
����������
�������

Citation: Hooshmandi, K.; Bayat, F.;

Bartoszewicz, A. Sampled-Data

Linear Parameter Variable Approach

for Voltage Regulation of DC–DC

Buck Converter. Electronics 2022, 11,

3208. https://doi.org/10.3390/

electronics11193208

Academic Editor: Khaled Ahmed

Received: 14 September 2022

Accepted: 3 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Sampled-Data Linear Parameter Variable Approach for Voltage
Regulation of DC–DC Buck Converter

Kaveh Hooshmandi 1,∗ , Farhad Bayat 2 and Andrzej Bartoszewicz 3

1 Department of Electrical Engineering, Arak University of Technology, Arak 38181-46763, Iran
2 Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran
3 Institute of Automatic Control, Lodz University of Technology, 90-924 Lodz, Poland
* Correspondence: k.hooshmandi@arakut.ac.ir

Abstract: This paper addresses the new method for output voltage regulation of DC–DC buck
converter nonlinear systems by a sampled-data linear parameter varying (LPV) controller. For this
purpose, an output-error state-space affine LPV model is presented for DC–DC buck converter
nonlinear systems. The sampled-data structure of the controller is considered as a time delay in
the input, and stabilization conditions are obtained for LPV systems with affine dependence on
the parameter by using a parameter-dependent Lyapunov–Krasovskii functional. Then, the design
condition of the sampled-data LPV controller with an appropriate sampling period is derived to
guarantee that the output voltage of the DC–DC buck converter can be adjusted to the desired voltage.
Finally, simulation results are provided to show the validity of the presented approach in practical
control applications where there are limitations on the value of the sampling period and the cost of
the digital implementation.

Keywords: DC–DC buck converter; sampled-data control; Krasovskii functional; linear parameter
varying (LPV)

1. Introduction

Power electronic systems play a crucial role in modern power systems by creating
highly efficient interfaces as links between different sources, storage, and loads in DC
networks [1]. In particular, DC–DC converters are often used in different stages of the
network to handle regulated DC voltage and desired current to the units of the networks [2].
DC–DC converters utilized extensively in automotive electronics [3], renewable energy
systems [4], hybrid energy storage system [5], satellite applications [6], and photovoltaic
power applications [7].

A DC–DC converter should provide a fixed output voltage for the whole operating
range, with load variations and non-constant power demand. Therefore, the closed-loop
feedback control design for a DC–DC converter is important. The DC–DC buck converters
(step-down) are one important structure of the converters that provide a lower output
voltage than the input voltage. Because of the nonlinear characteristics of the DC–DC buck
converter [8,9], it is of great importance that one use a nonlinear control approach in the
problem of regulating the output voltage. A finite-time control method was presented for
a nonlinear system, which was used for the DC–DC buck converter in [10]. By utilizing
the backstepping approach, an adaptive nonlinear control method was proposed in [11],
which obtained the output voltage regulation goal. A fuzzy self-regulating control method
was employed in [12] for a DC–DC buck converter nonlinear system. In [13], a second-
order control approach was proposed for a DC–DC buck converter by selecting the sliding
surface appropriately. However, the proposed schemes are based on the presumption that
the system states are available continuously in time and the controller output is applied
immediately. However, in practice the system states are sampled periodically and the
control signal has a delay for the computation.
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With the development of programmable microcontroller technology, advanced nonlinear
control approaches can be implemented with digital systems. A generalized proportional-
integral controller for the DC–DC buck converter was implemented in the field-programmable
gate array (FPGA), [14]. In [15], a type of fractional controller is designed for a DC–DC con-
verter and implemented in a digital signal processor (DSP). In [16], a new approach based
on the implicit discretization of the homogeneous differentiator to the digital controller
design for a DC–DC buck converter with duty cycle saturation is presented. A digital fuzzy
logic controller for the DC–DC buck converter is designed in [17], and the validity of the
performance is evaluated with experimentation. A discrete-time sliding mode control of
DC–DC converters is designed in [18], and the effectiveness of the controller is validated
experimentally. Due to the complexity of the considering sampling period in the design
of the controller, it is common to neglect this phenomenon and the sampling period for
discrete-time controllers selected based on the engineering experience.

