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Abstract: This systematic review aims to provide deep insights on emerging trends in, and the
potential of, advanced deep learning techniques, such as machine learning algorithms being partially
replaced by deep learning (DL) algorithms for credit scoring owing to the higher accuracy of the latter.
This review also seeks to explain the reasons that deep belief networks (DBNs) can achieve higher
accuracy than shallower networks, discusses the potential classification capabilities of DL-based
classifiers, and bridges DL and explainable credit scoring. The theoretical characteristics of DBNs
are also presented along with the reasons for their higher accuracy compared to that of shallower
networks. Studies published between 2019 and 2022 were analysed to review and compare the most
recent DL techniques that have been found to achieve higher accuracies than ensemble classifiers,
their hybrids, rule extraction methods, and rule-based classifiers. The models reviewed in this study
were evaluated and compared according to their accuracy and area under the receiver operating
characteristic curve for the Australian, German (categorical), German (numerical), Japanese, and
Taiwanese datasets, which are commonly used in the credit scoring community. This review paper
also explains how tabular datasets are converted into images for the application of a two-dimensional
convolutional neural network (CNN) and how “black box” models using local and global rule
extraction and rule-based methods are applied in credit scoring. Finally, a new insight on the design
of DL-based classifiers for credit scoring datasets is provided, along with a discussion on promising
future research directions.

Keywords: credit scoring; credit risk; deep learning; convolutional neural networks; tabular data;
structured data; deep belief networks

1. Introduction

Appropriate customer selection is a key element of risk management in the banking
industry [1]. However, achieving accuracy in risk assessment is considered a difficult task.
In problems related to credit scoring, the dependent variable is dichotomous, where ‘0’
is assigned to failed loans and ‘1’ to non-failed loans. Thus, techniques such as logistic
regression and neural networks (NNs) can be used to estimate the borrower’s probability
of default [2]. To manage financial risks, banks collect information from customers and
other financial institutions to distinguish safe borrowers from risky ones. However, current
automated lending risk evaluation methods are imperfect, and the failure of credit scoring
algorithms to accurately assess loan recipients can result in considerable losses. Thus, from
the perspective of the banking sector, appropriate assessment of credit applicants is crucial.

The topic of credit scoring has been at the forefront in the fields of finance and eco-
nomics in applying machine learning (ML) techniques such as decision trees (DTs) [3],
NNs [4], and support vector machines (SVMs) [5]; thus, the performance of various classifi-
cation algorithms for credit scoring has been intensively researched over the past 50 years.
Initially, the accuracy gains of these methods (compared with the logistic regression model)
for the assessment of creditworthiness appeared to be limited. However, the performance
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of ML-based scoring methods has improved considerably since the adoption of ensemble
methods, especially bagging [6] and boosting [7] methods.

The application of deep learning (DL) to business analytics and operations has also
attracted considerable research attention [8]. Kraus et al. [8] revealed that DL is a feasible
and effective method in these fields and determined that it can outperform its traditional
counterparts in terms of predictive accuracy. The development of accurate and analytical
credit scoring models has thus emerged as a major area of focus for financial institutions [8].
Numerous classification algorithms have been proposed for credit scoring. For example,
Gunnarsson et al. [9] reported that XGBoost, which was originally proposed by Chen and
Guestrin [10], is the best-ranking classifier. However, the application of DL algorithms in
credit scoring has been largely ignored in the literature [9].

DL has been successfully used in many real-world applications, especially in domains
involving visual and audio recognition or time-series economic and financial data analysis.
In these domains, the temporal and/or spatial correlation of data enables DL methods to
learn features effectively, leading to superior classification results. DL models such as con-
volutional neural networks (CNNs) [11] and long short-term memory (LSTM) networks [12]
commonly use data correlations to learn feature representations. One-dimensional (1D)
CNNs have been applied to data with temporal correlations, such as stock indices, whereas
convolution has been used to learn meaningful patterns in data. Existing DL methods
largely benefit from this learning power to identify meaningful features by capturing tem-
poral/spatial correlations [13]. In a systematic and comprehensive review, Sezer et al. [14]
reported a lack of review papers focusing solely on DL for credit scoring, despite the
growing interest in the development of models incorporating DL for financial time-series
forecasting.

Furthermore, to the best of the author’s knowledge, only one review article on the
application of DL to credit scoring has been published. Dastile and Celik [15] conducted
a systematic literature survey on statistical and ML models for credit scoring to leverage
the performance benefits of DL while complying with the legislation requirements for
automated decision-making processes. In their paper, they briefly described the DL tech-
niques in credit scoring published from 2015 to 2018, which represents the first trend of
the replacement of statistical and classical ML techniques with DL techniques in credit
scoring. Luo et al. [16] first used corporate default swap data to compare the performance
of deep belief networks (DBNs) with that of logistic regression, multi-layer perceptrons
(MLPs), and SVMs, and revealed that DBNs exhibited superior performance. Tran et al. [17]
proposed a hybrid model combining genetic programming and stacked autoencoder (AE)
network models. They compared the proposed hybrid model with logistic regression,
k-nearest neighbor (KNN) classification methods, SVMs, artificial neural networks (ANNs),
and DTs for credit scoring datasets. The results revealed that the proposed hybrid model
exhibits excellent accuracy.

In a survey of the literature published from 2015 to 2018 on the use of DL for financial
applications, Ozbayoglu et al. [18] described how relatively simple DL methods are for
application in credit scoring. In addition, Yu et al. [19] proposed a unique cascade hybrid
model of a DBN-based resampling SVM ensemble learning paradigm to classify the German
and Japanese credit scoring datasets. However, over the past few years, novel DL-based
methods for credit scoring have been rapidly developed.

As the present study aimed to provide an in-depth insight rather than a systematic
review, studies published between 2019 and 2021 were searched using Web of Science,
Science Direct, and IEEE eXplore. For Section 4 only, a few recent studies from arXiv were
also selected. The present review focuses on an emerging trend in which ML techniques
are partially being replaced by DL techniques for credit scoring. The architectures used in
DL include DBNs [20], LSTM networks [12], CNNs [11], and AEs [21]. Such comparisons
should be performed using a considerable number of real-world credit scoring datasets [8].
Thus, the models in this review were evaluated and compared in terms of their accuracy
and area under the receiver operating characteristic curve (AUC) [22] for the Australian,
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German (categorical), German (numerical), Japanese, and Taiwanese datasets, which are
commonly used in the credit scoring and other research communities [22]. Further, the
improvements in accuracy and AUC values achieved with these datasets using ensemble
classifiers and their hybrids, DL techniques, rule extraction, and rule-based classifiers for
credit scoring have been tabulated as well.

Over 2019–2021, DL-based classifiers emerged as exhibiting the highest output ac-
curacies, subsequently leading to the emergence of a “DL revolution” in credit scoring.
A key aspect of DL-inspired ensemble systems involves the hierarchical distribution of
ML elements in cascade and/or parallel ensembles [23–25]. Another key aspect is the
conversion of tabular datasets into images using bins employed to calculate the weight of
evidence (WOE) [26]. Dastile and Celik [27] considered both continuous and categorical
features and achieved the highest accuracy (88%) amongst DL-based classifiers for the
German (categorical) dataset.

The objectives of this review are fourfold: (1) to present certain theoretical charac-
teristics of DBNs and the reasons they achieve higher accuracy than shallower networks
with one hidden layer by using ML theorems; (2) to review the most recent DL techniques
that have been shown to achieve higher accuracies than ensemble classifiers, their hybrids,
rule extraction methods, and rule-based classifiers; (3) to reveal the potential classification
capabilities of DL-based classifiers and investigate their applicability to credit scoring
datasets; and (4) to provide deep insights into the usefulness and interpretability of DL in
credit scoring and related financial areas.

The remainder of this paper is structured as follows. Section 2 presents the fundamen-
tals of DL models used in credit scoring, such as deep multi-layer perceptrons (DMLPs),
CNNs, LSTM networks, restricted Boltzmann machines (RBMs) [28], DBNs, AEs, discre-
tised interpretable multi-layer perceptrons (DIMLPs), 1D CNNs, gcForest, and DL ensemble
systems, as well as data attributes and preprocessing/encoding techniques for DL in credit
scoring. Section 3 provides an overview of the accuracy, AUC, and methods recently
reported for the Australian, German (categorical), German (numerical), Australian, and
Taiwanese credit scoring datasets. Section 4 explains how the tabular datasets are converted
into images for the application of a two-dimensional (2D) CNN over 2018–2021. Section 5
presents an explanation of “black box” models using local and global rule extraction and
rule-based methods in credit scoring. Section 6 summarises the emerging trends and accu-
racies of various methods for the Australian, German (categorical), German (numerical),
Australian, and Taiwanese datasets. Further, it highlights the potential capabilities of DL
classifiers, discusses their applicability for credit scoring based on emerging trends reported
mainly over 2020–2021 from the perspective of ML with and without DL techniques for the
five datasets, outlines the design of CNN-based classifiers for credit scoring datasets, and
provides promising research directions. Finally, Section 7 concludes the paper.

