

 electronics-11-03219

electronics-11-03219

Electronics 2022, 11(19), 3219; doi:10.3390/electronics11193219

Article

Forensic Analysis of IoT File Systems for Linux-Compatible Platforms

Jino Lee 1[image: Orcid] and Taeshik Shon 2,*

1

Department of Artificial Intelligence Convergence Network, Ajou University, Suwon 16499, Korea

2

Department of Cybersecurity, Ajou University, Suwon 16499, Korea

*

Correspondence: tsshon@ajou.ac.kr

Academic Editor: Fernando De la Prieta

Received: 20 September 2022 / Accepted: 4 October 2022 / Published: 8 October 2022

Abstract

:

Due to recent developments in IT technology, various IoT devices have been developed for use in various environments, such as card smart TVs, and smartphones Communication between IoT devices has become possible. Various IoT devices are found in homes and in daily life, and IoT technologies are being combined with vehicles, power, and wearables, amongst others. Although the usage of IoT devices has increased, the level of security technology applied to IoT devices is still insufficient. There is sensitive information stored inside IoT devices, such as personal information and usage history, so if security accidents happen, such as data leakage, it can be very damaging for users. Since research on data storage and acquisition in IoT devices is very important, in this paper we conducted a security analysis, from a forensic perspective, on IoT platform file systems used in various environments. The analysis was conducted on two mechanical platforms: Tizen (VDFS) and Linux (JFFS2 and UBIFS). Through file system metadata analysis, file system type, size, list of files and folders, deleted file information were obtained so that we could analyze file system structure with the obtained information. We also used the obtained information to check the recoverability of deleted data to investigate the recovery plan. In this study, we explain the characteristics of platforms used in various environments, and the characteristics of data stored in each platform. By analyzing the security issues of data stored during platform communications, we aimed to help in solving the problems affecting devices. In addition, we explain the analysis method for file system forensics so that it can be referred to in other platform forensics.

Keywords:

digital forensic; IoT devices; VDFS; JFFS2; UBIFS

1. Introduction

As the Internet of Things (IoT) advances and the market size increases, increasingly advanced technologies are being applied to various devices [1]. As of 2022, IoT technologies are being used in various devices and contexts, including vehicles, artificial intelligence, wearables, speakers, and industrial products, and it is becoming increasingly difficult to find devices without these technologies [2,3]. IoT devices store a variety of data acquired through interactions with networks, devices, and people. Such stored data includes sensitive user information, including system logs and personal information [4].

However, the level of security applied to IoT devices remains insufficient and devices such as speakers and intercoms are vulnerable to various attacks. In one case, an individual’s IP camera was hacked, and the resulting video was sold to an Internet site [5]. IoT devices have become ubiquitous, and significant harm can occur through attacks. To obtain proper evidence, forensic and security technologies need to be developed [6,7,8].

As the fields in which IoT devices and technologies are applied continue to diversify, the numbers of IoT platforms are increasing. In addition, because each platform has a different data storage method and structure, knowledge of various platforms is required. Although research has been conducted on certain platforms, there are still platforms for which no studies have yet been conducted [9,10,11,12].

In addition, the types of IoT platforms and security technologies of the platforms are developing daily [13]. Due to the development of technologies, it is difficult to obtain data from IoT devices because of improved security and encryption. Therefore, research is needed on data acquisition and analysis methods in various environments to investigate and analyze devices.

Platforms are mounted on various IoT devices, so such devices can be targets for attack. IoT devices can store important information, such as user activity and usage records [14]. It is, therefore, necessary to research platforms to improve the security of IoT devices and the efficiency of evidence collection. With this in mind, we analyzed the metadata of file systems on various platforms for improved security and evidence collection. In addition, we propose a method to extract data through analyzed metadata and a method to recover deleted data. Finally, we investigate the types of artifacts that can be obtained for each file system by applying the proposed forensics method. The contributions of this study are as follows:

	
Through a metadata analysis of the file systems mounted on IoT devices, information, such as the system type and size, list of files and folders, and deleted files, was obtained.

