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Abstract: Night landscapes are a key area of monitoring and security as information in pictures
caught on camera is not comprehensive. Data augmentation gives these limited datasets the most
value. Considering night driving and dangerous events, it is important to achieve the better detection
of people at night. This paper studies the impact of different data augmentation methods on target
detection. For the image data collected at night under limited conditions, three different types of
enhancement methods are used to verify whether they can promote pedestrian detection. This
paper mainly explores supervised and unsupervised data augmentation methods with certain im-
provements, including multi-sample augmentation, unsupervised Generative Adversarial Network
(GAN) augmentation and single-sample augmentation. It is concluded that the dataset obtained
by the heterogeneous multi-sample augmentation method can optimize the target detection model,
which can allow the mean average precision (mAP) of a night image to reach 0.76, and the improved
Residual Convolutional GAN network, the unsupervised training model, can generate new samples
with the same style, thus greatly expanding the dataset, so that the mean average precision reaches
0.854, and the single-sample enhancement of the deillumination can greatly improve the image clarity,
helping improve the precision value by 0.116.

Keywords: infrared and visible images; data augmentation; GAN; object detection

1. Introduction

Night pedestrian detection has great significance to the drivers, since, because of
the lack of light at night, driving vision is limited. It is difficult to distinguish pedestrian
positions. Moreover, night is the peak time for dangerous events, some intruders may
hide in the dark, and in most cases, situations caught by surveillance cameras are not
comprehensive, due to the limitations of visible light, camera jitter and rotation, making
it difficult to identify people in the dark. Visible image samples acquired under limited
conditions may have problems such as low definition and sample imbalance, and insuf-
ficient sample quality can lead to poor model robustness or insufficient generalization
ability. Therefore, to alleviate the above problems, data augmentation is a method worth
investigating. The essence of the data augmentation method is actually to make the existing
data more valuable based on the existing limited data, on the premise of not actually
collecting more data. When the sample data collected is not complete enough for objective
reasons, data augmentation methods can be used to generate data for new samples that are
more similar to the real data distribution, and elements such as noise or random images
can be introduced, so as to improve the recognition ability of the model and enhance its
generalization ability. At present, data augmentation methods are very numerous. In view
of images with poor lighting conditions, this paper studies the influence of different kinds
of augmentation methods on pedestrian detection and discusses the accuracy and objective
effect of images.

Data augmentation can be mainly divided into supervised and unsupervised data aug-
mentation. Supervised data augmentation, that is, enhance the data on the basis of existing

Electronics 2022, 11, 3185. https://doi.org/10.3390/electronics11193185 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193185
https://doi.org/10.3390/electronics11193185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11193185
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193185?type=check_update&version=2


