as follows:

* Requesting a transaction: In this phase, factory sends a transaction request to supplier.
When supplier receives the transaction request, factory provides the order quantity
to supplier. The states defined for factory include start, fa_request, fa_interl, and
g_goods.

* Transferring the payment to SCa: In this phase, factory checks whether the account
balance is sufficient to pay for the goods. If satisfied, the payment is transferred to the
smart contract account. The state defined for factory is transfer_sca.

* Getting the ID of truck: In this phase, factory needs to obtain the ID of truck, so that
it can confirm the identity of truck when it receives the goods. The state defined for
factory is rec_goods.

* Receiving the goods: When factory receives the goods, it confirms the receipt to SCa.
The states defined for factory include check_deliT, fa_rec_id, and check_id.

* Confirming receipt: When factory receives the goods, it confirms the receipt to SCa.
The state defined for factory is get_success.

Electronics 2022, 11, 3091

90f18

su_event | request_su fa_event ? accept_fa ch3 ! nb_goods
<
g fa_event ? ter_sul J

fa_event ? nbg_ok
when(fa_Acc < payment) time = time + t0
: su_event ! ter_fal
t
P

ch1? payment @er_sca
a_Acc += payment

when(fa_Acc >= payment)
:fa_Acc -= payment
ch2 | payment

sca_event ! get_success

vhen(re_truck_id == truck_id)
:t_event ! id_ok

when(re_truck_id != truck_id

:t_event ! ter_fa2

fa_event ? callT_fail

su_event | getG_fail
t=t+TD

when(time<9 || time>17)
:t_event ! ter_fa2

t=t+TD

when(9<=time<=17)

chl 2 truck_id .:tfc\rcnt I deliT_ok

Figure 7. The factory model.

chl ?re_truck_id

5.2. Supplier Modeling

The behaviors of supplier mainly include renting truck, transferring the fare to SCb,
and delivering the goods. The supplier model is shown as Figure 8, and the main behaviors
of it are described as follows:

* Responding to the request of factory: In this phase, supplier responds to the trans-
action request sent by factory and reviews the order quantity. The states defined for
supplier are idle, respond_fa, su_interl, check_nbg, and su_inter2.

* Renting fruck: Because of delivering the goods to factory, supplier sends a transaction
request to truck. The states defined for supplier include rent_truck, su_inter3, and
verify_carryT.

* Transferring the fare to SCb: In this phase, supplier checks whether the account balance
meets the cost of renting truck. If satisfied, it transfers the fare to the smart contract
account; otherwise, it declares that the transaction has failed and notifies SCa to refund
the payment. The state defined for supplier is transfer_scb.

* Delivering the goods: After renting truck successfully, supplier delivers the goods to
factory by truck. When factory confirms the receipt, supplier receives the payment
from SCa and confirms shipment to SCb. The states defined for supplier include
check_pickT, su_rec_id, and feed_fa.

* Sending the ID of truck to factory: In this phase, supplier needs to send the identity
information of truck to factory, so that factory can recognize truck correctly. The state
defined for supplier is su_se_id.

* Confirming the success of shipment: When supplier learns that factory has success-
fully received the goods, it needs to confirm the success of shipment to SCb. The states
defined for supplier are shipping and ship_succ.

5.3. Truck Modeling

The behaviors of truck mainly include picking up the goods and carrying the goods.
The truck model is shown in Figure 9, and the main behaviors of it are described as follows:

* Responding to the request of supplier: In this phase, truck responds to the request
of supplier by judging its current state. The states defined for truck are initiate,
respond_su, and check_carryT.

Electronics 2022, 11, 3091

10 0of 18

* Picking up the goods: If truck arrives during the working hours, it can pick up
the goods from supplier successfully. The states defined for truck include pick,
verify_pickT, and t_se_id_su.

o

Carrying the goods: If the delivery time and identity information of truck are correct,

it can deliver the goods to factory successfully. The states defined for truck include
verify_deliT, t_se_id_fa, and carry_succ.