Sampled-data control methods, which can provide stable operation, have been ex-
tensively used for nonlinear systems over the past few years [19–21]. In [19], the global
stabilization problem was presented, and the semi-global stabilization problem for the non-
linear systems was investigated in [21]. Recently, time-delay LPV systems have provided a
suitable structure for sampled-data controller design for nonlinear systems [22,23]. The LPV
method transforms the nonlinear model of the system into a simple parameter-variable lin-
ear model which is appropriate to design a time-varying controller for a nonlinear system.
Inspired by the work [22–24] and considering the advantages of the LPV system [25] and
the sampled-data control [26], we proposed a sampled-data LPV controller design method
for a DC–DC buck converter nonlinear system to obtain robustness against load variations.
In the first step, a new affine LPV model is derived, which describes the DC–DC buck
converter nonlinear dynamics. Our objective is to design a sample-data LPV controller
that achieved the output voltage regulation. To address this issue, the sampling rate of the
states considered as the input delay and stability and stabilization conditions are derived
for LPV systems with affine dependence on the parameter. We utilized the LKF approaches
to derive design conditions that are appropriate for the stabilization and the sampled-data
control of systems with time delay.

Due to the complexity of the considered sampling period in the design of the con-
troller for the DC–DC buck converter, it is common to neglect this phenomenon, and the
selection of the sampling period largely depends on the engineering experience, without
theoretical support. If we want to improve the accuracy of the output voltage regulation,
we usually decrease the sampling time in the cost of using the high-speed and expensive
processor. However, if we want to increase the sampling period to reduce the cost of the
implementation, the system performance may be decreased. Therefore, by using the LPV
approach new theoretical results are provided, taking into account the nonlinear dynamics
of the DC–DC buck converter and sampling and quantization of the measurements to a
trade-off between the accuracy of the output voltage regulation and the sampling period.

The main contributions of this paper are as follows.

(i) By using the LPV approach, new theoretical results are provided, taking into account
the nonlinear dynamics of the DC–DC buck converter and sampling and quantization
of the measurements.

(ii) It is shown that the proposed LKF provides suitable bilinear matrix inequality condi-
tions to compute the nonlinear control law by considering the sampling period which
is suitable for practical control with low-cost digital implementation.

The rest of this paper is organized as follows. In Section 2, the nonlinear DC–DC
buck converter model is presented, and then the LPV model is demonstrated. Section 3
is devoted to deriving stabilization conditions for sampled-data LPV controllers. The
numerical simulation results and discussion about the controller performance are presented
in Section 4.
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2. Problem Formulation and Preliminaries

The DC–DC buck power converter studied here with a sampled-data LPV controller
is presented in Figure 1. The PWM control approach is utilized to obtain the output voltage
regulation by controlling the semiconductor switches, whereas the duty ratio ν(t) ∈ [0, 1]
of PWM is adjusted by the digital controller. The DC–DC buck consists of a load resistance
RL, the static drain to source resistances of the power MOSFET RDS, the circuit inductance
L, the capacitance C, and equivalent series resistances of the inductor ResrL and capacitor
ResrC. V denotes the time-invariant input voltage. vo(t) and iL(t) define the output voltage
and inductor current, respectively.

Low Side 
MosFet

High Side 
MosFet

Sampled-Data LPV Controller

LPV Controller

( )nu t
PWM

Generator

Sampling

ov

oi

Li

( ( )) ( )n d nK t x t

esrCR

esrLR
dsR

dsR ( )LR t

L

C

V

Figure 1. DC–DC buck converter topology with sampled-data LPV controller..

Sampled-data LPV controller changes the ratio of the duty cycle, ν(t) to control current
and output voltage. Applying averaging method in [27], the mathematical nonlinear model
of the DC–DC buck converter is as follows:

i̇L(t) = −
vo(t)

L
− Rds + ResrL

L
iL(t) +

Vν(t)
L

(1)

v̇C(t) =
iL(t)

C
− 1

CRL(t)
vo(t) (2)

v̇C(t) =
1

CResrC
(vo(t)− vc(t)). (3)

From (2) and (3), we get

vo(t) =
RL(t)

RL(t) + ResrC
(ResrCiL(t) + vc(t)). (4)

Considering x1(t) = iL(t) and x2(t) = vc(t), then (1) and (2) can be rewritten as follows:
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ẋ1(t) = −
1
L

(
RL(t)ResrC

RL(t) + ResrC
+ Rds + ResrL

)
x1(t)−

1
L

(
RL(t)

RL(t) + ResrC

)
x2(t) +

V
L

ν(t) (5)