Electronics 2022, 11, 3185 2 of 17

data using preset data transformation rules. Supervised data augmentation mainly includes
two methods: single-sample augmentation and multi-sample augmentation. Single-sample
augmentation is based on image transformation, operating around the sample itself, mainly
including geometric operation, color transformation, random wipe [1] and other related
methods, such as shifting the image for rotation, cutting and zoom [2] and so on. In
the context of infrared cameras, lidar, depth cameras and other widely used multiple
sensors, multi-augmentation methods are also being increasingly applied. Multi-sample
augmentation is to combine and transform multiple samples through prior knowledge
to construct neighborhood values of known samples in the featured space. Wang and
Perez [3] and Chawla et al. [4] proposed the SMOTE algorithm, which uses two minority
class samples to synthesize new samples and adds new artificially simulated samples to the
dataset, so that the minority class in the original data is no longer seriously out of balance.
Tokozume et al. [5] discussed whether mixing training samples can better achieve inter-
class separation based on feature visualization distributions. In 2018, Inoue H. [6] proposed
an idea to improve network generalization performance through data superposition. This
idea is very simple. In the paper, an efficient data augmentation method, SamplePairing, is
proposed. The core idea of the algorithm is to superimpose two images randomly selected
from the training set to synthesize a new sample (average pixels), using the first image label
as the correct label for the synthesized image, which can increase the size of the training set
from N to N × N. The model is shown in Figure 1. Images A and B are randomly grabbed
from the training set. The two are basically randomly flipped and extracted to obtain the
corresponding patch, and then averaged to obtain a new sample. The label is one of the
original sample labels. They are then fed into the training network.
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erates a score based on the input image, which indicates whether the image generated by 
G is successful and further trains G to generate better images. Alec Radford [7] proposed 
DCGAN, which used BatchNorm and removed fully connected hidden layers for deeper 
architectures. After Radford et al. proposed DCGAN, many tasks in computational vision 
began to use generative adversarial models to solve problems faced in specific tasks. In 
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Unsupervised data augmentation mainly learns new images with the same distribution
as the training datasets through the model and derives different augmentation methods
based on the GAN network. The traditional GAN network has a generator G and a
discriminator D; the generator G is used to generate samples and the discriminator D
is used to judge whether the sample is a real sample. G generates fake images with
random noise, and D performs binary classification training based on real and fake images.
D generates a score based on the input image, which indicates whether the image generated
by G is successful and further trains G to generate better images. Alec Radford [7] proposed
DCGAN, which used BatchNorm and removed fully connected hidden layers for deeper
architectures. After Radford et al. proposed DCGAN, many tasks in computational vision
began to use generative adversarial models to solve problems faced in specific tasks. In
order to enhance the robustness of the detection model, Wang et al. [8] improved the
detection performance of difficult objects by automatically generating samples containing
occlusion and deformation features. Subsequently, Li et al. [9] proposed a new perceptive-
GAN model for perceptual generative adversarial networks, which improves small object
detection by narrowing the representation difference between small objects and large
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objects. The method learns high-resolution feature representations for small objects by
confronting the generator and discriminator against each other.

Overall, heterologous multi-sample augmentation is bold and innovative and is simple
and easy to operate. It improves the generalization ability of the network and makes the
samples balanced. Unsupervised data augmentation quickly generates new samples to
expand datasets without manual labeling.

However, the existing literature study has some limitations, which are summarized
as follows:

a. For heterologous multi-sample augmentation, there are few studies, and the method
of multi-sample stacking needs to be further enriched and improved.

b. Only a small number of researchers link the computational process of image informa-
tion processing algorithms with high-level vision tasks, such as object detection, and
rarely consider the feedback of high-level tasks.

c. The specific impact of different data augmentation methods on the target detection
remains to be investigated.

This paper discusses the above issues and proposes some related improvements. The
acronyms used in the paper are shown in the Abbreviations.

The general idea of the experiment is as the following: 1. Detect the visible light
image alone and observe the model detection results without enhancement in the datasets.
2. Use infrared images to add fusion enhancement and compare the results. 3. Use the
generative adversarial network to generate new images based on the existing fused images
and expand the dataset and then compare the test results.

2. Methodology

This section introduces the main method principles of data augmentation and target
detection used in the paper. We use the MSRS public dataset.

2.1. Supervised Image Fusion

Based on the idea of SamplePairing, the superposition of the two random pictures can
effectively improve the accuracy of the model. Considering that the nighttime visible light
images cannot guarantee clear imaging and it is easy to lose the effective features of the
target, the infrared imaging can reflect the temperature information, supplement the visible
light information, and achieve a more accurate detection of the target. Therefore, it is a
good data augmentation method to superposition the images of two different light sources,
which can fully realize the information complementarity and spatial correlation.