	
The possibility of extracting files stored in a file system was analyzed experimentally. The metadata on devices using the Vertically Deliverable File System and Journaling File system version 2 (JFFS2) were analyzed to confirm the possibility of data extraction through file carving.

	
The recoverability of deleted files in a file system was analyzed experimentally. Data on deleted files were confirmed using the snapshot and journaling functions applied by the file system.

	
Analysis and file recovery experiments were conducted on real devices and it was confirmed that the research technique could be applied to other real IoT devices.

By analyzing the data storage structure and security issues of the platform, the security of IoT devices to be developed in the future can be improved. In addition, we present an approach for analyzing the platform mounted on IoT devices using file system forensics. The proposed approach allows for referencing when analyzing IoT device platforms that are newly developed or difficult to recognize.

The remainder of this paper is structured as follows. Section 2 describes existing studies related to file system forensics on various platforms. Section 3 details the characteristics of each platform and applicable devices, and Section 4 introduces the metadata analysis experiments conducted using a file system. Section 5 describes the extraction and recovery of files based on case studies. Section 6 discusses the results of such a study, and, finally, Section 7 provides some concluding remarks.

2. Related Work

IoT file system forensics requires both analysis of characteristics of IoT devices and knowledge of file systems. Since IoT has different characteristics for each device, a forensic framework that can combine various devices is needed.

In 2019, Jianwei Hou et al. confirmed the importance of forensics for IoT devices and investigated papers that conducted forensics for various IoT devices. Classifying the papers into forensic techniques, the study made it easier to refer to the necessary parts in future research [15].

In addition, other studies investigated various devices to which IoT technology can be applied and analyzed the problems facing IoT forensics. Through this, it was possible to identify devices to which IoT forensics can apply and to gauge the direction in which forensics technology should go [16,17].

In 2019, Arduino’s research was conducted to simulate attacks that may occur on IoT devices, and to detect and identify attacks. Since this study simulated attacks that could easily occur in a network environment, the results of the study could help in the event of a real problem [18].

In 2022, the environment of IoT devices was formed through Raspberry Pie and forensics was conducted. This study, conducted on IoT, attempted to acquire data stored and communicated through connection with the network [19]. As such, various forensic studies were conducted on IoT devices, and could be applied to various devices.

A file system refers to a method of storing, maintaining, and managing data on a device. There are various types of file systems, and the method of managing data and the structure of storing data are all different for each file system. It is difficult to confirm the existence of a file system as a general user who uses only IoT devices. However, the file system contains a lot of information. As an example, there is information on deleted data from the stored data, which cannot be generally confirmed. To confirm this, metadata can be obtained through file system analysis, and various data can be accessed through the obtained information [20,21,22].

Since file systems are mounted on a wide variety of devices, there are various types, from file systems installed on basic computers and smartphones to file systems installed on small IoT devices [23,24]. As new types of devices are developed, the number of file systems suitable for devices is expected to continue to increase.

Research on file systems is being conducted, and file system forensics research is also being actively conducted in various fields, such as computers, smartphones, and IoT.

In 2019, a study was conducted to extract the files of a Samsung smart TV [25]. This study obtained and analyzed the data and extracted files through the chip-off technologies used by Samsung smart TVs and flash memory. However, the study only analyzed the file extraction and artifacts, and no research was conducted on Samsung’s own file system.

In 2019, a forensic experiment was conducted on Amazon Echo [26]. The study applied a basic forensics model, and an analysis was conducted by dumping the firmware through UART communication. Based on a firmware analysis, various types of information, including the data type and MAC address stored in Amazon Echo, was obtained. However, this study only introduced an approach for a firmware analysis.

In 2019 and 2022, data analysis and extraction of data from various wearable devices were conducted [27,28]. This study considered the platforms of various wearable devices and organized the data stored on the platform, as well as the data acquisition. Although this study intensively analyzed the available evidence and file acquisition on various wearable device platforms, the file system layer was not considered.