Su_event ? request_su ~fa_event! accchﬁmchS 7 nb_goods
respond_fa @

when(su_nbgoods < re_nbgoods)
:fa_event ! ter_sul

when(su_nbgoods >= nb_goods)
:fa_event | nbg_ok

su_event ? funds_ok
time = time +t0

fa_event ! callT_fail t_event! request_t

sca_event ! tradel _fail

scb_event ! ship_success
ch3? fare
su_Acc += fare

su_event ? refused_su

back_fare rent_fail _inter3

su_Acc += payment t_event ! delivery_fail

su_nbgoods -= nb_goods

su_event ? accept_su|

fa_event ! callT_fail

su_event ? getG_fail .
when(su_Acc < fare)

:t_event ! ter_su2 su_event ? ter_tl
chl Ire_truck_id

t=t+TD
when(time<9 || time>17)
:t_event ! ter_su3

verify_carryT

. su_event ? carry

ch3 7 re_truck_id — WD when(su_Acc >= fare) su_event ? carryT_ok
= su_Acc -= fare time = time +t0

when(9<=time<=17) SH N

ch4 ! fare

t_event | pickT_ok
Figure 8. The supplier model.
when(Res_sta == free) when(9<=time<=17)
t_event ? request_t :su_event ! accept_su :su_event ! carryT_ok

when(Res_sta == occupied)
:su_event ! refused_su

when(time<9 || time>17)

. ront |
:su_event ! ter_tl _event? ter_su2

t_event ? fare_ok
time = time + t0

A
t_event ? ter_su3 /‘
‘ G

t_event ! delivery_fail

schb_event ! trade2_fail
ch0 ? fare

t_Acc += fare

time = time + t0

carry_succ

t_event ?id_ok

ch1!truck_id t_event? deliT_ok ch3 ! re_truck_id Y

Figure 9. The truck model.

return_fare

t_event? pickT_ok

t_event ? ter_fa2 t_event ? ter_fa2

5.4. Ethereum Modeling

Ethereum is the platform on which transactions take place and makes the transaction
secure and trustworthy through smart contracts. There are two smart contracts deployed
on Ethereum in the transaction. The Ethereum model is shown in Figure 10.

The behaviors of SCa mainly include notifying supplier of delivery and transferring
the payment to supplier. These behaviors are described as follows:

Electronics 2022, 11, 3091

110f18

* Waiting for factory to transfer the payment: The safety of the transaction between
factory and supplier is guaranteed by SCa. At the beginning, SCa waits for factory to
transfer the payment to trigger the transaction. The state defined for SCa is begin.

* Notifying supplier of delivery: Once SCa receives the payment, it notifies supplier of
the delivery. The states defined for SCa are sca_re_f and sca_fund_ok.

* Transferring the payment to supplier: If factory confirms the receipt of the goods,
SCa transfers the payment to supplier; otherwise, it returns the payment to factory
eventually. The states defined for SCa are pay_su and return_fa.

ca_event ¢ get_success

sca_event ¢ tradel_fail

ch2 ? payment

sca_Acc+= paymen. su_event ! funds_ok

sca_Acc -= payment
chl ! payment

scb_Acc -= fare
ch3 ! fare

sca_Acc -= payment
ch3 ! payment

ch4 ? fare
scb_Acc += fare

t_event ! fare_ok

scb_fu@

scb_Acc -= fare
chO ! fare

scb_event ?
trade2_fail

scb_event ? ship_success

Figure 10. The Ethereum model.

The behaviors of SCb mainly include notifying truck of the work and transferring the
fare to truck. These behaviors are described as follows:

e Waiting for supplier to transfer the fare: The safety of the transaction between supplier
and truck is guaranteed by SCb. At the beginning, SCb waits for supplier to transfer
the fare to trigger the transaction. The state defined for SCb is begin.

* Notifying truck of work: Once SCb receives the fare, it notifies truck of the work. The
states defined for SCb are scb_re_f and scb_fund_ok.

* Transferring the fare to truck: If supplier confirms the shipment, SCb transfers the fare
to truck; otherwise, it returns the fare to supplier eventually. The states defined for
SCb are pay_truck and return_su.

6. Implementation

For the purpose of verifying the correctness of the models, we adopted two methods:
simulation and formal verification. The first one was completed by executing the models
and observing the simulation results. The second one is a static method. Some properties
are extracted from specification and verified with the model checker Spin.

