Intelligent Vehicle Trajectory Tracking Control Based on VFF-RLS Road Friction Coefficient Estimation
Abstract
:1. Introduction
1.1. Rationale
1.2. State of the Art and Related Work
1.3. Contributions
2. Intelligent Vehicle Dynamics Model
2.1. Establishment of Vehicle Dynamics Model
2.2. Tire Normal Force Calculation
2.3. Wheel Slip Rate Calculation
2.4. Tire Effective Model Construction
2.5. Longitudinal Speed at Wheel Axle Calculation
3. The Tire/Road Friction Estimation Algorithm
3.1. Recursive Least Squares with Fixed Forgetting Factor
3.2. Estimation of Pavement Friction Coefficient Based on VFF-RLS
3.3. Estimation Model of Road Friction Coefficient
4. Trajectory Tracking Control Based on MPC
4.1. Establishment of Vehicle Model
4.2. Establishment of Vehicle Model
4.3. MPC Controller Solver
5. Simulation Results
5.1. Simulation Verification of Pavement Friction Coefficient Estimation Model
5.2. Trajectory Tracing Controller Simulation Verification
- (1)
- Scenario A
- (2)
- Scenario B
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef]
- Wang, X.B.; Shi, S.M. Analysis of Vehicle Steering and Driving Bifurcation Characteristics. Math. Probl. Eng. 2015, 2015, 847258. [Google Scholar] [CrossRef]
- Chuan, H.; Wang, R.; Yan, F.; Chen, N. Output Constraint Control on Path following of Four-Wheel Independently Actuated Autonomous Ground Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 4033–4043. [Google Scholar]
- Guo, J.; Luo, Y.; Li, K. An Adaptive Hierarchical Trajectory Following Control Approach of Autonomous Four-Wheel Independent Drive Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2482–2492. [Google Scholar] [CrossRef]
- Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control Eng. Pract. 2018, 76, 41–53. [Google Scholar]
- Falcone, P.; Borrelli, F.; Asgari, J.; Tseng, H.E.; Hrovat, D. Predictive Active Steering Control for Autonomous Vehicle Systems. IEEE Trans. Control Syst. Technol. 2007, 15, 566–580. [Google Scholar] [CrossRef]
- Guo, H.; Liu, J.; Cao, D.; Chen, H.; Yu, R.; Lv, C. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles. Mechatronics 2018, 50, 422–433. [Google Scholar] [CrossRef]
- Wang, R.; Hu, C.; Wang, Z.J.; Yan, F.J.; Chen, N. Integrated optimal dynamics control of 4WD4WS electric ground vehicle with tire-road frictional coefficient estimation. Mech. Syst. Signal Process. 2015, 60–61, 727–741. [Google Scholar] [CrossRef]
- Barreiro-Gomez, J.; Mas, I.; Giribet, J.I.; Moreno, P.; Ocampo-Martínez, C.; Sánchez-Peña, R.; Quijano, N. Distributed data-driven UAV formation control via evolutionary games: Experimental results. J. Frankl. Inst. 2021, 358, 5334–5352. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, X.; Zou, Y.; Lenzo, B.; Zhang, T. A computationally efficient path-following control strategy of autonomous electric vehicles with yaw motion stabilization. IEEE Trans. Electrif. 2020, 6, 728–739. [Google Scholar] [CrossRef]
- Kim, E.; Kim, J.; Sunwoo, M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics. Int. J. Automot. Technol. 2014, 15, 1155–1164. [Google Scholar] [CrossRef]
- Behrooz, M.; Pouyan, A.; Majid, M.; Mehdi, M.K. Integrated robust controller for vehicle path following. Multibody Syst. Dyn. 2015, 33, 207–228. [Google Scholar]
- Kapania, N.R.; Gerdes, J.C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling. Veh. Syst. Dyn. 2015, 53, 1687–1704. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Funke, J.; Erlien, S.; Gerdes, C. Safe driving envelopes for path tracking in autonomous vehicles. Control Eng. Pract. 2017, 61, 307–316. [Google Scholar] [CrossRef]
- Li, B.Y.; Du, H.P.; Li, W.H. A potential field approach-based trajectory control for autonomous electric vehicles with in-wheel motors. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2044–2055. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, Y.; Zhao, Y. Trajectory tracking of autonomous vehicle with the fusion of DYC and longitudinal-lateral control. Chin. J. Mech. Eng. 2019, 32, 1–16. [Google Scholar] [CrossRef]