This paper introduces a task-driven fusion algorithm that combines high-level visual
tasks into image spatial information processing methods to achieve true task traction.
The SeAFusion algorithm [10] proposed by Tang et al. uses a semantic sensing infrared
and visual image fusion framework, which can maintain the balance between low level
and high level visual tasks. Under the guidance of semantic loss, the fusion images can
generate more visual attraction and achieve excellent performance of advanced visual
tasks. The advantage of this method is to make the fusion image evaluation criteria
more comprehensive and objective; the main principle schematic is depicted in Figure 2
and it is divided into a fusion stage and segmentation stage for iterative training. First,
according to the fusion network results [11], calculate spatial information loss and semantic
loss, then use the combined loss to guide fusion network parameter p-step cycle update.
The fusion image generated after the update obtains the new semantic loss through the
segmentation network, the segmentation network parameters obtain q-step cycle update,
and the new semantic loss provides feedback for the joint loss, so that the fusion network
and the segmentation network iterate set times and the trained fusion network model is
finally obtained [12].
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2.2. YOLOv5 Detection 
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YOLOv5 is a single-stage target detection algorithm, mainly using CSPDarknet for feature 
extraction. The algorithm adds some new improvement ideas on the basis of YOLOv4, so 

Figure 2. The SeAFusion algorithm training process.

The fusion network internal structure is depicted in Figure 3. The infrared and visible
light images are input parallel to the feature extraction layer, and each feature extraction
branch contains a common convolution layer and a dense block of gradient residuals in
parallel. The common convolution layer kernel size is 3 × 3 and the activation function
LeakyReLU enables better extraction of shallow features. Subsequent residual gradient
density blocks (the RDG module) [13] extracts deep features. The fused features enter the
decoder structure for feature aggregation and image reconstruction. The filling is set to be
the same, the stride is set to 1, the image features are not downsampled, and the size of the
fusion image is consistent with the source image, thus losing very little information.
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2.2. YOLOv5 Detection

In this paper, the YOLOv5 model was trained using our data-enhanced dataset.
YOLOv5 is a single-stage target detection algorithm, mainly using CSPDarknet for feature
extraction. The algorithm adds some new improvement ideas on the basis of YOLOv4, so
that its speed and accuracy have been greatly improved in terms of performance. The main
advantages are shown as follows:

Regarding input during the model training phase, it conducts Mosaic data enhance-
ment, adaptive anchor calculation, and adaptive picture scaling. For benchmark networks,
it incorporates some new ideas from other detection algorithms [14], which mainly include
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focus structure and CSP structure. In terms Neck networks, the target detection network
adds an FPN structure between the Backbone and the last Head output layer. The Head
output layer has the same anchor frame mechanism as the YOLOv4 [15], the main im-
provement is about loss function during training, GIOU_Loss, and the DIOU_nms of the
prediction box filtering.

2.3. Unsupervised Data Augmentation

Unsupervised representation learning is a rather deep problem in general computer
vision research. A classic approach to unsupervised representation learning is to cluster the
data (e. g., using K-means) and use clustering to improve the classification scores. In the
context of an image, the image patches get hierarchical clustering [16] to learn a powerful
image representation. Another popular method is to train autoencoders [17]; the image
is encoded into a compact code and decoded to reconstruct the image as accurately as
possible. These methods have also been shown to learn good feature representations from
image pixels. Figure 4 shows the classic GAN network structure.
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GANs train the generator and the discriminator in a confrontational way. The gener-
ator is used to generate “fake” samples as realistically as possible and the discriminator
is used to distinguish as accurately as possible whether the input is a real sample or a
generated “fake” sample.

3. Improved Methods
3.1. Improved Semantic Segmentation Network for Bilateral Attention

In order to link the visual task with image fusion, a semantic segmentation network
is built to send feedback the fusion network when visible light and infrared images are
fused. The semantic segmentation network provides the semantic loss of targets in an
image, linking the high-level visual task of object detection to image fusion process [18],
thus making the image data more tailored to the task requirements.

The semantic segmentation network structure is shown in Figure 5, and the feature maps
of different levels are fused through two steps of feature extraction and information fusion.
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Figure 5. The semantic segmentation network structure.

In the first step of feature extraction, bilateral attention [19] consists of a channel
attention branch and a spatial attention branch. Figure 6 shows the improved bilateral
attention module. The high-level feature maps extracted by the channel attention branch
can capture more precise semantic information and the low-level feature maps extracted
by the spatial attention branch can capture more accurate spatial information [20]. In the
second step of feature fusion, we use a novel pooling fusion block to fuse the extracted
high-level and low-level feature maps. This fusion block can make full use of both high-
level and low-level feature maps, and fully utilize the advantages of both so as to obtain
high-quality fusion results.
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Figure 6. The improved bilateral attention module.