6.1. Model Checker Spin

Spin is a model checker—a software tool for verifying models of physical systems, in
particular computerized systems. First, a model is written that describes the behavior of
the system; then, the correctness properties that express the requirements of the system’s
behavior are specified; finally, the model checker is run to check if the correctness properties
hold for the model and, if not, to provide a counterexample: a computation that does not
satisfy a correctness property. Promela is the language that is used for writing models
in Spin.

Electronics 2022, 11, 3091

12 0f 18

6.2. Modeling the Ethereum Commodity Market with Spin

The transaction model was implemented with the Promela language, which is the

modeling language in the tool Spin. Smart contracts and clients are abstracted as processes
in Promela. The important parameters and overall structure of the model are described
as follows:

Each state name is translated into an mtype value, and each variable representing the
current state in a state machine is also declared an mtype variable. The following is
the initial declaration of the state machines’ current state:

mtype fa_currState = start;
mtype su_currState = idle;
mtype tr_currState = initiate;

mtype sca_currState = begin;
mtype scb_currState = begin;

The interact signals between state machines are sent and received through channels.
The type of all channels is abstract as chan, and the type of all messages is abstracted
as mtype. In addition, the size of each channel is set to 0 to ensure synchronization
between processes. The declaration of the channels is as follows:

chan fa_event = [0] of {mtype};
chan su_event = [0] of {mtype};
chan t_event = [0] of {mtype};

chan sca_event = [0] of {mtype};

chan scb_event = [0] of {mtype};

The transition function and the step function are defined for each state. The transition
function represents the procedure of the model migrating from one state to the next.
The step function represents the change in the model state, which is called by the
transition function. The functions of each state are translated into inline macros. The
transition function of the truck model in state check_carryT is declared as follows:

inline T_check_carryT (){
if
(time>=9 && time<=17) —> su_event ! carryT_ok;
S_t_interl_entry ();
else —> su_event ! ter_t1;
S_initiate_entry ();
fi
}

All state transition functions of each model are put into a region function. By calling
the function in a loop, each process can find the current state and determine the
operation that should be performed to move to the next state. The region functions of
factory, supplier, truck, SCa, and SCb are, respectively, function R_fa, function R_su,
function R_tr, function R_sca, and function R_scb, which are translated into inline
macros. The region function of SCa is declared as follows:

inline R_sca (){

if

:: (sca_currState == begin) —> T_sca_begin();
(sca_currState == sca_re_f) —> T_sca_re_f();
(sca_currState == sca_fund_ok) —> T_sca_fund_ok();
(sca_currState == pay_su) —> T_pay_su();
(sca_currState == return_fa) —> T_return_fa ();

fi

Electronics 2022, 11, 3091 13 of 18

. There are five executable processes Fa_stm, Su_stm, Tr_stm, SCa_stm, and SCb_stm,
which describe the behavior of factory, supplier, truck, SCa, and SCb in the transaction.
Besides the above processes, another process init is created. This process declares that
the behaviors of processes Fa_stm, Su_stm, Tr_stm, SCa_stm, and SCb_stm are active
in the initial system. Keyword run starts these processes, which run concurrently in
the system from then on. The process init is declared as follows:
init {

run Fa_stm ();

run Su_stm ();

run Tr_stm ();

run SCa_stm ();

run SCb_stm ();
}

6.3. Simulation

The sequence of messages shown in Figure 11 represents a simulation of the transaction.
The five vertical lines show the life cycle of process Fa_stm, process Su_stm, process
Tr_stm, process SCa_stm, and process SCb_stm, respectively. The slashes indicate the steps
performed by each process in turn.

Fa_stm:1:1 Su_stm:1:2 Tr_stm:1:3 SCa_stm:1:4 SCh_stm:1:5
1lrequest su $
1?request_su
2laccept_fa
2?accept_fa /
6!1000 \
6?1000
2Inbg_ok
27nbg_ok /
512000 e

I 522000

1!fund_ok
17fund_ok .

8lrequest_t
N 82request_t
1laccept_su
1?accept_su
1lcarryT_ok
1?carryT_ok
711000 e
\
I 7?1000
| | 8lfare_ok
T ——

: |
' 9?get_success :

, 612000
672000 e

10!ship_success

/

10?shi p'_success

o 311000
321000

Figure 11. Message sequence diagrams.