2. Fundamentals of Deep Learning Models Used in Credit Scoring

A DL model is a type of ML model that consists of multiple ANN layers and provides
high-level abstraction for data modelling [29]. Up until now, various DL models have been
reported in the literature, including DMLPs, CNNs, LSTM networks, RBMs, DBNs, AEs,
DIMLPs, 1D CNNs, gcForest, and DL ensemble systems.

2.1. Previous Reviews

So far, two surveys related to the theme of this review have been published in the
literature. The first [15] employed a systematic literature survey approach to systematically
review statistical and ML models in credit scoring, identified limitations in the literature,
and proposed a guiding ML framework. Although, this survey is well organised, it is
based on journal and conference articles that were published between 2010 and 2018.
Furthermore, although DL models had not been applied extensively in the credit scoring
literature, they showed promising results that often were not fresh. Thus, the second
survey [18] can be considered as the first comprehensive survey paper on “deep learning
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for financial applications”. Although it provides an excellent introduction to the basics of
DL deep learning and is well-suited for understanding DL deep learning for broad financial
applications, directly overlapped sections with the present review were limited to credit
scoring and credit risk. In addition, although an original article [27], the sections contain a
belief review of recent works in their Related Works section.

In contrast, the present review concentrates on articles published between 2019 and
2022, which correlated into the period of emergence of significant novel DL algorithms
in credit scoring, as alluded earlier. This review was carried out based on the following
four concepts: (1) whether the adoption of deep architectures (such as CNN [11] and
XGBoost [10]) or shallow architectures (such as logistic regression) depends on the property
of datasets; (2) classifier design and interpretability, such as rule extraction; (3) interchange-
ability between images and symbolic rules for classification; and (4) effectiveness of tabular
image conversion for credit scoring.

2.2. Deep Multi-Layer Perceptrons (DMLPs)

DMLPs represent the first type of ANN models. They consist of input, output, and
hidden layers, similar to an ordinary MLP; however, DMLPs have more layers.

2.3. Convolutional Neural Networks (CNNs)

CNNs, the first of which was proposed by LeCun et al. [11], constitute a type of deep
neural network (DNN) mainly used for image classification and recognition problems.
CNNs scan an entire image using filters. Most CNNs consist of numerous layers, such as
convolutional layers based on convolution operation [18], subsampling or pooling (average
or maximum) layers, and fully connected layers. The convolution operation extracts
features from the data, whereas subsampling reduces data dimensionality. Compared with
other NNs, CNNs exhibit weight sharing, pooling, and local connectivity, which is achieved
by convolution and inspired by an image space in which the pixel correlation of relatively
close pixels is strong, while that of faraway pixels is weak. A generalised CNN architecture
is shown in Figure 1.
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2.4. Long Short-Term Memory (LSTM) Networks

LSTM networks [12] are DL networks specifically designed for sequential data analysis.
An advantage of LSTM networks is that both short- and long-term values in the network
can be remembered. Therefore, they are mainly used for sequential data analysis (e.g.,
speech recognition, time-series data). LSTM networks consist of LSTM units. Each LSTM
unit consists of cells with input, output, and forget gates that regulate the information flow.
These features enable each cell to remember the desired values over arbitrary time intervals.
LSTM cells combine to form layers of NNs [16]. The schematic of a basic LSTM unit is
shown in Figure 2.
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2.5. Restricted Boltzmann Machines (RBMs)

RBMs are bipartite, undirected, graphical ANN models that consist of two layers—a
visible layer and a hidden layer—that can learn the probability distribution of an input
set [28] and are mainly used for dimension reduction, classification, and feature-learning.
Each unit makes stochastic decisions to determine whether the input data should be
transmitted, and the units in the layers are not connected to each other. Each cell is a
computational point that processes the input. A graphical overview of an RBM is shown in
Figure 3.
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2.6. Deep Belief Networks (DBNs)

DBNs [20] are ANNs that consist of a stack of RBM layers. They are probabilistic
generative models that include latent variables and are used for determining independent
and discriminative features in an input set by using an unsupervised approach. After DBNs
learn to reconstruct the input set probabilistically during the training process, the layers in
the network begin to detect the discriminative features. After this learning step, supervised
learning is performed for classification. The structure of a DBN is shown in Figure 4.
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2.7. Autoencoders (AEs)

Typically, AE networks [21] are used in DL models to remap the inputs (features) such
that they are more representative for classification. Thus, AE networks perform unsuper-
vised feature-learning. A representation of a dataset is learned through dimensionality
reduction using an AE, which are typically used for feature extraction and dimension
reduction. They include an input layer, output layer, and one or more hidden layers that
connect the layers together. The number of nodes in the input layer is equal to the number
of nodes in the output layer, and they exhibit a symmetrical structure. AEs consist of two
components, namely an encoder and a decoder. The basic structure of an AE is shown in
Figure 5.
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2.8. Discretised Interpretable Multi-Layer Perceptrons (DIMLPs)

DIMLPs differ from MLPs in terms of the connectivity between the input layer and the
first hidden layer. Specifically, a hidden neuron receives only a connection from an input
neuron and a bias neuron. After the first hidden layer, the neurons are fully connected.
Notably, DIMLPs consist of two hidden layers, with the number of neurons in the first
hidden layer equal to that of the input neurons [30].

2.9. One-Dimensional Convolutional Neural Networks (1D CNNs)

Typically, 2D CNNs are preferred over 1D CNNs. Therefore, CNNs are not the first
choice for analysing credit scoring datasets, which contain categorical attributes. Hayashi
and Takako [31] used a combination of a 1D fully connected layer first CNN (1D FCLF-
CNN [32]) and the recursive-rule extraction algorithm with J48graft [33] to develop a
novel approach for achieving transparency and conciseness in credit scoring datasets with
heterogeneous attributes. In their network, first, the input layer is connected to a number
of fully connected layers, followed by a typical CNN. By adding a Softmax layer, the
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fully connected layers before the convolutional layers in a 1D FCLF-CNN (Figure 6) are
regarded as encoders; this provides a better local structure that can transfer raw instances
into representations because structured datasets are similar to disrupted image data, which
appear to exhibit no local structure. An inception module [34] was used to construct the 1D
FCLF-CNN.
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2.10. gcForest

To improve the learning ability and classification performance of a model, Zhou and
Feng [35,36] proposed gcForest (Figure 7), a tree-based ensemble method that uses a cascade
structure to process features in a layer-by-layer manner. In gcForest, to reduce the risk of
overfitting, the class vector is generated by each forest in the cascade structure through
k-fold cross-validation. Although gcForest achieved comparable performance with that
of DNNs in a number of tasks and has performed well in many fields, it has not yet been
applied to credit scoring.
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2.11. Deep-Learning-Inspired Ensemble Systems

The deep genetic hierarchical network of learners (DGHNL) methodology, which
consists of a fusion-based 29-layer structure, including feature extraction approaches, 5 ML
algorithms, kernel functions, and both normalisation and parameter optimization tech-
niques, was introduced by Pławiak et al. as an extension of their previous work [23,24].
Their main motivation for developing DGHNL was to boost the performance of credit
scoring prediction systems by applying an ensemble learning technique with many lay-
ers, as the performance of classical ML methods can be enhanced by the application of
evolutionary algorithms [24]. A schematic of DGHNL is shown in Figure 8.
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2.12. Types of Data Attributes

The number of cases with more than one type of attribute in a supervised control ar-
chitecture has increased considerably [37]. Categorical attributes consist of two subclasses—
nominal and ordinal—with the ordinal subclass inheriting certain properties of the nominal.
Similar to nominal attributes, all categories (i.e., possible values) of the attributes in ordinal
data (i.e., the data associated with only ordinal attributes) are qualitative and unsuitable
for mathematical operations. However, the attributes are naturally ordered and compara-
ble [38], for example, in a dataset related to individuals containing a numerical attribute,
such as 0.567, 78.9, 10, or 100, an ordinal attribute such as a Stage I, II, or III cancer diagnosis,
and a nominal attribute, such as university student, public employee, company employee,
lawyer, teacher, or professor [39].

2.13. Weights of Evidence

Certain classification algorithms (e.g., classification trees, Bayes classifiers) are well-
suited to data of mixed scaling levels, whereas others (e.g., ANNs, SVMs) benefit from
encoding nominal variables. Thomas and Edelman [26] suggested two methods of evaluat-
ing the categorical variables for loan evaluations. The first is the creation of binary dummy
variables for each possible value of an attribute, and the second avoids the creation of
numerous dummies by performing WOE encoding. For each attribute value, the numbers
of good and bad risks are counted, and the WOE is calculated as follows:

WOE = ln
p(value = good)
p(value = bad)

,
p(value = good)
p(value = bad)

(1)
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where p(value = good) is the number of good risks that have this value for the attribute
divided by the total number of good risks, and p(value = bad) is the number of bad risks
having this value for the attribute divided by the total number of bad risks. The categorical
answers are replaced by these weights of evidence, with higher weights indicating that the
attribute value corresponds with good risks.