In 2022, a study on smart home forensics using IoT was conducted [29], and the results indicated that data stored on a smart phone can be confirmed during communication with smart home IoT devices. However, only data stored on a smartphone, and not a smart-home IoT device, were analyzed.

In 2022, Android smartphones were analyzed in terms of the recovery and exportation of deleted data and a file recovery of the ext file systems [30]. In this study, forensics was conducted through metadata analysis of the file system used in Android smartphones.

In 2022, the application of IoT technology to vehicles, prompted forensic research on Android auto and apple CarPlay [31]. This study focused on the connection between devices and clouds, IVI devices and mobile devices, that is, network communication. However, it is significant in that it attempted to analyze new devices because analysis of IVI devices and mobile devices is necessary to obtain communication data stored in the device. In addition, research on data acquisition was conducted on Xiaomi Mi Smart Sensor, but not much on the file system stage [32]. It was a study on data recovery through the analysis of Google home and the analysis of SquashFS, a file system, and had a similar purpose to this paper. With the existence of forensic papers targeting various devices, it is possible to confirm the necessity of analysis at the file system stage of the IoT platform [33].

In addition to research on devices and platforms, framework research for forensic techniques has also been continuously studied [34,35,36]. However, since IoT devices are equipped with various platforms, further research on unresearched platforms is needed.

As such, research on IoT platforms is steadily progressing, but it is still insufficient. Some platforms have been analyzed at the file system stage, but there are still many platforms that require further research. Related studies have focused on acquiring data from peripheral devices or analyzing files extracted from the device itself. However, it may be difficult to check deleted files by this method, and information on the acquired file may be limited.

To solve this problem, there is a need for a file system-based forensics technique that can obtain various data including deleted data. Although some file system forensics techniques have been studied, continuous research is required, because the characteristics of each platform or file system are different [37]. Therefore, in this study, a file system analysis was conducted to overcome these shortcomings.

3. IoT Platforms

In this section, we describe the characteristics of the platforms and file systems used by IoT devices. Various types of M2M equipment are currently being used, and so various platforms are also applied. In addition, the operating and file systems may differ, even for the same platform. Platforms applied to such devices include Fuchsia, Contiki, Tizen, and Linux.

Fuchsia is a platform developed by Google [38]. Fuchsia OS is currently experimentally installed in Google Nest Hub (1st Gen) and uses BlobFS and MinFS as the file systems. MinFS is a file system built for the Zircon kernel applied by Fuchsia. Fuchsia is expected to replace Android in the future.

Platforms are also used for low-power and low-capacity IoT devices. The Contiki platform is applied in low-power devices and uses Contiki OS and the coffee file system [39]. Contiki is run in memory, and because, it is mainly applied to sensors, lighting, and monitoring devices in smart cities, it is likely to be used in the future.

With the application of various platforms, to achieve improvements in forensic analysis, the necessity of conducting a platform analysis has been confirmed. Therefore, in this study, we conducted an experimental forensic analysis on two types of platforms: Tizen and Linux. The basic structures of the file systems used in Tizen and Linux was verified for this experiment.

3.1. Tizen (VDFS)

Tizen is a Linux-based platform developed by Linux, Samsung Electronics, and Intel, in 2012. Devices using the Tizen platform are primarily equipped with Tizen OS. Although various file systems can be used for Tizen OS, Samsung’s own file system, VDFS, was applied during the experiment. VDFS is a Linux file system optimized for usage on eMMC flash devices. VDFS is a file system produced by Samsung that provides code as an open source by Samsung, but not much information is known about the file system. Through the analysis of the code provided by open source, it was found that VDFS used the btree structure when storing files, and deleted files were stored in the form of snapshots, rather than journal areas. Therefore, we could analyze the btree structure to extract stored files, and deleted files could also be extracted or recovered if snapshot data was not erased. Although VDFS is only used by Samsung, we conducted research on this file system owing to the high penetration rate of Samsung TVs. Figure 1 shows the system–layer structure of Tizen VDFS, which is configured in a manner similar to that of a basic Linux file system. VDFS operates on block devices, stores data in a block-based manner, and uses a btree structure for storage.