ẋ2(t) =
1
C

(
RL(t)

RL(t) + ResrC

)
x1(t)−

1
C

(
1

RL(t) + ResrC

)
x2(t). (6)

Let x̄2 be an equilibrium point of x2(t). Then, by (6), the equilibrium point x̄1 is
given by

RL(t)x̄1 − x̄2 = 0→ x̄1 =
x̄2

RL(t)
. (7)

Considering (3), the equilibrium point of vo(t) is given by v̄o = x̄2. Thus, from (1), the
equilibrium point of ν(t), we obtain

ν̄ =
x̄2 + (Rds + ResrL)x̄1

V
. (8)

In order to obtain the value of vc(t) from the measured vo(t), io(t) and iL(t), we used
the following equality which was derived from (4). This is because measuring the value of
vc(t) in the considered DC–DC buck converter is extremely hard. We have

vc(t) = vo(t) + ResrC(io(t)− iL(t)). (9)

In the equilibrium point, from (9), io = ic, because v̄o = x̄2.
We can express the dynamics of the system based on the deviated state about the

equilibrium point as follows:[
x1(t)
x2(t)

]
=

[
x1d(t)
x2d(t)

]
+

[
x̄1
x̄2.

]
(10)

Equations (1) and (2) can be rewritten in terms of x1d, x2d as follows:

ẋ1d(t) = − 1
L

(
RL(t)ResrC

RL(t)+ResrC
+ Rds + ResrL

)
x1d(t)− 1

L

(
RL(t)

RL(t)+ResrC

)
x2d(t) + V

L ν(t)

− 1
L

(
RL(t)ResrC

RL(t)+ResrC
+ Rds + ResrL

)
x̄1 − 1

L

(
RL(t)

RL(t)+ResrC

)
x̄2

ẋ2d(t) = 1
C

(
RL(t)

RL(t)+ResrC

)
x1d(t)− 1

C

(
1

RL(t)+ResrC

)
x2d(t)

+ 1
C

(
RL(t)x̄1−x̄2
RL(t)+ResrC

)
.

(11)

Because

1
V

(
RL(t)ResrC

RL(t) + ResrC
+ Rds + ResrL

)
x̄1 +

1
V

(
RL(t)

RL(t) + ResrC

)
x̄2 =

1
V
(x̄2 + (Rds + ResrL)x̄1) = ν̄, (12)

when considering u(t) = ν(t) + ν̄, the system given in (11) becomes

ẋ1d(t) = − 1
L

(
RL(t)ResrC

RL(t)+ResrC
+ Rds + ResrL

)
x1d(t)− 1

L

(
RL(t)

RL(t)+ResrC

)
x2d(t) + V

L u(t)

ẋ2d(t) = 1
C

(
RL(t)

RL(t)+ResrC

)
x1d(t)− 1

C

(
1

RL(t)+ResrC

)
x2d(t).

(13)

Let us define

ρ(t) =
1

RL(t) + ResrC
. (14)

Then, we can rewrite (13) as follows:
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ẋd(t) = A(ρ(t))xd(t) + Bu(t)

A(ρ(t)) =

[
− ResrC−ρR2

esrC++Rds+ResrL
L − 1−ρResrC

L
1−ρResrC

C
−ρResrC

C

]
, B =

[ V
L
0

]
.

(15)

Note that

ρmin =
1

RUp + ResrC
≤ ρ(t) ≤ 1

RLow + ResrC
= ρmax. (16)

Therefore, we can derive the polytopic linear parameter varying (LPV) form of the
DC–DC buck converter as follows:

ẋd(t) =
2
∑

i=1
αi Aixd(t) + Bu(t)

A1 =

 − ResrC−ρmaxR2
esrC++Rds+ResrL

L − 1−ρmaxResrC
L

1−ρmaxResrC
C

−ρmaxResrC
C


A2 =

 − ResrC−ρminR2
esrC++Rds+ResrL

L − 1−ρminResrC
L

1−ρminResrC
C

−ρminResrC
C


α1 = ρ(t)−ρmin

ρmax−ρmin
, α2 = 1− α1 = ρmax−ρ(t)

ρmax−ρmin

. (17)

The variation of the RL(t) can be established as follows:

RL(t) =


RLow i f vo(t)

io(t)
< RLow

vo(t)
io(t)

Othervise

RUp i f vo(t)
io(t)

> RUp

. (18)