2.14. Limitations on the Availability of Datasets

The datasets used in this review are very old and small in size (690–1000 instances).
Because they are small, DL methods might not achieve good performance. The Kaggle credit
dataset (https://www.kaggle.com/c/GiveMeSomeCredit/data, accessed on 10 January
2020) contains 250 K instances, and recent papers have used datasets that are even larger;
however, often, these data are not publicly available.

3. Review of Recent Deep Learning Techniques in Credit Scoring

In this section, the performance of recent ensemble and hybrid classifiers for the
Australian (Table 2), German (categorical) (Table 3), German (numerical) (Table 4), Japanese
(Table 5), and Taiwanese (Table 6) credit datasets is first tabulated. Then, the performance
of recent DL techniques for these five credit datasets is reviewed.

3.1. Credit Scoring Datasets

In this subsection, the characteristics of the Australian, German (categorical), German
(numerical), Japanese, and Taiwanese datasets (Table 1) are described, each of which
exhibits a distinct imbalance ratio. Five credit datasets with distinct imbalance ratios were
used to review the performance of DL techniques for credit scoring. These datasets were
obtained from the UCI ML Repository (https://archive.ics.uci.edu/ml/index.php) and are
easily accessible.

Table 1. Characteristics of the five credit datasets.

Dataset Number of
Instances

Good
Credit

Bad
Credit

Number of
Features

Number of
Categorical Features

Number of
Numerical Features

Imbalance
Ratio

Australian 690 307 383 14 6 8 1.24
German

(categorical) 1000 700 300 20 13 7 2.33

German
(numerical) 1000 700 300 24 0 24 2.33

Japanese 690 307 383 15 11 4 1.24
Taiwan 30,000 23,366 6634 23 23 0 3.52

3.2. Area under the Receiver Operating Characteristic Curve (AUC)

To define AUC, let us introduce the true negative (TN), false positive (FP), false
negative (FN), and true positive (TP). For credit scoring classification, TN represents the
number of borrowers who are correctly classified as non-defaults, FP represents the number
of defaulted borrowers who are incorrectly classified as defaults, FN represents the number
of defaulted borrowers who are incorrectly classified as non-defaults, and TP represents
the number of borrowers who are correctly classified as defaults [15]. Thus, AUC, which
measures the discriminative power of model between classes [22], is calculated as per the
following equation:

AUC =
1
2

(
1 +

TP
TP + FN

− FP
FP + TN

)
(2)

3.3. Performance of Various Classification Techniques

As the performance of classifiers in aspects such as predictive accuracy differs consid-
erably with or without DL techniques, these performance parameters were investigated
separately.

https://www.kaggle.com/c/GiveMeSomeCredit/data
https://archive.ics.uci.edu/ml/index.php
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3.4. Deep Learning Models Used in Credit Scoring

This section investigates various DL models applied in credit scoring research. DL
models are categorised according to their function into five subcategories: discriminative,
representative, generative, ensemble, and hybrid DL models, as shown in Figure 9.
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3.4.1. Performance of Classifiers without Deep Learning Techniques

The accuracy and AUC values of both ensemble and hybrid classifiers without DL tech-
niques, which are considered conventional classifiers, for the Australian dataset are shown
in Table 2. Employing a clustering-based financial risk assessment model, Acharya [40] pro-
posed a novel wrapper feature selection approach. Initially, the features were ranked using
an information-gain-directed feature selection (IGDFS) algorithm, and the highest-ranking
n features were propagated using a genetic algorithm-based wrapper (GAW) model. The
data generated from the previous stage were then clustered using an improved k-means
clustering technique. When this clustering process was completed, the data were classified
using a gradient-boosting tree (GBT) classifier model. The incorporation of the IGDFS,
GAW, and GBT models achieved the highest accuracies for the Australian and German
datasets (98.98% and 98.66%, respectively).

Table 2. Accuracy and area under the receiver operating characteristic curve (AUC) values of
ensemble and hybrid classifiers for the Australian dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Acharya et al. [40] 98.98 —– IGDFS + gradient boosting tree (GBT) classifier
Kuppili et al. (2020) [41] 95.58 0.97 Spiking extreme learning machines
Tripathi et al. (2018) [42] 95.39 Neighborhood rough set (NRS) + ML ensemble
Radović et al. (2021) [43] —– 0.92 Ensemble classifier
Hsu et al. (2018) [44] 92.75 —- Artificial bee colony-based SVM
Tripathi et al. (2019) [45] 92.69 —- Ensemble feature selection + ML ensemble

Edla et al. (2018) [46] 92.58 —- Binary particle swarm optimization and gravitational search algorithm
(BPSOGSA)

Zhang et al. (2021) [47] 92.36 0.965 Multi-stage ensemble
Tripathi et al. (2020) [48] 89.92 0.953 Evolutionary extreme learning machine

Xu et al. (2020) [49] 89.5 0.937 Extreme learning machine (ELM) and generalized fuzzy soft sets
(GFSS)

Li et al. (2021) [50] 88.55 0.945 Two-stage hybrid default discrimination model based on deep forest
Xu et al. (2018) [51] 88.1 0.935 GFSS
Zhang et al. (2018) [52] 87.61 0.933 Classifier selection and clustering
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Kuppili [41] achieved the second-highest accuracy (95.58%) using spiking extreme
learning machines, which have also been shown to be effective for credit score classification.
A novel spike-generating function was proposed in the leaky nonlinear integrate and fire
model. Its interspike period was computed and then used in an extreme learning machine
for credit score classification. To improve classification performance, Tripathi et al. [42]
proposed the use of a hybrid credit scoring model based on dimension reduction using the
neighborhood rough set (NRS) algorithm along with layered ensemble classification and
the weighted voting approach.

Trivedi [43] achieved the second-highest accuracy (93.12%) for the German (categori-
cal) dataset by comparing three feature selection techniques and five ML classifiers and
revealed that the chi-square feature selection method was suitable with the most infor-
mative predictors for all ML models. (Table 3). The random forest (RF) method was the
best amongst the other ML classifiers. A limitation of that study is that only the German
(categorical) dataset was considered. However, it provided sufficient scope to test other
credit datasets using the identified prediction model.

Table 3. Accuracy and area under the receiver operating characteristic curve (AUC) values of hybrid
and ensemble classifiers for the German (categorical) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Acharya et al. [40] 98.66 —- IGDFS + GBT classifier

Trivedi (2020) [53] 93.12 —– Feature selection + ML classifier
selection

Tripathi et al. (2018) [42] 86.47 —– NRS + ML ensemble

Edla (2018) [46] 85.78 —–
Hybrid binary particle swarm
optimization and gravitational
search algorithm (BPSOGSA)

Hsu et al. (2018) [44] 84.0 —— Artificial bee colony-based SVM
Arora et al. (2020) [54] 84.0 0.713 Bolasso-based feature selection

Yu et al. (2009) [55] 82.0 0.824 Fuzzy group decision-making
(GDM)

Zhang et al. (2020) [56] —- 0.684 Heterogeneous ensemble
Radović et al. (2021) [43] —– 0.77 Ensemble classifiers
Zhang et al. (2021) [47] 79.5 0.831 Multi-stage ensemble

Xu et al. [54] reported a hybrid data mining ensemble learning classification algorithm
for the generalized fuzzy soft sets (GFSS) theory and achieved the second-highest accuracy
(87.6%) and AUC (0.813) for the German (categorical) dataset (Table 4).

Table 4. Accuracy and area under the receiver operating characteristic curve (AUC) values of hybrid
and ensemble classifiers for the German (numerical) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Song and Peng (2019) [57] —— 0.961 MCDM-based evaluation
approach

Tripathi et al. (2021) [58] 88.24 —– DNN (Time Delay Neural
Network)

Xu et al. (2019) [50] 87.6 0.813 GFSS
Tripathi et al. (2020) [48] 80.57 0.862 ELM + novel activation function

Wang et al. (2018) [59] 78.53 —–
Hybrid approach based on filter
approach and multiple
population GA

Lappas et al. (2021) [60] —– 0.789 ML + expert knowledge with GA

Liu et al. (2021) [61] 77.15 0.792 Step-wise multi-grained
augmented boosting DT
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Zhang et al. [47] proposed a novel multi-stage ensemble model with enhanced outlier
adaption and achieved the highest accuracy (93.16%) for the Japanese dataset. (Table 5). To
reduce the adverse effects of outliers existing in the noise-filled credit datasets, a local outlier
factor algorithm was enhanced using the bagging strategy to identify outliers effectively
and boost them back into the training set to construct an outlier-adapted training set that
enhanced the outlier adaptability of the base classifiers.

Table 5. Accuracy and area under the receiver operating characteristic curve (AUC) values of hybrid
and ensemble classifiers for the Japanese dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Zhang et al. (2021) [47] 93.16 0.969 Multi-stage ensemble with enhanced
outlier adaption

Tripathi et al. (2021) [58] 90.44 —– Time Delay Neural Network
(TDNN)

Chen et al. (2021) [62] 89.64 0.914
Generalized Shapley–Choquet
integral
(GSCI)-based ensemble approach

Xu et al. (2019) [49] 89.4 0.933 GFSS
Tripathi et al. (2021) [48] 88.35 0.946 Evolutionary ELM

Tripathi et al. [58] performed a comparative result analysis to assess the impact of
feature section and classification approaches that combine feature selection with a classifier.
They reported that the ensemble classifier-based feature selection with KNN achieved the
highest accuracy (89.44%) for the Taiwanese dataset (Table 6).