As shown in the simulation, factory sends the message request_su to supplier via the
channel at the beginning, which represents the transaction between factory and supplier.
supplier responds to factory’s transaction request. According to the agreement embedded

Electronics 2022, 11, 3091

14 0f 18

in the smart contracts, factory transfers the amount to the contract account. SCa then sends
the message fund_ok to supplier, which means supplier can send the goods to factory
safely. Therefore, supplier sends the message request_t to truck, which represents the
transaction between supplier and truck. truck responds to supplier’s transaction request.
Afterwards, SCb sends the message fare_ok to truck, which means truck can deliver the
goods safely. When factory has successfully received the goods, it sends the message
get_success to SCa, which in turn transfers the payment to supplier. Then, supplier sends
the message ship_success to SCb, which in turn transfers the fare to truck. The experiment
simulates the procedure of message passing among processes, which complies with the
specification of the transaction.

6.4. Verification

Based on the specification in the Ethereum commodity market, some properties were
extracted. These properties include deadlock, invariant, safety, and liveness.

6.4.1. Properties

The correct execution of smart contracts should ensure the orderly execution of the
transaction, and the funds should flow safely among accounts during the transaction. The
specific properties to be verified are as follows:

Property 1. Deadlock Free (DF, Deadlock) Deadlock is not allowed in the model,
which is the situation in which two or more processes are waiting for each other’s resource
in a circular chain. This property could be checked in Spin by default without stating it as
assertions or LTL formulae.

Property 2. Total Account Balance (TAB, Invariant) The total amount of the fac-
tory, the supplier, the truck, and the smart contracts” account should remain unchanged
throughout the transaction. The property is described in LTL as follows:

[J(fa_Acc + su_Acc +t_Acc+ sca_Acc + scb_Acc == invar)

Property 3. Supplier rents truck After Factory transfer (SAF, Safety) During the
transaction, it is impossible for the supplier to rent the truck before the factory transfers the
payment to SCa. The property is described in LTL as follows:

[|((trent_truckUpay_sca)||'pay_sca)

Property 4. Truck receives fare After Supplier receives payment (TAS, Safety) Dur-
ing the transaction, it is impossible for the truck to receive the fare before the supplier
receives the payment. The property is described in LTL as follows:

[J((ttr_rec fundUsu_rec fund)||!su_rec fund)

Property 5. Total Balance Remains Same (TBRS, Liveness) After the transaction, the
total amount of the factory, the supplier, and the truck’s account will eventually remain
unchanged. The property is described in LTL as follows:

[|(trade_finish — <> (fa_Acc + su_Acc + t_Acc == invar))

Property 6. Balance Reaches Correct Value (BRCYV, Liveness) If the transaction is
successful, the factory account balance is the initial balance minus the payment, the supplier
account balance is the initial balance plus the payment minus the fare, and the truck account
balance is the initial balance plus the fare. The property is described in LTL as follows:

[|(trade_success — <> (fa_Acc == fa_AccInit — pay_goods)&&
<> (su_Acc == su_AccInit — fare_goods + pay_goods)&&
<> (t_Acc == t_Acclnit + fare_goods))

Electronics 2022, 11, 3091

150f18

Property 7. Truck Working Time (TWT, Liveness) Under normal trading conditions,
when the truck delivery is successful, the time should be between 9 a.m. and 5 p.m. We
express it with the assertion as follows:

assert(time >= 9&&time <= 17)

6.4.2. Analysis

Spin supports user-defined properties specified as assert and LTL formulae, while
LTL formulae need to be translated into Promela never claims automatically [36]. The
verification results of each property are summarized in Table 1. For each property, we
present the kind of properties, (i.e., default property (D.P.), LTL formula, or Assertion (A))
and the number of states stored and the transitions, which represent unique global system
states stored in the state space and transitions explored in the search. Finally, whether the
model Passes (P) the verification of the property or not (F) is determined. The result shows
that all the properties are proven to be valid in the model.

Table 1. The result of verification.