When generating the channel attention mask, the global average pooling GAP is used
to reduce the dimension of the input high-level feature map and then the gated channel
attention mechanism GCT module [21] is added to enhance the representation ability of the
convolutional layer. After connecting to the convolutional layer, BN layer, and activation
layer, the feature map is adjusted comprehensively and deeply. When generating the spatial
attention mask, first we reduce the number of low-level feature channels, then combine the
results of max pooling and average pooling to fully extract the spatial details of the image,
then input the feature map into the GCT module, and then go through the conv + BN +
Sigmoid layer so that the channels are compressed into one.

3.2. Residual Convolutional GAN

In the unsupervised data enhancement method, due to the use of deconvolution in the
generator of DCGAN, the stride of the deconvolution collocation is more than 1, resulting in
the convolution unable to isotropically cover the entire picture. Therefore, the interleaving
effect appears, resulting in the “Checkerboard effect”, which restricts the upper limit of the
generation ability of DCGAN. Thus, this paper makes some improvements to the structure
of the DCGAN generative adversarial network and makes it a Residual Convolutional GAN.

Among these changes, a resnet structure is primarily added to solve the gradient
dispersion problem and the residual network enables the model network layers to be
deepened. The overall framework is shown in the Figure 7.
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Figure 7. Residual Convolutional GAN structure.

The changes mainly include:

1. Removing the deconvolution of both the discriminator and the generator;
2. Building residual blocks between the convolutional layers;
3. Using AvgPooling2D and UpSampling2D to sample up or down, adjusting the length

and width of the image;
4. Increasing the number of convolution layers of ResBlock to increase the nonlinear

capability and depth of the network.

The inputs are the fused images, which are put into the improved GAN network
to generate new samples, thereby enhancing the multi-sample enhanced datasets again.
First, the generator adds random noise and enhances feature transfer through denseblock.
The number of parameters are reduced. Images go through the reshape layer, ResBlock,
upsampling layer, and ResBlock and batch normalization. Finally, after the activation
function, false images are obtained.

3.3. Retinex Deillumination Algorithm

For the single-sample traditional enhancement method, it mainly adjusts the contrast
and sharpness of the image. According to the characteristics of night images, this paper
chooses a deillumination algorithm to remove part of the influence of the darkness and
“replenish light” on the image. The Retinex deillumination algorithm select pixels layer
by layer using an image pyramid. The iterative operation is performed by taking points,
comparing, and averaging.

The Retinex theory [18] believes that the observed image S is obtained by reflecting
the incident light L from the surface of the object and the reflectivity R is determined by the
object itself and does not change with the incident light L. The relationship is seen in (1).

S = R × L (1)

where L represents the imaging part of the incident light, which directly determines the
dynamic range that the pixels in the image can achieve; R represents the reflection property
image of the object, that is, the intrinsic property of the image; and S represents the reflected
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light image received by the human eye. Therefore, the influence of L in the original image
should be eliminated, so as to preserve the reflection attribute image of the essence of the
object as much as possible.

The concept of an image pyramid is simple, which is to downsample an image to repre-
sent the image in a multi-resolution form. Figure 8 shows the image pyramid. The topmost
image has the lowest resolution, and the bottom layer has the highest resolution [19].
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The Retinex algorithm starts from the top layer and compares each pixel with its eight
adjacent pixels to estimate the reflectance component R; after the calculation of the previous
layer is completed, the estimated reflectance classification is interpolated, so that the upper
image of the estimated result R of one layer is the same size as the image of the next layer of
the pyramid, and the same comparison operation is performed again; finally, the final result
can be obtained after the eight-neighbor comparison of the original image is completed,
that is, the enhanced image. Here let S1, S2, . . . , Sm be the points on the path, arranged
from far to near, where Rc represents the final reflectivity estimate of the center position.
Meanwhile, Sm is decomposed according to the Retinex theory.