- Kim, J. Identification of lateral tyre force dynamics using an extended Kalman filter from experimental road test data. Control Eng. Pract. 2009, 17, 357–367. [Google Scholar] [CrossRef]
- Cui, Q.; Ding, R.; Zhou, B.; Wu, X. Path-tracking of an autonomous vehicle via model predictive control and nonlinear filtering. Proc. IMechE. Part D J. Automob. Eng. 2018, 232, 1237–1252. [Google Scholar] [CrossRef]
- Rascon, R.; Moreno-Valenzuela, J. Output feedback controller for trajectory tracking of robot manipulators without velocity measurements nor observers. IET Control Theory Appl. 2020, 14, 1819–1827. [Google Scholar] [CrossRef]
- Sahin, H. Collision Avoidance via Adaptive Trajectory Control in Case of a Sudden Decrease in the Maximum Road Friction Coefficient. Promet-Traffic Transp. 2017, 29, 469–478. [Google Scholar] [CrossRef]
- Xie, W.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Robust Motion Control of an Underactuated Hovercraft. IEEE Trans. Control Syst. Technol. 2019, 27, 2195–2208. [Google Scholar] [CrossRef]
- Etienne, L.; Acosta Lúa, C.; Di Gennaro, S.; Barbot, J.P. A Super-twisting Controller for Active Control of Ground Vehicles with Lateral Tire-road Friction Estimation and CarSim Validation. Int. J. Control Autom. Syst. 2020, 18, 1177–1189. [Google Scholar] [CrossRef]
- Choi, M.; Oh, J.J.; Choi, S.B. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Trans. Veh. Technol. 2013, 62, 2906–2918. [Google Scholar] [CrossRef]
- Dini, P.; Saponara, S. Processor-in-the-loop validation of a gradient descent-based model predictive control for assisted driving and obstacles avoidance applications. IEEE Access 2022, 10, 67958–67975. [Google Scholar] [CrossRef]
- Dini, P.; Saponara, S. Model-Based Design of an Improved Electric Drive Controller for High-Precision Applications Based on Feedback Linearization Technique. Electronics 2021, 10, 2954. [Google Scholar] [CrossRef]
- Xu, L.; Ding, F. Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 2017, 36, 1735–1753. [Google Scholar] [CrossRef]
- Ding, F.; Xiao, Y.S. A finite-data-window least squares algorithm with a forgetting factor for dynamical modeling. Appl. Math. Comput. 2007, 186, 184–192. [Google Scholar] [CrossRef]
- Arablouei, R.; Dogancay, K. Linearly-constrained recursive total least-squares algorithm. IEEE Signal Process. Lett. 2012, 19, 821–824. [Google Scholar] [CrossRef]
Symbol | Dimension | Value |
---|---|---|
m | kg | 1296 |
ms | kg | 1200 |
mu | kg | 96 |
Iz | kg·m2 | 1750 |
hg | m | 0.54 |
lf | m | 1.25 |
lr | m | 1.32 |
lw | m | 1.405 |
R0 | m | 0.315 |
kt | kN/m | 100 |
N/rad | 66,900 | |
N/rad | 62,700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Y.; Hua, Y.; Zhang, M.; Zhang, X. Intelligent Vehicle Trajectory Tracking Control Based on VFF-RLS Road Friction Coefficient Estimation. Electronics 2022, 11, 3119. https://doi.org/10.3390/electronics11193119
Nie Y, Hua Y, Zhang M, Zhang X. Intelligent Vehicle Trajectory Tracking Control Based on VFF-RLS Road Friction Coefficient Estimation. Electronics. 2022; 11(19):3119. https://doi.org/10.3390/electronics11193119
Chicago/Turabian StyleNie, Yanxin, Yiding Hua, Minglu Zhang, and Xiaojun Zhang. 2022. "Intelligent Vehicle Trajectory Tracking Control Based on VFF-RLS Road Friction Coefficient Estimation" Electronics 11, no. 19: 3119. https://doi.org/10.3390/electronics11193119
APA StyleNie, Y., Hua, Y., Zhang, M., & Zhang, X. (2022). Intelligent Vehicle Trajectory Tracking Control Based on VFF-RLS Road Friction Coefficient Estimation. Electronics, 11(19), 3119. https://doi.org/10.3390/electronics11193119