3.2. Linux (JFFS2 and UBIFS)

Linux is an open-source platform developed in 1991 and is mounted on various devices and PCs. Although the Linux OS used on the Linux platform can apply a variety of file systems, JFFS2 and UBIFS were used in the experiments. JFFS2 and UBIFS are Linux-based file systems used in flash memory devices. When storing files, JFFS2 can store files using three types of compression algorithms, zlib, rubin, and rtime, to manage data capacity more efficiently. Since JFFS2 is a journaling file system, files can be backed up and stored, and it is possible to recover the file even if the file is deleted later. UBIFS was developed based on improvements to JFFS2, and unlike JFFS2, it does not scan the entire media, and can, thus, be used for large capacity NAND flash memory. In addition, since JFFS2 stores file system indexes in memory, while UBIFS stores indexes in flash, there is a difference in performance and speed. When storing files, UBIFS encrypts file data through fcrypt, making it impossible to extract general files. When storing files, UBIFS encrypts file data through fscrypt, making it impossible to extract files in a conventional way. Therefore, with UBIFS using the journaling system, deleted files also have data, but it is difficult to recover deleted files due to fscrypt encryption. These file systems are mainly used in embedded systems, and although many years have passed since their initial development, they are still applied in certain models. Therefore, we conducted a metadata analysis and file extraction for the file system. Figure 2 shows the system–layer structures of JFFS2 and UBIFS. JFFS2 operates on memory technology device (MTD) devices, but UBIFS operates on UBI volumes and only on raw flash memory. For UBIFS, the UBI volume is used to access the MTD devices. In addition, UBIFS store data using a logical erasable block (LEB).

4. Experiments and Analysis

In this section, experiments conducted to acquire data from a device are described, along with an analysis on the platform and file system used.

4.1. Experiments on Tizen Using VDFS

For a VDFS analysis of the Tizen platform, a study was conducted on a smart TV (model KU43T5300AFXKR). An analysis of the PCB of the model, as shown in Figure 3, revealed that a THGBMNG5D1LBAIT NAND flash chip with 4 GB of memory and 153 BGA was used. The chip-off technique was applied to obtain data for the corresponding NAND flash. Raw data was obtained through a DS3000-USB3.0-emmc153 reader, a product of Allsocket in Dongguan, China. Based on an analysis of the raw data obtained through the FTKimager analysis tool (v4.3.0.18), 26 partitions were recognized, as shown in Figure 4. Among the 26 partitions, 5 were confirmed to be VDFS partitions with VDFS 2007 magic numbers. A file system analysis was conducted only on the VDFS partitions.

For the analysis of the VDFS file system, we analyzed the code of the VDFS released by Samsung and proceeded. VDFS, a file system manufactured by Samsung, has a magic number labeled VDFS2007 at the front address of the partition, indicating that the partition was a VDFS. The superblock could be checked at the 0x400 location of the VDFS partition. The structure of the superblock is shown in Figure 5, and basic information on the partition, such as the version, creation time, and volume name, could be confirmed. Behind the superblock was an extended superblock with additional information at the 0x600 location. The structure of the extended superblock is as shown in Figure 6, and information on the stored data, such as the number of files, folders, and meta tree offset in the volume, could be found.

An analysis of a superblock allowed us to obtain the offset of the meta tree, and when we moved to the acquired address, the xattr tree, catalog tree, inode bitmap, and fsm bitmap were located. The tree haf a magic number of 0x644E at the beginning of the block, and bitmap had magic numbers of ‘inob’ and ‘fsmb’. In addition, the xattr tree had ‘XAre’ as its magic number. The xattr tree stored records such as the extension properties and access control, rather than regular files, and the catalog tree stored records of the files and folders. We could check the file and folder names in the catalog tree. Figure 7 shows a record of the airplay-service.md file in the catalog tree.