The main steps are as follows:

1. Transform the original image to the logarithmic domain S (x,y);
2. Calculate the number of image pyramid layers; initialize the constant image matrix

R0 (x,y), which is used as the initial value for the iterative operation;
3. Eight-neighborhood comparison operations are performed from the top layer to the last

layer, and the pixels on the path are calculated according to the following Formula (2):

Rc =
Sc − Sm

2
+

Rc + Rm

2
(2)

Sm = rm + lm (3)

R = R0 +
rc − rm

2
+

rc − rm−1

4
+ · · ·+ rc − r1

2m (4)

4. Afterthe operation of the nth layer is completed, interpolate the operation result R
of the nth layer to become twice the original, which is the same as the size of the n
+ 1 layer. When the bottom layer is calculated, the R obtained is the final enhanced
image. Sc is the center point. (3) is the Logarithmic form of (1). After transformed, the
intrinsic property R is calculated by (4).

4. Results and Discussions
4.1. Experimental Data

To examine the impact of the three data augmentation methods studied in this paper
on object detection, we conducted extensive experiments on the MSRS dataset. The MSRS
dataset is a road scene dataset, in which the training set contains more than a thousand pairs
of infrared and visible light images, including day and night conditions, and we calculated
the proportion of dark pixels and selected images with 75% dark pixels as poor lighting
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images for testing and verification [22]. This dataset provides semantic labels for objects
such as cars, people, bicycles, curves, car stops, guardrails, color tints, and backgrounds. In
this paper, the common active object pedestrian is used as the detection target, and only
the pedestrians are marked with the target detection frame. We choose 800 pairs of the
nighttime images to train, 200 images to test, and 100 other images to validate.

4.2. Training Configuration

In this paper, we separately used supervised single-sample and multi-sample data
augmentation, unsupervised GAN networks to generate new samples, and then compare
the detection results of the new dataset in the YOLOv5 architecture. The overall experimen-
tal step is to first perform multi-sample fusion augmentation, compare the target detection
accuracy. Then, the dataset of mixed fusion images is amplified by GAN to compare the
accuracy of target detection [23]. Finally, the new dataset is deilluminated and enhanced to
observe the detection effect and image effect.

4.2.1. Heterogeneous Multi-Sample Augmentation Training

The fusion network and segmentation network are iteratively trained, and the iteration
is set to M. First, the Adam algorithm is used to optimize all parameters in the fusion
network using the optimizer under the feedback of the joint loss and dynamically adjust
the hyperparameter β of the joint loss by iteration.

β = γ × (m − 1) (5)

In Equation (5), m represents the number of iterations, γ is a constant that balances
semantic loss and content loss, and the parameters of the segmentation model are updated
by optimizing the semantic loss. In each iteration, the training steps for fusion model and
segmentation model are p and q, respectively. The training process is shown in Table 1.
The fusion network and segmentation network are iteratively trained according to a joint
low-level and high-level adaptive training strategy. The flow chart is shown in Table 2.
All parameters in our joint adaptive training strategy are set as follows: M = 4, p = 1500,
q = 10,000, and γ = 1. Meanwhile, our fusion model is optimized under the guidance of
joint loss. Furthermore, we optimize the segmentation network using mini-batch stochastic
gradient descent with batch size 16, momentum 0.9, and weight decay 0.0005. The initial
learning rate is set to 0.01, the exponential decay method is used to control the learning rate
of each iteration, and the power is set to 0.9. This method is implemented on the PyTorch
platform. The machine uses an NVIDIA GeForce GTX 1080 Ti for experiments.

Table 1. The fusion augmentation training process.

Joint Low-Level and High-Level Training Strategy

Input: infrared images and visible images
Output: fused images
For m ≤ M:
for p steps:

select b infrared images; select b visible images
update the weight of semantic loss β
update the parameters of the fusion network Nf by optimizer

generate fused images
for q steps:

select b fused images
update the parameters of the segmentation network Ns by optimizer
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Table 2. The GAN augmentation training process.