Table 6. Accuracy and area under the receiver operating characteristic curve (AUC) values of hybrid
and ensemble classifiers for the Taiwanese dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Tripathi et al. (2021) [58] 89.44 —– KNN + Feature selection

Liu et al. (2021) [61] 87.08 0.936 Step-wise multi-grained
augmented boosting DT

Zhang et al. (2021) [47] 82.93 0.809
Multi-stage ensemble with
enhanced
outlier adaption

Sariannidis et al. (2000) [63] 82.65 —– Decision-making based on
machine learning

Li et al. (2021) [50] —– 0.827 Feature transformation +
ensemble model

3.4.2. Performance of Classifiers with Deep Learning Techniques

Pławiak et al. [23] proposed an SVM deep genetic cascade ensemble classifier (DGCEC)
based on evolutionary computation, ensemble learning, and DL for the Australian dataset
and achieved the highest accuracy (97.39%; see Table 7). Metawa [25] proposed a new type
of feature selection using elephant herd optimization (EHO) with the DBN-modified water
wave optimization (MWWO) algorithm for financial credit prediction. The EHO algorithm
was used as a feature selector and MWWO–DBN for classification. The MWWO–DBN
method achieved an accuracy of 94.2% for the Australian dataset. Currently, DL techniques
have exhibited better results (97.39%) than expected, comparable to the highest accuracy
(98.98%) achieved by Acharya et al. [40] using IGDFS and GBT models.
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Table 7. Accuracy and area under the receiver operating characteristic curve (AUC) values of
deep-learning-based classifiers for the Australian dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Pławiak et al. (2019) [23] 97.39 —- DL ensemble systems

Metawa et al. (2021) [25] 94.2 —-

Elephant herd optimization
(EHO) with modified water
wave optimization
(MWWO)-based DBN

Li et al. (2021) [52] 88.55 0.942
Two-stage hybrid default
discriminant model based on
deep forest

Liu et al. (2021) [63] 88.26 0.940 Multi-layered gradient boosting
decision tree

Jiao et al. (2021) [64] 84.72 —- CNN-XGBoost

Table 8 summarises the accuracy and AUC values of DL techniques in credit scoring
for the German (categorical) dataset. Currently, only two DL techniques have been pro-
posed for the German (categorical) dataset. This is likely because classifying the German
(categorical) dataset using DL techniques is more difficult than classifying the German
(numerical) dataset.

Table 8. Accuracy and area under the receiver operating characteristic curve (AUC) values of
deep-learning-based classifiers for the German (categorical) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Dastile et al. (2021) [27] 88.0 —- Converting tabular datasets into
images for CNN

Li et al. (2021) [50] 81.2 0.868
Two-stage hybrid default
discriminant model based on
deep forest

Dastile et al. [27] achieved an accuracy of 88.0% by converting tabular datasets
into images for a CNN. The accuracy for the German (categorical) dataset obtained by
Dastile et al. [27] was considerably higher than that obtained by Li [50] (81.2%). Although
this accuracy was lower than that of Acharya et al. [40], Dastile et al. [27] first achieved an
accuracy of 88% by innovatively converting tabular datasets into images. The details of
their conversion methods are covered in Section 4.

Li et al. [50] constructed a two-stage hybrid default discrimination model based on
multiple feature selection methods and gcForest. Their proposed hybrid method provides
the advantages of not only traditional statistical models, in terms of interpretability and
robustness, but also DL models, in terms of accuracy. They achieved an accuracy of 81.2%
for the German datasets.

Pławiak et al. [24] proposed a novel DGHNL model with a 29-layer structure (Figure 8)
and achieved an accuracy of 94.60% for the German dataset (numerical; 24 attributes) with
all numerical and no nominal attributes. However, because this dataset had no nominal
attributes, it could be easily classified. Therefore, this fundamentally differs from the other
German dataset (categorical; 20 attributes).

Shen et al. [65] developed a new DL ensemble model to evaluate credit risk and address
imbalanced credit data. First, an improved synthetic minority oversampling technique [66]
was designed to overcome the shortcomings of the original oversampling technique; after
this, a novel DL ensemble classification method combined with an LSTM network and
the adaptive boosting (AdaBoost) [67] algorithm was developed to train and learn the
processed credit data. The proposed algorithm achieved an AUC value of 0.803 for the
German (numerical) dataset (see Table 9).
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Table 9. Accuracy and area under the receiver operating characteristic curve (AUC) values of
deep-learning-based classifiers for the German (numerical) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Pławiak et al. (2020) [24] 94.6 —– Deep genetic hierarchical
network of learners (DGHNL)

Metawa et al. (2021) [25] 84.74 —–
EHO with modified water wave
optimization (MWWO)-based
DBN

Shen et al. (2021) [65] —- 0.803 LSTM ensemble

Lappas et al. (2021) [60] —– 0.789
Combination of expert
knowledge with genetic
algorithms

Jiao et al. (2021) [64] 77.48 —- CNN-XGBoost

Liu et al. (2021) [61] 76.53 0.784 Multi-layered gradient boosting
decision tree

Jiao et al. [64] used the CNN-XGBoost model with adaptive particle swarm opti-
mization (APSO) [68] to develop a credit scoring model and investigate classification
performance. First, to eliminate the errors caused by data with self-variations or large
differences in values, they preprocessed the original credit data. Next, they performed
feature engineering to extract the most useful features from the original data. Finally, the
model was developed with the selected features, the optimised hyperparameters were
tuned using APSO, and test data tokens were used to evaluate the trained models. The
proposed model achieved better results for credit scoring datasets.

Liu et al. [61] reported an accuracy of 68.75% and an AUC of 0.746 for the Taiwanese
dataset using DF, a hierarchical multi-layered RF that can be considered as another multi-
layered tree-based framework that realises representation learning [35,36]. In addition, Liu
et al. [61] proposed an enhanced multi-layered gradient boosting decision tree for credit
scoring that leverages the robustness of ensemble approaches (see Tables 10 and 11), the
feature enhancement of multi-grained scanning, and the representation learning ability of
deep models.

Table 10. Accuracy and area under the receiver operating characteristic curve (AUC) values of
deep-learning-based classifiers for the Japanese dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Li et al. (2021) [50] 89.86 0.962 Two-stage hybrid default discriminant
model based on deep forest

Liu et al. (2021) [61] 87.62 0.935 Multi-layered gradient boosting
decision tree

Table 11. Accuracy and area under the receiver operating characteristic curve (AUC) values of
deep-learning-based classifiers for the Taiwanese dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Li et al. (2021) [50] 89.86 0.962
Two-stage hybrid default
discrimination model based on
deep forest

Shen et al. (2021) [65] —– 0.745

Deep learning ensemble credit risk
evaluation model with an
improved synthetic minority
oversampling technique

Liu et al. (2020) [61] 68.75 0.746 Multi-layered gradient boosting
decision tree
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4. Converting Tabular Datasets into Images to Apply Two-Dimensional Convolutional
Neural Networks (2D CNNs)

DL differs from conventional ML because it can learn good feature representation from
data. Existing DL methods greatly benefit from this feature-learning ability to determine
meaningful features to capture temporal/spatial correlations [13].

In practice, in conventional ML and data classification, a different setting is considered
in which instances are assumed to be independent and identically distributed, while
features used to represent data are assumed to have weak or no correlations. Because
of this assumption, conventional ML methods do not consider feature/data correlations
in the learning process. Most conventional ML methods, including multi-layer NNs and
randomised learning methods, such as stochastic configuration networks, do not explicitly
consider feature interactions for learning, mainly because they require feature correlations
to be handled via a data preprocessing method that creates independent features before
applying the ML methods.

Neagoe et al. [69] compared deep CNNs and MLPs using credit scoring datasets and
reported that deep CNNs achieved higher accuracy for the German and Australian datasets.
However, according to Hamori et al. [70], the DL model performance depends on the choice
of the activation function, the number of hidden layers, and the dropout rate. Their results
showed that ensemble methods such as boosting and bagging achieve better performance
on the Taiwanese credit scoring dataset compared to DNNs. These studies suggest the
applicability of CNNs to credit scoring datasets.

Zhu et al. [71] used a hybrid method to perform credit scoring by combining a CNN
with a relief algorithm (to perform feature selection) and found that this hybrid relief–CNN
model achieved better performance than logistic regression and RF [72]. It converted
tabular credit scoring data into images by bucketing and mapping features into image
pixels. However, in their study, they considered numerical features only. As a result, their
relief–CNN hybrid model outperformed benchmark models such as logistic regression and
RF for credit scoring.