3. Problem Formulation

Sampled-data LPV controller in Figure 1 uses the system states measurement at
sampling instants tn, n ∈ N, needing

0 < t1 < ... < tn < ..., Tm = tn+1 − tn, (19)

where Tm shows the sampling period. Based on the measurement value of the state vector,
the controller output is updated at each sampling instant; therefore, the control signal will
be piecewise constant. We have

u(tn) = K(ρ(tn))xd(tn) tn ≤ t < tn+1. (20)

By utilizing the input delay approach, the sampled-data structure is modeled as a
time-varying delay in the input which is defined by

τ(t) = t− tn f or t ∈ [tn, tn+1), n ∈ N. (21)

The function τ(t) is a sawtooth function which shows the time passed from the last
sampling instant.

By substitution of Equation (20) into Equation (15), the following closed-loop system
is obtained:

ẋd(t) = A(ρ(t))xd(t)+BK(ρ(t− τ(t)))xd(t− τ(t))

tn ≤ t < tn+1. (22)
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Although ρ(t) changes continuously in time, the ρ(tn) in the control law is kept
constant between two samples. The difference among the ρ(t) and the ρ(tn) depends on
the rate of the parameter variation and the sampling period of the parameter. By using
|ρ̇(t)| < v and applying the mean-value theorem, we have

|ρ(t)− ρ(tn)| < vτ(t). (23)

Consequently,

ρ(t) = ρ(tn) + ∆(t), |∆(t)| < vTm. (24)

Because ρ̇(t) = ∆̇(t) in the sampling interval, then

−v ≤ ∆̇(t) ≤ v. (25)

We should consider this uncertainty in the design conditions. By using (24), the open-
loop system matrix depends on the uncertainty and the value of the measured parameter.
Then we get

ẋd(t) = A(ρ(tn) + ∆(t))xd(t) + BK(ρ(tn))xd(t− τ(t)). (26)

In the following, conditions for the asymptotic stability of the closed-loop system
in (26) were derived. We utilized the following lemmas in deriving the main results.
In some cases, for the sake of simplicity, explicit dependence on t is omitted to shorten
the notation.

Lemma 1 ([28]). Consider a differentiable function x(t) verifying

∫ t

tn

[
ẋ(s)
x(tn)

]
ds =

[
I −I
0 τ(t)I

][
x(t)
x(tn)

]
. (27)

For a real matrix R(ρ) = RT(ρ) > 0, there exists a matrix N(ρ), such that the inequality

−
∫ t

tn

[
ẋ(s)
x(tn)

]
R(ρ)

[
ẋ(s)
x(tn)

]
ds ≤

[
x(t)
x(tn)

]
Θ(ρ)

[
x(t)
x(tn)

]
(28)

holds for all x(.) and where

Θ(ρ) =

[
I −I
0 τ(t)I

]
N(ρ) +

[
I 0
−I τ(t)I

]
NT(ρ) + τ(t)N(ρ)R−1(ρ)NT(ρ). (29)

Lemma 2 ([22]). For a symmetric matrix O and two matrices M and L the following problem

O + MTΘL + LTΘT M < 0 (30)

is solvable if and only if

M⊥
T
OM⊥ < 0 , L⊥

T
OL⊥ < 0, (31)

where M⊥ and L⊥ denote arbitrary bases of the null spaces of M and L respectively, MM⊥ = 0
and LL⊥ = 0.
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For the following parameter-dependent Lyapunov–Krasovskii functional

V(t) = xT
d (t)P(ρ(t))xd(t) + (tn+1 − t)xT

d (tn)Q(ρ(tn))xd(tn)

+(tn+1 − t)
∫ t

tn

[
ẋd(s)
xd(tn)

]T
[

R1(ρ(tn)) R2(ρ(tn))

∗ R3(ρ(tn))

][
ẋd(s)
xd(tn)

]
ds

(32)

with

P(ρ(t)) = P1 + (ρ(tn) + ∆(t))P2, Q(ρ(tn)) = Q1 + ρ(tn)Q2

Ri(ρ(tn)) = Ri1 + ρ(tn)Ri2, i = 1, 2, 3
. (33)

For P(ρ) > 0, with the constraints on[
R1(ρ(tn)) R2(ρ(tn))

∗ R3(ρ(tn))

]
> 0 (34)

and [
P(ρ(t)) 0

0 (Tm)Q(ρ(tn))

]
> 0, (35)

the LKF V(t) is a positive definite function and there exists a small β such that

V(t) > β‖x(t)‖2. (36)

Now, it is required to derive conditions that the LKF functional (32) is non-increasing
at sampling instants t = tn.