Property Name Kind States Stored Transitions Usage Result
Deadlock DF D.P. 1,084,815 3,301,742 P
Invariant TAB LTL 759,662 2,269,701 P
Safety SAF LTL 759,662 2,269,701 P
TAS LTL 759,662 2,269,701 P
TBRS LTL 759,662 2,269,701 P
Liveness BRCV LTL 967,856 2,869,858 P
TWT A 1,084,815 2,216,927 P

Firstly, deadlock does not exist in the model. The invariant property ensures that
the total amount of accounts is invariable in the whole transaction procedure. The safety
properties guarantee the agreement reached by the participants. SAF verifies the order of
the factory transferring the payment to the smart contract and the supplier renting the truck,
and TAS verifies the order of the supplier receiving the payment and the truck receiving
the fare. The liveness properties prove that the account amount is correct eventually and
the transaction time complies with the specification. TBRS verifies that the total account
amount of the factory, the supplier, and the truck remain unchanged at the end of the
transaction. BRCV verifies that the account amount of the factory, the supplier, and the
truck would eventually reach the correct value when the transaction ends successfully, and
TWT verifies that the truck can only deliver successfully during working hours. Based on
the above properties satisfied in the model, the behaviors of the smart contracts interacting
with clients are safe, which makes the transaction credible when the transaction results are
recorded on the decentralized and tamper-proof blockchain.

7. Discussion and Limitations

The use of blockchain comes with a number of advantages, but its implementation is
accompanied by development difficulties, such as dealing with the immutability of smart
contracts. There are many methods for designing smart contracts correctly before they are
deployed on the blockchain. In [24], the authors proposed iContractML 2.0: a blockchain-
agnostic framework for modeling and deploying smart contracts on multiple blockchain
platforms. The main components of the iContractML 2.0 modeling framework include the
concrete syntax, validation rules, and transformation templates. In addition to supporting
multiple blockchain platforms, it also can model the behavior of smart contracts. The
developers define models that will later generate code for different blockchain platforms.

Electronics 2022, 11, 3091

16 of 18

In [25], the research aimed to demonstrate that the principles of Model-Driven Architecture
(MDA) and Unified Modeling Language (UML) diagrams can be successfully applied to
facilitate the development of smart contracts for blockchain. The authors presented the
algorithm for transformation from the Platform Independent Model (PIM) to the Ethereum
Solidity-Platform-Specific Model (PSM) and Solidity smart contract code generated from
the specified PSM. The approach enables the developers to focus on the structural and
behavioral design of smart contracts.

In this paper, we proposed a formal method for smart contract verification with Spin. A
general modeling method for smart contracts in the transaction was established, specifically
expressed in the form of the transition system and state machine. Then, formal models can
be presented in Promela, which can be verified by the model checker Spin. Compared with
the above methods, our approach can model the behavior of smart contracts interacting
with clients and verify whether the smart contracts comply with their specifications for a
given behavior of the stakeholders. However, our approach cannot generate the correct
smart contracts automatically; it can only model the designed smart contracts and verify
them. Besides, it does not apply to the situation where there are vulnerabilities existing in
the program of smart contracts. In this case, combining our approach with vulnerability
detection tools is better.

8. Conclusions

Whether the behavior between smart contracts and clients complies with the corre-
sponding specifications needs to be checked. In this paper, we applied model checking to
verify the correctness of smart contracts. The transition system of Ethereum transactions
was proposed, and the general models for smart contracts and clients were established.
Moreover, the approach was applied to a study case in the Ethereum commodity market,
and formal models of smart contracts interacting with clients were built. Thereafter, the
Promela model in Spin was implemented. Models of the study case were simulated. Finally,
some properties such as deadlock, invariant, safety, and liveness were extracted from the
specification of the Ethereum commodity market. The experiment showed that our model
satisfies these properties. Through formal modeling and analysis of smart contracts, the
behavior of smart contracts interacting with clients is reliable.

In the future, our work has two main directions. Firstly, we will work on modeling
and analyzing more challenging commodity transactions in Ethereum, such as introducing
malicious attacks from the outside. Secondly, since smart contracts are written in program
code, there may be some vulnerabilities in the program, such as integer overflow, memory
leak, and out of bounds. We can develop some tools to detect vulnerabilities in the code,
which is a challenging and meaningful work.