Inspired by the Super Characters method and 2D embeddings, Sun et al. [73] proposed
the SuperTML method to address the problem associated with classifying tabular data. In
their method, for each input, the features are first projected into 2D embeddings, such as
an image, and then this image is fed into fine-tuned 2D CNN models for classification. A
conceptual example of SuperTML is shown in Figure 10.
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Figure 10. Example of classification of tabular data. Source: Sun et al. [73].

Han et al. [13,66,74] proposed using DL for generic data classification, a technique
in which rows of data are transformed from tabular into matrix form for use as inputs
to CNNs. However, using CNNs to classify tabular data has progressed slowly. As a
result, the use of non-NN methods, including SVMs and XGBoost, is still predominant for
working with tabular data.
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Buturović and Miljković [75] developed a tabular convolution approach to convert
tabular datasets into images by treating each row of tabular data (i.e., feature vector) as
an image filter (kernel) and then applying that filter to a fixed base image for application
in 2D CNN models. A CNN was then trained to classify these filtered images. In their
study, they used gene expression data obtained from the blood of patients with bacterial or
viral infection.

In most tabular data, the spatial relationships between features are not considered
and are therefore unsuitable for modelling using CNNs. To overcome this challenge,
Zhu et al. [76] developed a novel image generator to convert tabular data into images
by assigning features to pixel positions such that similar features are close to each other.
Their algorithm obtains an optimised assignment by minimising the difference between
the ranking of distances amongst features and the ranking of distances amongst their
assigned pixels.

Using CNNs, Sharma and Kumar [77] proposed a new data-wrangling preprocessing
method that can transform a 1D data vector into a 2D graphical image with appropriate
correlations amongst fields. To our knowledge, for non-time-series data, this is the first
method capable of converting non-image data to image data. These converted data, which
are processed using a CNN with VGGnet-16, achieved competitive classification accuracy
results compared with the canonical ANN approach; this suggests that there is considerable
potential for further improvement of the method.

5. Explanation and Interpretation of the “Black Box” of Deep-Learning-Based
Classifiers in Credit Scoring
5.1. Rule Extraction and Rule-Based Methods in Deep-Learning-Based Classifiers

Gunnarsson et al. [9] revealed that DBNs can be considered “black box” models; if
the interpretability of the model’s prediction is the main concern, one must explain and
interpret the “black box” model of DNNs through DL in credit scoring. Rule extraction
from DNNs has also been summarised [78], and investigations on rule extraction methods
have been carried out to balance interpretability and predictive performance. The core
strategy of rule extraction methods is to construct a transparent “white box” model, such
as a rule-based model or a decision tree, based on opaque “black box” models. A “white
box” model is more suitable for understanding the reason behind high-stakes decisions. In
addition, by analysing the “white box” model, the decision-makers can indirectly explain
the “black box” model [79].

A comprehensive survey on local interpretation methods for DBNs has been carried
out based on published works from 2012 to 2021. Another study proposed a novel rule
extraction method for improving the ensemble model by balancing predictive performance
and interpretability in two stages: a local rule extraction method followed by global rule
extraction [80].

Another study proposed a new type of explanation that directly measures the interac-
tion effects of local features and a new set of tools for understanding global model structures
by combining multiple local explanations of each prediction [81]. Global approaches are
increasingly being adopted over local approaches to explain the decisions of “black box”
classifiers for a single instance.

Setzu et al. [82] addressed this problem by adding an interpretable layer on top
of “black box” models by aggregating “local” explanations. They proposed GLocalX,
an agnostic “local-first” model explanation method. Starting from local explanations
expressed in the form of local decision rules, GLocalX iteratively generalises them into
global explanations through hierarchical aggregation. Dong et al. [79] proposed two-stage
rule extraction based on a tree ensemble model for interpretable loan evaluation.

5.2. Performance of Rule-Based Classifiers and Rule Extraction Methods for Credit Scoring

The performance of rule-based classifiers and rule extraction methods for the Aus-
tralian and German credit scoring datasets are summarised in Tables 12–14, respectively.
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Generally, these methods exhibited excellent performance figures. Notably, the approach
proposed by Soui et al. [83] achieved the best accuracy (94%), with 4.8 rules (averaged)
for the Australian dataset, and an accuracy of 92.3% with 5.1 rules (averaged) for the
German dataset, indicating its high accuracy and conciseness. By contrast, previous stud-
ies [31,32] have been subject to “no free lunch” (NFL) limitations [84,85] or the accuracy–
interpretability dilemma; the method proposed by Soui et al. [83] mostly overcomes these
barriers.

Table 12. Performance of rule extraction methods and rule-based classifiers for the German (categori-
cal) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC # Rules Methods

Soui et al. (2021) [83] 92.3 0.9 5.1
Multi-objective particle
swarm optimization
(SMOPSO)

Setzu et al. (2021) [82] 91.5 26.0 GLocalX (DT)

Dong et al. (2021) [79] —- 0.735 52.2 Local rule extraction and
global rule extraction

Hayashi and Oishi
(2018) [87] 79.0 0.757 44.9 Sequential ensemble

Giri et al. (2021) [86] —- 0.791 72.0
Locally and globally tuned
biogeography-based
rule-miner (LGBBO-Miner)

Hayashi and Takano
(2020) [32] 73.1 0.622 6.2 1D LFCF-CNN with J48graft

Table 13. Performance of deep-learning-based classifiers on the German (numerical) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC Methods

Pławiak et al. (2020) [24] 94.6 —– DGHNL

Metawa et al. (2021) [25] 84.74 —–
EHO with modified water wave
optimization (MWWO)-based
DBN

Shen et al. (2021) [65] —- 0.803 LSTM ensemble

Lappas et al. (2021) [60] —– 0.789
Combination of expert
knowledge with genetic
algorithms

Jiao et al. (2021) [64] 77.48 —- CNN-XGBoost

Liu et al. (2021) [61] 76.53 0.784 Multi-layered gradient boosting
decision tree

Table 14. Performance of rule extraction methods and rule-based classifiers for the Australian dataset.

Authors (Year) [Ref.] Accuracy (%) AUC # Rules Methods

Soui et al. (2021) [83] 94 0.92 4.8 Multi-objective particle swarm
optimization (SMOPSO)

Giri et al. (2021) [86] —– 0.927 19.0
Locally and globally tuned
biogeography-based
rule-miner (LGBBO-Miner)

Dong et al. (2021) [79] —- 0.91 11.6 Local rule extraction and
global rule extraction

Hayashi and Oishi
(2018) [87] 88.4 0.87 14.1 Sequential ensemble

Yedjour (2020) [88] 87.41 6.12 MNNGR
Hayashi and Takano
(2020) [32] 86.53 0.871 2.6 1D LFCF-CNN with J48graft

Bologna and Hayashi
(2018) [31] 86.5 21.4 DIMLP
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6. Discussion
6.1. Data Science (DS) and Machine Learning (ML) Classifiers

In DS, data are categorised into structured (also known as “tabular data”) and un-
structured data. Currently, DNN models are widely applied for unstructured data such as
images, speech, and text. However, there is no reason to believe that CNNs are definitely
adopted for structured data such as tabular and credit scoring data.

ML models such as SVMs, GBT models, RF, and logistic regression have been used to
process structured data. According to the 2020 Kaggle ML and DS Survey, a subdivision
of structured data, known as relational data, is the most popular type of data in the
industry, used by at least 70% of companies in their daily operations. Regarding structured
data competitions, the CEO of Kaggle revealed that XGBoost is currently winning almost
every competition in the structured data category. Therefore, form a practical perspective,
XGBoost is the best choice, which is in accordance with a previous study [9]. Conversely,
these facts suggest that there is huge potential to adopt DL-based classifiers for not only
credit scoring datasets but also various business analytics datasets.

6.2. Applicability of Deep Belief Networks (DBNs) for Credit Scoring Based on ML Theorems

Gunnarsson et al. [9] concluded that deep networks with several hidden layers, namely
DBNs, do not outperform shallower networks with one hidden layer. This phenomenon
has been explained as follows. DBNs are subject to NFL limitations [84,85]. Although DL
models perform well with images that have low abstraction data, they do not provide
satisfactory results for images with higher abstraction data [86]. An empirical overview of
DNNs reported disappointing results for simple and small data [87]. The models could not
produce satisfactory results because of the limited number of datasets and, possibly, the low
potential for data abstraction. These results are in accordance with previous findings [9].

However, Gómez and Rojas [87] claimed that although DBNs are subject to NFL
limitations, exceptions regarding the number of hidden layers in DBNs exist for the limited
number of datasets and, possibly, the low potential for data abstraction. Another study
attempted to overcome these limitations by obtaining a limited number of hidden layers
(one or two) in the DBN with consistently high accuracy [88]. These phenomena are in
accordance with a discussion on the representational power of DBNs, and the best result
achieved on switching from one- to two-layer DBNs was unexpected [89]. This result could
be attributed to universal approximations [90] by RBMs, as credit scoring datasets do not
require many RBMs or hidden units.