The first term of the LKF is continuous in time, so it is nonincreasing at sampling
instants. The second and integral terms of the LKF have positive values due to (34) and (35)
and are continuous on (tn, tn+1). At the sampling instants, we have lim

t→tn+1
(tn+1 − t) = 0,

and they become zero; thus, we have lim
t→tn+1

V(t) = xT(tn+1)P(ρ(tn+1))x(tn+1).

Therefore, the condition

lim
t→tn+1

V(t) ≥ V(tn+1) (37)

holds, and LKF (32) will be nonincreasing at sampling instants.
The derivative of V(t) is given by

V̇(t) = ẋT
d (t)P(ρ)xd(t) + xT

d (t)P(ρ)ẋ(t) + xT(t)Ṗ(ρ)x(t)+

−xT
d (tn)Q(ρ)xd(t) + (tn+1 − t)xT

d (tn)Q̇(ρ)xd(t)+

−
∫ t

tn

[
ẋd(s)
xd(tn)

]T[ R1(ρ) R2(ρ)
∗ R3(ρ)

][
ẋd(s)
xd(tn)

]
ds+

(tn+1 − t)
[

ẋd(s)
xd(tn)

]T[ R1(ρ) R2(ρ)
∗ R3(ρ)

][
ẋd(t)
xd(tn)

]
. (38)

Replacing (26) in (38) and applying Lemma 1 on the integral term of the LKF the upper
bound of the derivative of V(t) can be estimated as

V̇(t) ≤
[

xd(t)
xd(tn)

]T( Λ̄1(ρ) + (tn+1 − t)Λ̄2(ρ) + τ(t)Λ̄3(ρ) + ...
τ(t)N(ρ)R−1(ρ)NT(ρ)

)[
xd(t)
xd(tn)

]
(39)
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where

Λ̄1(ρ) =

[ (
AT(ρ)P(ρ)

)H − NH
11(ρ) + Ṗ(ρ) ∗

KT(ρ)BT P(ρ) + NT
11(ρ)− N21(ρ) −Q(ρ) + NH

21(ρ)

]

Λ̄2(ρ) =

[
AT(ρ)R1(ρ)A(ρ) AT(ρ)R1(ρ)BK(ρ) + AT(ρ)R2(ρ)

∗ Λ̄

]
Λ̄ = KT(ρ)BT R1(ρ)BK(ρ) + Q̇(ρ) + R3(ρ) +

(
RT

2 (ρ)BK(ρ)
)H

Λ̄3(ρ) =

[
0 N12(ρ)

NT
12(ρ) NT

12(ρ) + N12(ρ)

]
. (40)

Because (39) is affine in t, then for t = tn,

Λ̄1(ρ) + TmΛ̄2(ρ) < 0 (41)

and for t = tn+1 [
Λ̄1(ρ) + TmΛ̄3(ρ) TmN(ρ)

∗ −TmR(ρ)

]
< 0, (42)

implying that a small enough δ exists, so that the following is satisfied

V̇(t) < −δ‖x(t)‖2. (43)

Thus the closed-loop system (26) with a time delay of less than Tm, is asymptoti-
cally stable.

Derived conditions for stability in (41) and (42) are polynomially parameter-dependent
matrix inequalities, because of the product of the system matrix A(ρ) with P(ρ) and
R1(ρ). These conditions should be satisfied for all parameter space ρ(t). Therefore, these
conditions are not suitable for sampled-data LPV controller design purposes because they
require an infinite number of constraints to be checked. In the following, these conditions
are transformed to new stability conditions by using the Lemma 2, which is helpful for
convexification purposes.