Author Contributions: Conceptualization, Z.Y. and J.G.; methodology, Z.Y. and J.G.; validation, Z.Y.,
M.D. and J.G.; formal analysis, Z.Y.; investigation, Z.Y. and M.D.; resources, Z.Y.; writing—original
draft preparation, Z.Y.; writing—review and editing, Z.Y., M.D. and].G.; supervision, M.D. and
J.G.; project administration, J.G.; funding acquisition, J.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program
(2019YFB2102600), and Shanghai Trusted Industry Internet Software Collaborative Innovation Center.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 3091 17 of 18

References

1. Yaga, D.; Mell, P,; Roby, N.; Scarfone, K. Blockchain technology overview. arXiv 2019, arXiv:1906.11078.

2. Zheng, Z; Xie, S.; Dai, HN.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and
platforms. Future Gener. Comput. Syst. 2020, 105, 475-491. [CrossRef]

3. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends.
In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Boston, MA, USA, 11-14 December 2017;
pp- 557-564.

4. Belchior, R.; Vasconcelos, A.; Guerreiro, S.; Correia, M. A survey on blockchain interoperability: Past, present, and future trends.
ACM Comput. Surv. (CSUR) 2021, 54, 1-41. [CrossRef]

5. Zohar, A. Bitcoin: Under the hood. Commun. ACM 2015, 58, 104-113. [CrossRef]

6. Haleem, A ; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J.
Intell. Netw. 2021, 2, 130-139. [CrossRef]

7. Farouk, A.; Alahmadi, A.; Ghose, S.; Mashatan, A. Blockchain platform for industrial healthcare: Vision and future opportunities.
Comput. Commun. 2020, 154, 223-235. [CrossRef]

8. Raja Santhi, A.; Muthuswamy, P. Influence of blockchain technology in manufacturing supply chain and logistics. Logistics 2022,
6, 15. [CrossRef]

9. He,M,; Wang, H.; Sun, Y,; Bie, R.; Lan, T,; Song, Q.; Zeng, X.; Pustisék, M.; Qiu, Z. T2L: A traceable and trustable consortium
blockchain for logistics. Digit. Commun. Netw. 2022. [CrossRef]

10. Wang, X,; Yang, W.; Noor, S.; Chen, C.; Guo, M.; van Dam, K.H. Blockchain-based smart contract for energy demand management.
Energy Procedia 2019, 158, 2719-2724. [CrossRef]

11. Szabo, N. The idea of smart contracts. Nick Szabo’s Pap. Concise Tutor. 1997, 6, 199.

12, Vwjici¢, D.; Jagodi¢, D.; Randi¢, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018
17th International Symposium Infoteh-Jahorina (Infoteh), East Sarajevo, Bosnia and Herzegovina, 21-23 March 2018; pp. 1-6.

13. Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 2-1.

14. Atzei, N.; Bartoletti, M.; Cimoli, T. A survey of attacks on ethereum smart contracts (sok). In Proceedings of the International
Conference on Principles of Security and Trust, Uppsala, Sweden, 24-25 April 2017; Springer: Berlin/Heidelberg, Germany, 2017;
pp- 164-186.

15. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605-6621.

16. Liu,J.; Liu, Z. A survey on security verification of blockchain smart contracts. IEEE Access 2019, 7, 77894-77904. [CrossRef]

17. Bhargavan, K ; Delignat-Lavaud, A.; Fournet, C.; Gollamudi, A.; Gonthier, G.; Kobeissi, N.; Kulatova, N.; Rastogi, A.; Sibut-Pinote,
T.; Swamy, N.; et al. Formal verification of smart contracts: Short paper. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, Vienna, Austria, 24 October 2016; pp. 91-96.

18. Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. Zeus: Analyzing safety of smart contracts. In Proceedings of the 25th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 18-21 February 2018; pp. 1-12.

19. Baier, C.; Katoen, J.P. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.

20. Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.; Pistore, M.; Roveri, M.; Sebastiani, R.; Tacchella, A. Nusmv 2: An
opensource tool for symbolic model checking. In Proceedings of the International Conference on Computer Aided Verification,
Copenhagen, Denmark, 27-31 July 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 359-364.

21. Holzmann, G.J. The model checker SPIN. IEEE Trans. Softw. Eng. 1997, 23, 279-295. [CrossRef]

22. Shoukry, Y.; Nuzzo, P.; Balkan, A.; Saha, I.; Sangiovanni-Vincentelli, A.L.; Seshia, S.A.; Pappas, G.J.; Tabuada, P. Linear temporal
logic motion planning for teams of underactuated robots using satisfiability modulo convex programming. In Proceedings of the
2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, 12-15 December 2017; pp. 1132-1137.