6.3. Accuracy of Deep-Learning-Based Classifiers in Credit Scoring
6.3.1. Accuracy of Deep-Learning-Based Classifiers in Credit Scoring for the
Australian Dataset

As shown in Figure 11, two DL-based classifiers are present amongst the top five
classifiers with the highest accuracy and a rule-based method is present in the top ten for
the Australian dataset. The DL-based classifiers provide tough competition to the best ML
classifier. The DGCEC proposed by Pławiak et al. [24] achieved the second-highest accuracy
(97.39%), while the MWWO–DBN method proposed by Metawa et al. [25] achieved an
accuracy of 94.2% for the Australian dataset.

6.3.2. Tradeoff Curve between Accuracy and Interpretability for the German (Categorical)
Dataset

Figure 12 shows the comparative results for the classification of the German (categori-
cal) dataset. The highest accuracy (98.66%) achieved by the ML techniques proposed by
Acharya et al. [40] was close to 100%. The rule-based method and rule extraction methods
were amongst the top five methods with the highest accuracies, and the DL classifier based
on the conversion of tabular techniques was amongst the top five methods with the highest
accuracy for the German (categorical) dataset. By contrast, the SMOPSO proposed by
Soui et al. [83] achieved 92.3% accuracy and 5.1 rules (averaged).



Electronics 2022, 11, 3181 19 of 30

Electronics 2022, 11, x FOR PEER REVIEW 19 of 32 
 

 

6.2. Applicability of Deep Belief Networks (DBNs) for Credit Scoring Based on ML Theorems 

Gunnarsson et al. [9] concluded that deep networks with several hidden layers, 

namely DBNs, do not outperform shallower networks with one hidden layer. This phe-

nomenon has been explained as follows. DBNs are subject to NFL limitations [84,85]. Alt-

hough DL models perform well with images that have low abstraction data, they do not 

provide satisfactory results for images with higher abstraction data [86]. An empirical 

overview of DNNs reported disappointing results for simple and small data [87]. The 

models could not produce satisfactory results because of the limited number of datasets 

and, possibly, the low potential for data abstraction. These results are in accordance with 

previous findings [9]. 

However, Gómez and Rojas [87] claimed that although DBNs are subject to NFL lim-

itations, exceptions regarding the number of hidden layers in DBNs exist for the limited 

number of datasets and, possibly, the low potential for data abstraction. Another study 

attempted to overcome these limitations by obtaining a limited number of hidden layers 

(one or two) in the DBN with consistently high accuracy [88]. These phenomena are in 

accordance with a discussion on the representational power of DBNs, and the best result 

achieved on switching from one- to two-layer DBNs was unexpected [89]. This result 

could be attributed to universal approximations [90] by RBMs, as credit scoring datasets 

do not require many RBMs or hidden units. 

6.3. Accuracy of Deep-Learning-Based Classifiers in Credit Scoring 

6.3.1. Accuracy of Deep-Learning-Based Classifiers in Credit Scoring for the Australian 

Dataset 

As shown in Figure 11, two DL-based classifiers are present amongst the top five 

classifiers with the highest accuracy and a rule-based method is present in the top ten for 

the Australian dataset. The DL-based classifiers provide tough competition to the best ML 

classifier. The DGCEC proposed by Pławiak et al. [24] achieved the second-highest accu-

racy (97.39%), while the MWWO–DBN method proposed by Metawa et al. [25] achieved 

an accuracy of 94.2% for the Australian dataset. 

 

Figure 11. Comparison of accuracy of various methods for the Australian dataset. 

  

Figure 11. Comparison of accuracy of various methods for the Australian dataset [23,25,40–42,44–47,83].

Electronics 2022, 11, x FOR PEER REVIEW 20 of 32 
 

 

6.3.2. Tradeoff Curve between Accuracy and Interpretability for the German (Categori-

cal) Dataset 

Figure 12 shows the comparative results for the classification of the German (cate-

gorical) dataset. The highest accuracy (98.66%) achieved by the ML techniques proposed 

by Acharya et al. [40] was close to 100%. The rule-based method and rule extraction meth-

ods were amongst the top five methods with the highest accuracies, and the DL classifier 

based on the conversion of tabular techniques was amongst the top five methods with the 

highest accuracy for the German (categorical) dataset. By contrast, the SMOPSO proposed 

by Soui et al. [83] achieved 92.3% accuracy and 5.1 rules (averaged). 

Numerous studies have investigated accuracy and interpretability pairs (defined in 

this paper as a reciprocal of the number of rules); thus, a tradeoff curve between accuracy 

and interpretability based on recent reports on the German (categorical) dataset and Fig-

ure 7 in the study by Gunnarsson et al. [9] is shown in Figure 13. As shown in the figure, 

after conducting appropriate preprocessing and feature selection of input variables for 

specific datasets, the accuracy (92.3%) and interpretability (5.1 rules) are beyond the 

tradeoff curve (in blue) and close to the ideal point (upper right corner in red). (See Table 

15). Thus, the so-called accuracy–interpretability dilemma is apparently relaxed. The 

highest accuracy obtained by all DL-based and ML classifiers is plotted along the Y-axis; 

no interpretability exhibits an infinite number of rules. The green dot shows the highest 

classification accuracy. This can be interpreted as the existence of an infinite number of 

rules, which means zero (0) interpretability. 

 

Figure 12. Comparison of accuracy of various methods for the German (categorical) dataset. 

Table 15. Performance of ensemble and hybrid classifiers, rule-based classifiers, and deep-learning-

based classifiers for the German (categorical) dataset. 

Authors (year) [Ref.] 
Accuracy 

(%) 
AUC # Rules Method 

Type of 

Classifier 

Acharya et al. (2021) 

[40] 
98.66 ---- ---- IGDFS + GBT classifier ML technique 

Soui et al. (2019) [83] 92.3 0.9 5.1 

Multi-objective particle 

swarm optimization 

(SMOPSO) 

Rule-based 

method 

Setzu et al. (2021) [82] 91.5  26.0 GLocalX (DT) ML technique 

Figure 12. Comparison of accuracy of various methods for the German (categorical)
dataset [27,40,42,44,46,51,54,82,83].

Numerous studies have investigated accuracy and interpretability pairs (defined in
this paper as a reciprocal of the number of rules); thus, a tradeoff curve between accuracy
and interpretability based on recent reports on the German (categorical) dataset and Figure 7
in the study by Gunnarsson et al. [9] is shown in Figure 13. As shown in the figure, after
conducting appropriate preprocessing and feature selection of input variables for specific
datasets, the accuracy (92.3%) and interpretability (5.1 rules) are beyond the tradeoff curve
(in blue) and close to the ideal point (upper right corner in red). (See Table 15). Thus, the
so-called accuracy–interpretability dilemma is apparently relaxed. The highest accuracy
obtained by all DL-based and ML classifiers is plotted along the Y-axis; no interpretability
exhibits an infinite number of rules. The green dot shows the highest classification accuracy.
This can be interpreted as the existence of an infinite number of rules, which means zero (0)
interpretability.
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Table 15. Performance of ensemble and hybrid classifiers, rule-based classifiers, and deep-learning-
based classifiers for the German (categorical) dataset.

Authors (Year) [Ref.] Accuracy (%) AUC # Rules Method Type of Classifier

Acharya et al. (2021) [40] 98.66 —- —- IGDFS + GBT classifier ML technique

Soui et al. (2019) [83] 92.3 0.9 5.1
Multi-objective particle
swarm optimization
(SMOPSO)

Rule-based method

Setzu et al. (2021) [82] 91.5 26.0 GLocalX (DT) ML technique

Dastile et al. (2021) [27] 88 —- —- Converting tabular
datasets into images DL technique

Xu et al. (2019) [51] 87.6 0.813 GFSS ML technique
Tripathi et al. [45] 86.47 —– —– NRS + ML ensemble ML technique

Hsu et al. (2018) [44] 84.0 —– —– Artificial bee
colony-based SVM ML technique

Arora et al. (2020) [54] 84.0 0.713 —– Bolasso-based feature
selection ML technique

Yu et al. (2009) [55] 82.0 0.824 —–
Fuzzy group
decision-making
(GDM)

ML technique

6.3.3. Accuracy of Deep-Learning-Based Classifiers in Credit Scoring for the German
(Numerical) Dataset

Figure 14 shows that two DL-based classifiers are amongst the top five models with the
highest accuracy for the German (numerical) dataset. Notably, the sixth-highest classifier
is a hybrid of CNN and XGBoost [64]. The German (numerical) dataset is composed of
24 numerical attributes. The DL cascade ensemble system in DGHNL achieved an accuracy
of 94.6%.
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6.3.4. Accuracy for Deep-Learning-Based Classifiers in Credit Scoring for Japanese Dataset

Figure 15 shows that one DL technique classifier and one rule extraction method are
amongst the top five methods with the highest accuracies on the Japanese dataset. The DL
classifier consisting of the hybrid discriminant model and DF proposed by Li et al. [50]
achieved the second-highest accuracy of 89.86%, which is relatively close to the highest
accuracy obtained by the ensemble and hybrid classifier proposed by Zhang et al. [47].
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6.3.5. Accuracy of Deep-Learning-Based Classifiers in Credit Scoring for the Taiwanese
Dataset

Figure 16 shows that the DL classifier proposed by Li et al. [50] achieved the highest
accuracy (89.86%) for the Taiwanese dataset, followed by that proposed by Tripathi [58]
(89.44%). Li et al. also proposed a novel two-stage hybrid model by combining multiple
feature selection methods and gcForest [35,36]. In this model, the differences and comple-
mentarities between conventional statistical and artificial intelligence (AI) models were
considered. Although gcForest performs well in many fields, it is yet to be applied to credit
scoring, even though it has exhibited better predictive performance and robustness [47].
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6.4. Classifier Design Using Convolutional Neural Networks (CNNs) for Credit Scoring Datasets

Although the DNN architecture of a deep cascade ensemble classifier differs from that
of a CNN, deep cascade layers can be designed as shown in Figure 8 [24]. As described
previously, a CNN is not suitable for constructing high-performance classifiers. However,
Pławiak et al. [24] first inspired this deep cascade ensemble architecture for a unique
classifier system and proposed DGHNL [23]. A similar approach using a DBN proposed
by Metawa et al. [25] revealed promising accuracy for the Australian dataset.