Theorem 1. Closed-loop system (26) with a time delay less than Tm is asymptotically stable if
there exist matrix functions P(ρ) ∈ Sn > 0, Q(ρ), R1(ρ), R2(ρ) ∈ Sn, R3(ρ), N11(ρ), N12(ρ),
N21(ρ), N22(ρ), Υ1, Υ2, Υ3, Υ4, Υ5, Υ6 ∈ Rn×n and controller K(ρ), such that for all ρ the
parameterized matrix inequalities problems (44)–(47) are feasible. We have

[
R1(ρ) R2(ρ)
∗ R3(ρ)

]
> 0 (44)[

P(ρ) 0
∗ TmQ(ρ)

]
> 0 (45) TmR1(ρ)− Υ1

H Λ1(ρ) Λ2(ρ) + Λ3(ρ)
∗ Λ4(ρ) + Λ5(ρ) Λ6(ρ) + Λ7(ρ)
∗ ∗ Λ8(ρ) + Λ9(ρ)

 < 0 (46)


−Υ4

H Λ10(ρ) ΥT
4 BK(ρ)C− Υ6 0 0

∗ Λ11(ρ) Λ12(ρ) TmN11(ρ) TmN12(ρ)
∗ ∗ Λ13(ρ) TmN21(ρ) TmN22(ρ)
∗ ∗ ∗ −TmR1(ρ) −TmR2(ρ)
∗ ∗ ∗ ∗ −TmR3(ρ)

 < 0 (47)

where
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Λ1(ρ) = P(ρ) + ΥT
1 A(ρ)− Υ2

Λ2(ρ) = TmR2(ρ)

Λ3(ρ) = −Υ3 + ΥT
1 BK(ρ)

Λ4(ρ) = Ṗ(ρ)−Q(ρ)− N11(ρ)
H

Λ5(ρ) =
(

AT(ρ)Υ2
)H

Λ6(ρ) = N11(ρ)− NT
21(ρ)

Λ7(ρ) = ΥT
2 BK(ρ) + AT(ρ)Υ3

Λ8(ρ) = N21(ρ)
H −Q(ρ)

Λ9(ρ) =
(
ΥT

3 BK(ρ)
)H

+ TmQ̇(ρ) + TmR3(ρ)

Λ10(ρ) = P(ρ)− Υ5 + ΥT
4 A(ρ)

Λ11(ρ) = Ṗ(ρ)− N11(ρ)
H +

(
ΥT

5 A(ρ)
)H

Λ12(ρ) = Λ6(ρ) + AT(ρ)Υ6 − TmN12(ρ) + ΥT
5 BK(ρ)

Λ13(ρ) = Λ8(ρ)− TmN22(ρ)
H +

(
ΥT

6 BK(ρ)
)H .

Proof. The matrix inequalities in (44) and (45), which are taken from (34) and (35) are
sufficient conditions for the positiveness of the LKF V(t). The matrix inequalities in (46)
and (47) are derived respectively from (41) and (42), which are sufficient conditions for the
negativeness of the derivative of LKF V(t). To prove this issue, we rewrite (46) as

O1(ρ, ρ̇) + MT
1 (ρ)Θ1L1 + LT

1 Θ1
T M1(ρ) < 0 (48)

with

O1(ρ, ρ̇) =

 TmR1(ρ) P(ρ) Λ2(ρ)
∗ Λ4(ρ) Λ6(ρ)
∗ ∗ Λ8(ρ) + TmQ̇(ρ) + TmR3(ρ)


M1(ρ) = [−I A(ρ) BK(ρ)]

L1 =

[
I 0 0
0 0 I

]
Θ1 =

[
Υ1 Υ2 Υ3

]
(49)

and rewrite (47) as

O2(ρ, ρ̇) + MT
2 (ρ)Θ2L2 + LT

2 Θ2
T M2(ρ) < 0 (50)

with
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O2(ρ) =


0 P(ρ) 0 0 0
∗ Ṗ(ρ)− NH

11(ρ) Λ6(ρ)− TmN12(ρ) TmN11(ρ) TmN12(ρ)
∗ ∗ Λ8(ρ)− TmNH

22(ρ) TmN21(ρ) TmN22(ρ)
∗ ∗ ∗ −TmR1(ρ) −TmR2(ρ)
∗ ∗ ∗ ∗ −TmR3(ρ)


M2(ρ) = [−I A(ρ) BK(ρ) 0 0]

L2 =

 I 0 0 0 0
0 I 0 0 0
0 0 I 0 0


Θ2 =

[
Υ4 Υ5 Υ6

]

. (51)

By defining M1(ρ) and M2(ρ) as

M⊥1 (ρ) =

 A(ρ) BK(ρ)
I 0
0 I



M⊥2 (ρ) =


A(ρ) BK(ρ) 0 0

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


, (52)

and utilizing Lemma 2, we reach the matrix inequalities in (41) and (42). Thus, the feasibility
of (46) and (47) imply the feasibility of (41) and (42) respectively. The matrix variables Υ1,
Υ2, Υ3 , Υ4, Υ5 and Υ6 are the slack variables. This concludes the proof.