Generative Adversarial Networks Training Strategy

Input: fused images (adversarial training iterations time is T, training iteration of the discriminant
network is K, small batch sample size is M)
Output: generator G (z, theta)
1 Random initialization
2 for t tend to 1 to T do:

For k tend to 1 to K do:
Select M samples

{
x(m)

}
, 1 ≤ m ≤ M from training set D

Select M samples
{

z(m)
}

, 1 ≤ m ≤ M from distribution N(0,1)
Update φ using random gradient ascending, gradient is
∂

∂φ

[
1
M

M
∑

m=1

(
log D

(
x(m), φ

)
+ log

(
1 − D

(
G
(

z(m), θ
)

, φ
)))]

End
Select M samples

{
z(m)

}
, 1 ≤ m ≤ M from distribution N(0,1)

Update theta using random gradient ascending, gradient is
∂

∂φ

[
1
M

M
∑

m=1
D
(

G
(

z(m), θ
)

, φ
)]

end

4.2.2. Residual Convolutional GAN Augmentation Training

The GAN network improved by Resblock can generate new images with similar
distribution according to the fused images, thus expanding the target detection dataset
in this paper and improving the generalization ability and robustness of the model. The
network is referred to as RCGAN [24] in this paper.

The training process is in Table 2.
In the process, x is the data representation of the image. D (x) represents the possibility

that the discriminator judges x comes from the real training data. z is a latent space vector
sampled from the standard normal distribution [25]. G (z) represents the function of the
generator mapping from the latent vector z to the data space. The purpose of G is to
estimate the distribution from the training data. D (G(z)) is the probability that the output
of generator G is a real image.

The discriminator tries to maximize the probability of correctly distinguishing between
true and false (logD (x)), and the generator tries to minimize the probability that D predicts
the output of G to be false log( 1−D (G(x))).

Training images are scaled to the range of the tanh activation function [−1, 1]. The
models are trained with mini-batch stochastic gradient descent (SGD) with a mini-batch size
of 128. All weights are initialized from a zero-centered normal distribution with standard
deviation 0.02. In the LeakyReLU, the slope of the leak was set to 0.2. We used the Adam
optimizer with tuned hyperparameters. Additionally, we used the learning rate of 0.002.

4.3. Performance Comparison

Firstly (step one), images are enhanced by fusing visible and infrared images, which
belongs to multi-sample augmentation. It is obvious that the data augmentation operation
overcomes the disadvantages of visible images. From Figure 9, pedestrians with tempera-
ture information can be captured by infrared cameras at night, gaining the advantage of
infrared information and enhancing the data.
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Figure 9. (a) a visible original image; (b) fused image using Densefuse; (c) fused image using Lpfuse;
(d) fused image using our methods.

In Figure 9, the same infrared image is fused with (a), and the results of three different
fusion methods are shown in (b), (c), and (d). It can be seen that infrared and visible
fusion has an obvious effect, otherwise, the pedestrian would not be found. Moreover, our
improved multi-sample data augmentation perform best in the comparison, the quantitative
results are in the Table 3.

Table 3. The detection effect comparison of multi-sample data augmented images and original images
at night.

Methods P R mAP@0.5

Visible original image 0.66 0.174 0.209
Densefuse 0.831 0.679 0.706

Lpfuse 0.64 0.756 0.642
Ours 0.786 0.795 0.76

Table 1 indicates that it is correct to introduce infrared images to poor-light images,
and our fusion methods obtains better performance in the pedestrian detection task. The
improved fusion method better enhances the data, so that the average detection accuracy
ranks first among the four situations.

Secondly (step two), 50 different fused images from the previous step are put in the
Residual Convolutional GAN to generate 500 fake images. Some of the new samples are
depicted in Figure 10. From the picture, it is seen that the people in the fake images can
be detected in most cases. We can judge the authenticity of the results by the shape of the
larger human form.
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Figure 10. New generated images by RCGAN network.

The generated fake images have the same distribution as the input images, and the
objects in them can be found by detection frames. The batch of images are good resources
for data augmentation.