Gunnarsson et al. [9] concluded that DBNs do not outperform shallower networks
with one hidden layer. The data structure for the implementation of a DBN is 1D, whereas
that for the implementation of a CNN is 2D. Thus, comparisons of deep networks with
several hidden layers (i.e., DBNs) and shallower networks with one hidden layer are
simple. By contrast, comparisons of ensemble and hybrid classifiers with and without DL
techniques are theoretically and structurally difficult.

If interpretability of the model’s prediction is critical, SMOPSO would be the first
choice shown in Figure 13. Although DL techniques are not fully used CNN structures,
certain DL-based classifiers appear amongst the top five methods with the highest accuracy.
The performances realised are higher than expected. Generally, CNNs largely benefit from
their feature-learning power to determine meaningful features captured in the 2D data
structure. Generally, CNNs can achieve reasonable performance with default hyperparam-
eter settings; however, extensive hyperparameter tuning is typically required to achieve
the best performance. Thus, for highly imbalanced datasets with many nominal attributes,
the predictive model generated by the CNN may pose formidable challenges [92].

6.5. Re-Evaluation of Rule Extraction and Rule-Based Methods for Explainable Machine Learning
(ML) in Credit Scoring

Rudin suggested the complete avoidance of “black box” ML, as DL should be able
to explain the obtained classification results by itself [93]. Rudin also showed that simple
models such as linear regression and rule-based learners achieved performance that is
comparable to complicated models such as DL models, ensemble models, and RF. Moreover,
there exists no noticeable difference in their performance. Dastile and Celik [27] proposed
unique methods for explainable DL classifiers and compared their performance with pre-
diction models using Grad-CAM [94], LIME [95], SHAP values [96], and saliency maps [97].
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These explanation methods all highlight important regions/pixels corresponding to the
output/prediction class in an image.

However, since most of these tools require additional feature engineering and cannot
always explain the reasoning behind a decision, they can still be used to complement LIME
and other tools [98]. In addition, all these models follow the model-agnostic approach as
opposed to the model-specific interpretability method because the latter is associated with
lower accuracy and the use of a single algorithm. By contrast, the model-agnostic approach
extracts explanations by treating the model as a “black box” while ruffling the model inputs
and examining how it reacts, as opposed to inspecting the internal model parameters.

On the contrary, the author believes that rules are one of the most popular symbolic
representations of knowledge discovered from data [99] and are more comprehensible,
particularly “black boxes” such as the regions/pixels in an image, than are other represen-
tations. In fact, Dastile and Celik [27] also noted that they should focus on validating and
evaluating performance by using domain experts in the field of credit scoring, such as credit
risk analysts or managers. In such a case, rules become much more explainable and qualita-
tively analytical. Therefore, attempts should be made to bridge regions/pixels in an image
and the symbolic rules for credit scoring in business analytics. The findings of the present
review strongly suggest the considerable potential of explainable DL-based classifiers.

Very recently, Gamona et al. (2022) [100] reported a sensational study on black boxes,
which fills a literature gap by showing how it is possible to fit a very precise ML model
that is highly interpretable by using XGBoost and applying new model interpretability
improvements. Although XGBoost is the de facto standard in data science community and a
formidable competitor to DL models, the authors substantially criticise the interpretability
of XGBoost. Xia et al. (2022) [101] proposed a heterogeneous deep forest model that
combines a DL architecture and tree-based ensemble classifiers as the modelling approach.
They proposed a heterogeneous deep forest (HDF) method and its variants, combining
DLcombine and GBDT-based methods [102], which significantly outperform the industry
benchmarks, logistic regression and RF, as well as DNN and DBN, across multiple datasets
and evaluation measures. They concluded that DL algorithms have the potential of building
effective credit scoring models depending on the architecture. References [100,101] are
published in finance journals rather than computer science journals. There are many
approaches to explain the form of rules for complex trees and deep learning models.

6.6. Rule Extraction from Images Using a Convolutional Neural Network (CNN)

As described in Section 4, credit scoring methods based on 2D CNN and rule ex-
traction from images using CNN are closely related to the topic of this review. Angelov
and Soares [103] proposed the novel xDNN approach to achieve a moderate level of ex-
plainability combined with high accuracy. xDNN is based on a novel DL architecture
that combines reasoning and learning synergistically. The noniterative and nonparamet-
ric architecture is efficient in terms of time and computational resources. Moreover, the
approach can be understood by humans and outperforms well-known image-processing
methods and DL methods in terms of accuracy and training time. In addition, it includes
an explainable classifier.

For high-dimensional input data such as images, the individual pixels are not easily
interpretable. Therefore, rule extraction and rule-based approaches are not typically used
for such high-dimensional data. However, Burkhardt et al. [104] introduced first-order
convolutional rules, which are logical rules that can be extracted using a CNN; their
complexity depends on the size of the convolutional filter and not on the dimension of the
input. They demonstrated the potential of rule-based approaches for three well-known
images by combining the advantages of NNs and rule learning.
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On the contrary, D’Alberto et al. (2022) [105] presented xDNN, an end-to-end system
for DL inference based on a family of specialised hardware processors synthesised on field-
programmable gate arrays (FPGAs) and CNNs. They presented a design optimised for low
latency, high throughput, and high computing efficiency with no batching. This paper did
not contain a proof-of-concept; however, because the authors work at Xilinxan innovative
semiconductor company that primarily supplies programmable logic devices and has been
recently acquired by AMD., it is reasonable to believe that this type of hardware can be
easily realised at low cost using FPGA.

6.7. Limitations of this Work

The credit scoring models in this study mostly require offline training using credit
scoring datasets. In the future, online training using a larger number of credit scoring
datasets will be conducted.

7. Promising Research Directions

Post the 2021 emergence of DL-based classifiers with high accuracies for credit scoring,
the author believes that two promising research directions exist, as explained below.

The first is the use of a DL-inspired ensemble system [24,34]. The key aspect of
a DL-inspired ensemble system is the inclusion of ML elements that are distributed in
cascade and/or parallel ensembles hierarchically. As shown in Section 6.2, DGCEC [23]
and DGHNL [24], as typical DL-inspired ensemble systems, achieved very high accura-
cies for credit scoring datasets consisting of only numerical attributes, such as the Aus-
tralian, German (numerical), and Japanese datasets. A hybrid ensemble classifier with
DBN [20] and deep forest [36,37] also achieved very high accuracies for the Japanese and
Taiwanese datasets.

The credit scoring models and their applications in peer-to-peer (P2P) lending (which
consists of individual lenders who provide loans to individual borrowers on an electronic
platform) are still immature owing to the different characteristics of P2P lending [106].
Chen et al. [107] proposed a credit assessment model for banks to assess the risk of default
for home credit based on DeepGBM [108]; however, their model did not consider deviations
caused by changes in the distribution of the data and cannot be updated online. Although
substantial progress has been made, no similar attempts have been made for credit scoring
in P2P lending. However, a deep sequential model ensemble [109] has been proposed for
the detection of credit card fraud.

Research on DL-based credit scoring has begun only recently and has the potential to
significantly impact the working of banks and other financial intuitions. However, increases
in the volume and velocity of credit card transactions can cause class imbalance and concept
deviation problems in datasets where credit card fraud is detected, which may make it very
difficult for traditional approaches to produce robust detection models. To address this,
Sinanc et al. [110] proposed a novel approach called fraud detection with image conversion.

In the general CNN structure, high-dimensional input data, such as images, are not
easily interpretable. Although DL techniques are not fully used CNN structures, certain
DL-based classifiers in this review ranked amongst the top five classifiers with the highest
accuracy. The performances currently being achieved are higher than expected.