Remark 1. If the matrices Υi, i = 1, . . . , 6 chosen are parameter-independent, the conditions in
Theorem 1 have affine dependence to the parameter. Therefore to ensure stability over the entire
parameter space, the stability conditions in Theorem 1 should be solved at the vertices of the
parameter value. When K(ρ) is unknown, the matrix inequalities (46) and (47) are non-convex
bilinear matrix inequality (BMI) optimization problems, and cannot be resolved by using the convex
optimisation algorithm.

Remark 2. PENBMI [29], is a intense software for solving the BMI problems. The algorithm used
in PENBMI is based on the augmented Lagrangian method. It can be viewed as a generalization to
nonlinear semidefinite problems of the penalty-barrier-multiplier method. Convergence to a critical
point satisfying the first-order Karush–Kuhn–Tucker (KKT) optimality conditions is guaranteed. In
this paper, we utilized PENBMI 2.0 interfaced with YALMIP 3.0 to solve the matrix inequalities in
Theorem 1 and design a sampled-data output feedback LPV controller.

4. Simulation Study

We simulate the DC–DC buck converter by using the nonlinear model in (1)–(3) in
MATLAB/Simulink software with the parameters that are listed in Table 1. As presented
in Table 1, the equilibrium point of vc(t) = 5 is given by vc = 5, and the lower and upper
bounds of RL(t) are given by RLow = 2 and RUp = 25.
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Table 1. Parameters of the DC–DC Buck converter.

Parameters Value

V (input power source) 12 V
v̄c (Equilibrium point of vc(t)) 5 V

L 47 µH
C 220 µF

Rds 30 mΩ
ResrL 100 mΩ
ResrC 110 mΩ
RL(t) 5–25 Ω

Switching frequency 200 kHz

We applied PENBMI to solve Theorem 1 conditions with the sampling period chosen
as T = 0.0005 s, and the following control law was obtained:

u(tn) = [−0.0320 0.0117] + [0.0003 −0.0018]ρ(tn). (53)

In the simulations, the proposed sampled-data LPV controller is implemented digitally
by employing an analog-to-digital sampler and a zero-order hold. When the switching
frequency is 200 kHZ, the simulation results for T = 0.0005 s are presented in Figures 2–4
where the constant load changes from 5 Ω to 20 Ω and then back to 8 Ω. We compared
the proposed sampled-data feedback LPV controller with a regional pole placement LPV
technique [30]. Simulation results show that under the duty ratio function shown in
Figure 3, the output voltage reaches faster to the steady value, and suitable performance is
obtained by the proposed sampled-data feedback LPV controller than the pole placement
LPV.

Figure 2. Comparison between output voltage regulation about the equilibrium point under the
proposed controller (T = 0.0005 s) where the load is changed.
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Figure 3. Manipulated duty cycle of the buck converter for embedded PWM control duty ratio in the
presence of load variations (T = 0.0005 s).

Figure 4. Inductance current responses where the load is changed.

We repeated the simulation for T = 0.0002 s and the switching frequency 200 kHZ.
Figure 5 shows that the output voltage vo adjusted to be steady in a shorter time by the pole
placement with high-cost digital platforms. Consequently, it is crucial to select the suitable
sampling period. If we want to modify the accuracy of the output voltage adjustment about
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the equilibrium point, we should decrease the sampling period. However, if we want to
increase the sampling period to reduce the implementation cost, the system performance
may be lost. The simulation results show the effectiveness of the proposed approach to
reduce the implementation cost.

Figure 5. Comparison between output voltage response curves under the proposed controller
(T = 0.0002 s) where the load is changed.

5. Conclusions

This paper presents a new sampled-data LPV controller for a DC–DC buck converter.
The main advantages of this control scheme are the consideration of the nonlinear systems
of the DC–DC buck converter and the sampling period in the design conditions. It has
been proven that the regulation problem can be solved by choosing the sampling period
appropriately. This feature is desirable for practical control applications where hardware
resources and digital processing capabilities are limited. A simulation study shows a
satisfactory performance of the proposed sampled-data LPV controller. For future works,
we will experimentally verify the effectiveness of the proposed approach and extend the
proposed approach for output feedback controllers in the presence of disturbances.
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