Regularized Zero-Forcing Dirty Paper Precoding in a High-Throughput Satellite Communication System
Abstract
:1. Introduction
2. High-Throughput Satellite Communication System Model
2.1. High-Throughput Satellite Communication System Architecture
2.2. High-Throughput Satellite Communication System Signal Model
2.3. High-Throughput Satellite System Channel Model
3. Regularized Zero-Forcing Dirty Paper Precoding of a High-Throughput Satellite Communication System
3.1. Zero-Forcing Precoding
3.2. Regularized Zero-Forcing Precoding
3.3. Dirty Paper Regularized Zero-Forcing Precoding
4. Simulation Verification and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guidotti, A.; Vanelli-Coralli, A. Clustering strategies for multicast precoding in multibeam satellite systems. Int. J. Satell. Commun. Netw. 2020, 38, 85–104. [Google Scholar] [CrossRef]
- Costa, M. Writing on dirty paper (Corresp.). IEEE Trans. Inf. Theory 1983, 29, 439–441. [Google Scholar] [CrossRef]
- Yoo, T.; Goldsmith, A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 2006, 24, 528–541. [Google Scholar]
- Cottatellucci, L.; Debbah, M.; Gallinaro, G.; Mueller, R.; Neri, M.; Rinaldo, R. Interference mitigation techniques for broadband satellite systems. In Proceedings of the 24th AIAA International Communications Satellite Systems Conference, San Diego, CA, USA, 11–14 June 2006; pp. 2–15. [Google Scholar]
- Devillers, B.; Pérez, N.; Isabel, A.; Mosquera, C. Joint linear precoding and beamforming for the forward link of multi-beam broadband satellite systems. In Proceedings of the Global Telecommunications Conference, Houston, TX, USA, 5–9 December 2011; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Tronc, J.; Song, N.; Haardt, M.; Arentd, J.; Gallinaro, G. Overview and comparison of on-ground and on-board beamforming techniques in mobile satellite service applications. Int. J. Satell. Commun. Netw. 2014, 32, 291–308. [Google Scholar] [CrossRef]
- Maturo, N.; Duncan, J.; Krivochiza, J.; Querol, J.; Spano, D.; Chatzinotas, S.; Ottersen, B. Demonstrator of precoding technique for a multi-beams satellite system. In Proceedings of the 2019 8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications (TTC), Darmstadt, Germany, 24–27 September 2019. [Google Scholar]
- Ahmad, I.; Nguyen, K.D.; Letzepis, N.; Lechner, G.; Joroughi, V. Zero-forcing precoding with partial CSI in multibeam high throughput satellite systems. IEEE Trans. Veh. Technol. 2021, 70, 1410–1420. [Google Scholar] [CrossRef]
- Mysore, B.; Lagunas, E.; Chatzinotas, S.; Ottersten, B. Precoding for satellite communications: Why, how and what next. IEEE Commun. Lett. 2021, 25, 2453–2457. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Arapoglou, P.; Cottis, P. Satellite communications at KU, KA, and V bands: Propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutor. 2004, 6, 2–14. [Google Scholar] [CrossRef]
- Isabona, J.; Imoize, A.; Ojo, S.; Lee, C.; Li, C. Atmospheric Propagation Modelling for Terrestrial Radio Frequency Communication Links in a Tropical Wet and Dry Savanna Climate. Information 2022, 13, 141. [Google Scholar] [CrossRef]
- Al-Saegh, A.; Sali, A.; Mandeep, J.; Ismail, A.; Al-Jumaily, A.; Gomes, C. Atmospheric Propagation Model for Satellite Communications. In MATLAB Applications for the Practical Engineer; Bennet, K., Ed.; InTech: London, UK, 2014. [Google Scholar]
- Guidotti, A.; Vanelli-Coralli, A. Design Trade-Off Analysis of Precoding Multi-Beam Satellite Communication Systems. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Series, P. Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems; Recommendation ITU-R, 618–12; ITU: Geneva, Switzerland, 2015. [Google Scholar]
Parameter | Value |
---|---|
Orbit | Geostationary orbit |
Carrier frequency (GHz) | 20 |
Number of beams | 7 |
Coverage area diameter (km) | 500 km |
3 dB angle | 0.4 |
Mean of rainfall attenuation (dB) | 0.6 |
Variance of rainfall attenuation (dB) | 1 |
Polarization mode | Single-polarization |
Maximum antenna transmitting gain (dBi) | 50 |
User terminal receiving gain (dBi) | 45 |
Free space loss of forward link (dB) | 210 |
User link bandwidth (MHz) | 500 |
Noise temperature of receivers (K) | 207 |
Distribution of user terminals | Fixed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Shao, X.; Xue, G.; Liu, B.; Su, Y. Regularized Zero-Forcing Dirty Paper Precoding in a High-Throughput Satellite Communication System. Electronics 2022, 11, 3106. https://doi.org/10.3390/electronics11193106
Yang M, Shao X, Xue G, Liu B, Su Y. Regularized Zero-Forcing Dirty Paper Precoding in a High-Throughput Satellite Communication System. Electronics. 2022; 11(19):3106. https://doi.org/10.3390/electronics11193106
Chicago/Turabian StyleYang, Mingchuan, Xinye Shao, Guanchang Xue, Botao Liu, and Yanyong Su. 2022. "Regularized Zero-Forcing Dirty Paper Precoding in a High-Throughput Satellite Communication System" Electronics 11, no. 19: 3106. https://doi.org/10.3390/electronics11193106
APA StyleYang, M., Shao, X., Xue, G., Liu, B., & Su, Y. (2022). Regularized Zero-Forcing Dirty Paper Precoding in a High-Throughput Satellite Communication System. Electronics, 11(19), 3106. https://doi.org/10.3390/electronics11193106