Currently, most existing credit scoring models are implemented with shallow struc-
tures; thus, DL is innovatively introduced into the credit scoring model; for example, the
use of XGBoost for credit scoring [67]. Jiao et al. [67] proposed a unique bidirectional
optimization structure that simultaneously optimises both CNN and XGBoost by using
APSO. Optimizing a CNN to extract deep features is more suitable for XGBoost and opti-
mizing XGBoost makes the model structure match the extracted features, which provides
a better understanding of the image features. Bidirectional optimization maintains the
characteristics of both parts while allowing them to be combined more closely together
and enabling the features of the fully extracted image to be used for classification. The
classification accuracy reported by Jiao et al. [67] for the German (numerical) and Taiwanese
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datasets ranked very highly for these two datasets; thus, it is reasonable to believe that this
simple idea of DL-based classifiers could help simultaneously deal with structured and
unstructured datasets.

In 2022, Du and Shu [111] proposed a model that uses logistic regression), BRNN
(bidirectional recurrent neural network), and XGBoost for credit scoring. The model
achieved an AUC of 0.9574 and accuracy of 89.35% for the Australian dataset. The model
also achieved an AUC of 0.8374 and accuracy of 77.5% for the German (categorical) dataset.
In [112], a novel financial distress prediction model uses an adaptive whale optimization
algorithm with a deep learning (AWOA-DL) technique, including a multi-layer perceptron
(MLP) and optimization algorithm. In the experiments, the AWOA-DL algorithm showed
the best performance with maximum accuracy of 0.9689 for the Australian dataset.

The second research direction is to develop a class-imbalanced XGBoost as well as
multiclass classification, which are of great practical significance in the field of business
analytics and can be applied in the areas of credit scoring, credit card fraud detection,
bankruptcy and digital marketing. However, considering the nature of data structure,
such datasets are not only imbalanced but also contain many nominal attributes, making
it technically difficult to achieve high classification accuracy. Undoubtedly, DL- based
classifiers also constitute an urgent research issue as well and many techniques have been
discussed in this review that can classify structured data with high accuracy.

The third research direction is to convert tabular datasets into images using bins
employed to calculate WOE. Each pixel of a feature image corresponds to a feature bin.
WOE is used to create meaningful bins that are monotonic to the response variable. Dastile
and Celik [27] considered both continuous and categorical features, and their proposed
method achieved the highest accuracy (88%) amongst the DL-based classifiers for the
German (categorical) dataset. In 2022, Borisov et al. [113] proposed the DeepTLF (https:
//github.com/unnir/DeepTLF, accessed on 1 January 2022) framework for deep tabular
learning. The core idea of their method is to transform the heterogeneous input data into
homogeneous data to boost the performance of DNNs considerably.

In contrast to a previous study [76], they systematically discretised tabular data into
optimal categories by using WOE and utilised both categorical and continuous features.
Considering the practical applications of business analytics for credit scoring, such conver-
sions are required to deal with both numerical and categorical datasets. As credit scoring
datasets are stored in the databases of banks and the other financial institutions, they can
be used for P2P lending [106].

However, the use of credit scoring models in P2P lending involves certain limitations.
First, the feature space of P2P credit data usually contains two types of features: dense
numerical features (e.g., amount of the loan, asset-to-liability ratio) and sparse categorical
features (e.g., gender, credit score). However, existing classifiers, including DT classifiers
and NN models, are typically useful for processing only one data type. Zhang et al. [106]
previously developed an effective model with multiple data types for P2P lending credit
datasets. Therefore, developing an accurate and efficient method for converting tabular
data into categorical and continuous features is a promising direction for future studies.
The accuracy of these approaches should be enhanced, and suitable methods should be
investigated to improve interpretability in banks and other financial intuitions.

Finally, a tree diagram of topics for future development is provided here. As very
early works, all papers with reference numbers are scattered in Figure 17. These papers are
pioneering works and more advanced technologies will be developed in the near future.

https://github.com/unnir/DeepTLF
https://github.com/unnir/DeepTLF
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8. Concluding Remarks and Future Scope of Work

Based on the above discussion, it can be concluded that there is a need to actively
aim towards not only high quantitative performance, such as in predictive accuracy, but
also high qualitative performance, such as in interpretability shown in Figure 13. In
response to social demands such as General Data Protection Regulations [115], xDNN was
developed as an innovative approach that showed very high classification accuracy using
images; however, its level of explainability was still quite low. As previously discussed,
xDNN offers a novel DL architecture that synergistically combines reasoning and learning
and has outperformed well-known image classification methods in terms of accuracy.
Currently, xDNN algorithms are not easily adaptable to credit scoring because Angelov
and Soares [103] simply prioritised the highest accuracy using complicated if–then rules,
with the if part consisting of considerably large images. On the contrary, various tools have
been developed for converting tabular data into images and a bidirectional optimization
structure using both CNN and XGBoost.

Based on Sections 6.4–6.6 and 7, it is reasonable to believe that many researchers may
assume that there is no significant difference in classification accuracy no matter what
method is used; however, this is true only when the degree of mission-criticality is not
severe; exceptions include data in finance and medicine. Therefore, using XGBoost for
structured data and DL for classification of unstructured data (i.e., images) is simple and
quite traditional. In addition, if there is no significant difference in accuracy, improving
interpretability is an invaluable option for wider adoption in various areas. A very recent
study in finance, similar to the credit scoring framework, has been proposed that extracted
rules to classify bank failure [114]. Research in the area of credit scoring or credit risk
can contribute to the modernisation of financial engineering by simply introducing a time
series so that the elemental technologies described in this review can be applied to financial
distress, bankruptcy, peer-to-peer (P2P) lending, credit card fraud detection, and inclusion
of macro-economic variables. Their findings are useful for bank supervisor authorities, bank
executives, risk management professionals, as well as policymakers in the field of finance.

At present, we are moving towards the intersection of the above research avenues to
deal with both structured and unstructured data. DL would achieve not only very high
accuracy for images but also high performance for structured data in explainable credit
scoring. In a future work, an attempt will be made to bridge images and symbolic rules to
realise AI finance.
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91. Gorzałczany, M.B.; Rudziński, F. A multi-objective genetic optimization for fast, fuzzy rule-based credit classification with
balanced accuracy and interpretability. Appl. Soft Comput. 2016, 40, 206–220. [CrossRef]

92. Park, Y.; Ho, J.C. Tackling overfitting in boosting for noisy healthcare data. IEEE Trans. Knowl. Data Eng. 2022, 33, 2995–3006.
[CrossRef]

93. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nature Mach. Intell. 2019, 1, 206–215. [CrossRef]

94. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 618–626.

95. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the
CoRR, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144.

96. Lundberg, S.; Lee, S.I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874.
97. Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.R. (Eds.) Explainable AI: Interpreting, Explaining and Visualizing

Deep Learning; Springer: Cham, Switzerland, 2019; Available online: https://link.springer.com/book/10.1007/978-3-030-28954-6
(accessed on 1 July 2022).

98. Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajay, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep learning in the construction
industry: A review of present status and future innovations. J. Build. Eng. 2020, 32, 101827. [CrossRef]

99. Napierala, K.; Stefanowski, J. BRACID: A comprehensive approach to learning rules from imbalanced data. J. Intell. Inf. Syst.
2012, 39, 335–373. [CrossRef]

100. Garmona, P.; Dwekat, A.; Mardawi, Z. No more black boxes! Explaining the predictions of a machine learning XGBoost classifier
algorithm in business failure. Res. Int. Bus. Fin. 2022, 61, 101649. [CrossRef]

101. Xia, Y.; Guo, X.; Li, Y.; He, L.; Chen, X. Deep learning meets decision trees: An application of a heterogeneous deep forest
approach in credit scoring for online consumer lending. J. Forecast. 2022, 1–22. [CrossRef]

102. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
103. Angelov, P.; Soares, E. Towards explainable deep neural networks (xDNN). Neural Netw. 2020, 130, 185–194. [CrossRef]
104. Burkhardt, S.; Brugger, J.; Wagner, N.; Ahmadi, Z.; Kersting, K.; Kramer, S. Rule extraction from binary neural networks with

convolutional rules for model validation. Front. Artif. Intell. 2021, 4, 642263. [CrossRef]
105. D’Alberto, P.; Wu, V.; Ng, A.; Nimaiyar, R.; Delaye., E. xDNN: Inference for deep convolutional neural networks.Deep Convolu-

tional Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 2022, 15, 1–29. [CrossRef]
106. Zhang, Z.; Niu, K.; Liu, Y. A deep learning based online credit scoring model for P2P lending. IEEE Access 2020, 8, 177317.

[CrossRef]
107. Chen, X.; Liu, Z.; Zhong, M.; Liu, X.; Song, P. A deep learning approach using DeepGBM for credit assessment. In Proceedings of

the Robotics, Intelligent Control and Artificial Intelligence (RICAI), Shanghai, China, 20–22 September 2019; pp. 774–779.
108. Ke, G.; Xu, Z.; Zhang, J.; Bian, J.; Liu, T.Y. DeepGBM: A deep learning framework distilled by GBDT for online prediction tasks.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Anchorage, AK, USA,
4–8 August 2019; pp. 384–394.

109. Forough, J.; Momtazi, S. Ensemble of deep sequential models for credit card fraud detection. Appl. Soft Comput. 2021, 99, 106883.
[CrossRef]
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