23. Almakhour, M,; Sliman, L.; Samhat, A.E.; Mellouk, A. Verification of smart contracts: A survey. Pervasive Mob. Comput. 2020,
67,101227. [CrossRef]

24. Hamdaqa, M.; Met, L.A.P; Qasse, I. iContractML 2.0: A domain-specific language for modeling and deploying smart contracts
onto multiple blockchain platforms. Inf. Softw. Technol. 2022, 144, 106762. [CrossRef]

25. Jurgelaitis, M.; Butkiené, R. Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development.
IEEE Access 2022, 10, 33465-33481. [CrossRef]

26. Mavridou, A.; Laszka, A. Designing secure ethereum smart contracts: A finite state machine based approach. In Proceedings of
the International Conference on Financial Cryptography and Data Security, Nieuwpoort, Curacao, 26 February—2 March 2018;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 523-540.

27. Ladleif, J.; Weske, M. A unifying model of legal smart contracts. In Proceedings of the International Conference on Conceptual
Modeling, Vienna, Austria, 3-6 November 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 323-337.

28. Amani, S.; Bégel, M.; Bortin, M.; Staples, M. Towards verifying ethereum smart contract bytecode in Isabelle/HOL. In Proceedings
of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, Los Angeles, CA, USA, 8-9 January 2018;
pp- 66-77.

29. Grishchenko, I.; Maffei, M.; Schneidewind, C. Ethertrust: Sound Static Analysis of Ethereum Bytecode; Technische Universitdt Wien:

Vienna, Austria, 2018; pp. 1-41.

http://doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1145/3471140
http://dx.doi.org/10.1145/2701411
http://dx.doi.org/10.1016/j.ijin.2021.09.005
http://dx.doi.org/10.1016/j.comcom.2020.02.058
http://dx.doi.org/10.3390/logistics6010015
http://dx.doi.org/10.1016/j.dcan.2022.06.015
http://dx.doi.org/10.1016/j.egypro.2019.02.028
http://dx.doi.org/10.1109/ACCESS.2019.2921624
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1016/j.pmcj.2020.101227
http://dx.doi.org/10.1016/j.infsof.2021.106762
http://dx.doi.org/10.1109/ACCESS.2022.3162227

Electronics 2022, 11, 3091 18 of 18

30.

31.

32.
33.

34.

35.

36.

Nehai, Z.; Piriou, P.Y.; Daumas, F. Model-checking of smart contracts. In Proceedings of the 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July-3 August 2018; pp. 980-987.
Browne, M.C; Clarke, E.M.; Griimberg, O. Characterizing finite Kripke structures in propositional temporal logic. Theor. Comput.
Sci. 1988, 59, 115-131. [CrossRef]

Osterland, T.; Rose, T. Model checking smart contracts for ethereum. Pervasive Mob. Comput. 2020, 63, 101129. [CrossRef]

Luu, L.; Chu, D.H.; Olickel, H.; Saxena, P.; Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24-26 October 2016; pp. 254-269.

Torres, C.F; Schiitte, J.; State, R. Osiris: Hunting for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, San Juan, PR, USA, 3-7 December 2018; pp. 664-676.

Chen, T,; Li, X.; Luo, X.; Zhang, X. Under-optimized smart contracts devour your money. In Proceedings of the 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, Austria, 20-24 February 2017;
pp. 442-446.

Neumann, R. Promela formalization. Arch. Form. Proofs 2014, 2014, 1-103.

http://dx.doi.org/10.1016/0304-3975(88)90098-9
http://dx.doi.org/10.1016/j.pmcj.2020.101129

	Introduction
	Related Works
	Modeling of Smart Contracts
	Correctness Verification of Smart Contracts
	Security Assurance of Smart Contracts

	The Proposed Approach
	Transition System of Ethereum Transactions
	General Model for Ethereum Transactions

	The Ethereum Commodity Market
	The Ethereum Transaction
	Framework

	Modeling the Ethereum Commodity Market
	Factory Modeling
	Supplier Modeling
	Truck Modeling
	Ethereum Modeling

	Implementation
	Model Checker Spin
	Modeling the Ethereum Commodity Market with Spin
	Simulation
	Verification
	Properties
	Analysis

	Discussion and Limitations
	Conclusions
	References