Finally, the Retinex deillumination method is applied on the augmented dataset, the
effect is seen in Figure 11. Intuitively, the pictures after simple single-sample enhancement
obtained higher definition and recognition. The ablation study is conducted. We removed
the deillumination block and observed the effect of detection. The precision fell by 0.124.

Figure 11. (a,b): random images from first two steps; (c): (a) after Retinex deillumination augmenta-
tion; (d): (b) after Retinex deillumination augmentation.

The overall experimental results are listed in Table 4. This paper performs a com-
parison between three data augmentation methods. The detection accuracy mAP of the
model trained on the fusion-enhanced dataset is 0.76. The detection model is trained using
the augmented dataset after fusion enhancement and GAN enhancement, the detection
effect mAP is 0.854. At the same time, both the precision and recall rate of pedestrian de-
tection are improved. With all the three augmentation methods, the metrics of mAP reach
0.97. Meanwhile, we calculate the floating point operations per second (GFLOPs). Models
trained on datasets expanded in different ways have different amount of computation
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results. Overall, the computational complexity of the improved model is average and the
speed is good.

Table 4. The overall comparison results for pedestrian detection.

Image Method P R mAP@0.5 GFLOPs

Original visible images No addition 0.66 0.174 0.209 15.8

Augmented images

+fusion 0.786 0.795 0.76 15.9

+fusion
+GAN 0.869 0.833 0.854 17.2

+fusion
+GAN

+deillumination
0.955 0.896 0.97 14.1

Figure 12 shows the detect effect on the augmented images by our methods. Although
nighttime images are difficult to discern, data augmentation can greatly improve the
model’s detection ability.
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Figure 12. The detect effect on the augmented images by our methods.

In Figure 13, the left nine images are original, and the right nine are enhanced images.
After GAN augmentation, more useful objects emerged in the pictures. More people were seen
in the dark. The comparison of the F1 score and confusion matrix are shown in the Figure 14.
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Due to the few samples are tested, the gap is obvious in Figure 14. It is also proved
that the multi-sample augmentation and GAN make contributions to the detection effects.

4.4. Application

Through drone sampling, we obtained the custom dataset in Figure 15, and we used
our methods on the dataset. The results show that the methods have a certain universality.
The RCGAN is applied to the dataset to increase the number of datasets. The fake dataset
is shown in Figure 16. The detection result is displayed in Figure 17. It is apparent that
the detection model trained by the enhanced dataset has higher precision and robustness.
Figure 18 shows the detection P-R curve after GAN augmentation, mAP is 0.977, bigger
than 0.97 in the Table 4.
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5. Conclusions

For images acquired under inadequate conditions, it is necessary to perform data
augmentation. In this paper, we proposed improved data augmentation methods and
tested their pedestrian detection methods on the MSRS dataset. Then, we compared the
impact of supervised multi-sample fusion augmentation, single-sample deillumination
augmentation, and unsupervised RCGAN augmentation on target detection. This paper
improves the bilateral attention semantic segmentation network in visible light and infrared
fusion, which enhances the representation ability of the convolution network and makes
the target detection task better to drive multi-sample fusion augmentation. On the basis of
DCGAN, the residual convolution module is added to generate more realistic and smooth
new images to expand the dataset. For a single sample, the deillumination and sharpening
augmentation can greatly improve the image clarity. It can be seen that their effects are
different, but they both effectively improved image quality and played a good role in
promoting pedestrian detection.

There are some limitations of the study, however. In multi-sample enhancement, it
is necessary to use a registered pair of infrared and visible light images. If it is an image
with different focal lengths, it needs to be registered first; since the pedestrian target in
the dark image is small and the background is strongly nonlinear, the background of the
generated image of GAN is relatively abstract. In future research, we hope to implement a
lightweight image preprocessing module to solve the problem of rapid image registration
and improve the generative adversarial network to make the background of the resulting
image more realistic.
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GAN Generative Adversarial Network
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DCGAN Deep Convolution Generative Adversarial Network
GAP Global Average Pooling
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FPN Feature Pyramid Networks
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