The catalog tree contained all the information on the files and folders. Figure 8 shows the structure of a file in the catalog tree. The type of data could be checked through the variable value ‘type’. A value of ‘type’ 0x01 indicated a folder; 0x02 was a file; and 0x05 was a link record. Each dataset consisted of a key + record, which contained basic information, such as the name, type, and object ID. The record contained the size, creation/modification/access time, and offset address information of the file where the data were stored. However, if the type was a folder, the number of files present in the folder was written instead of the file size. If the type was a link record, only a key value was present.

VDFS used snapshots to store the file system formation. Snapshots store data in files and folder-like images. Figure 9 shows the ‘browser-data.db’ file, and we confirmed that the offset addresses of the stored data differed because the contents changed as the ‘browser-data.db’ file was modified, and the previous files were saved as snapshots. If we looked at the offset corresponding to each file, data in the ‘browser-data.db’ file were present at that time. In this manner, we could extract or recover files using the snapshot function. Therefore, experiments related to file extraction and recovery were conducted to analyze this possibility, and the effects were verified through a case study.

4.2. Experiments on Linux Using UBIFS/JFFS2

In this study, we investigated the data central units (DCUs) of LOENK, a power device product. As shown in Figure 10, 256 MB NAND flash with a K9F2G08UOC chip was used. To obtain data from NAND flash, serial communication was executed through the RS-232 port of the PCB. As a result of accessing and checking the root account through serial communication, three MTDs were identified. After creating an SSH server for the extraction of the MTD, we dumped the MTD using a scp command to transfer files through SSH on the device. As a result of analyzing the MTD, it was confirmed that a kernel, JFFS2, and UBIFS were installed. The file systems were also analyzed.

For the analysis of JFFS2 and UBIFS, an analysis of the code disclosed as an open source was conducted. JFFS2 had a magic number labeled 0x1985 at the front of the node, and the unused area was filled with 0xFF values. JFFS2 consisted of several node types. Among the nodes, Figure 11 shows the structure of the inode, which had a node type of 0xE002. In addition, the inode contained various information on the file, including file size, modification, access time, and data. JFFS2 compressed and stored data for efficient data management, and only zlib, rubin, rtime, and LZO were used for the compression algorithm.

In JFFS2, a dirent node indicated the inode. Figure 12 shows the structure of the dirent node, and the corresponding node showed the file name and modified time stored in the inode. Based on the inode number of the corresponding node, an inode had the same inode number value, and the location where data existed could, thus, be determined.

Next, UBIFS was analyzed. UBIFS operates through the UBI volume, sp the UBIFS region had to be extracted from this volume if data from the MTD were to be obtained. In the UBI, an EC header containing information on the volume for each block existed, and in the EC header, basic information, such as the number of errors and the start offset of the data, was stored. In addition, we could move to the vid header through the vid header offset of the EC header. The vid header stored information on volumes that did not exist in the EC header, such as the LEB size and number of LEBs used in the volume.

UBIFS image extraction was possible using Github ubi reader (https://github.com/jrspruitt/ubi_reader, accessed on 5 May 2022). In this study, UBIFS images were extracted using ubi reader v0.8.0 in a Linux environment. UBIFS was in the form of a node. Figure 13 shows the structure of a header, which is a common form of all nodes, and all nodes in UBIFS had 0x06101831 as their magic number placed in front.

The first node in UBIFS was a superblock. In a superblock node, basic information, such as the LEB size and LEB number of UBIFS, could be found; in addition, the LEB size became important when analyzing the metadata.

The second LEB had a master node. Figure 14 shows the structure of the master node, which was used in a similar manner as the superblock node. Information on the volume might also be stored, such as the size of the available area and the number of LEBs used. The master node also contained information regarding the location of the index node of the root and we could use this information to find the index node.

Index nodes had information on the LEB numbers and node offsets, and when moving along the offset pointed to by a node, nodes with various information regarding the files, including the inode, data nodes, and directory entry nodes, could be accessed. Directory nodes had inode numbers for the files and folders, and inode and data nodes had data on the files. The structure of a data node, which stored data on the file, is shown in Figure 15.

5. Case Studies

In this section, we analyze a file system based on a case study. The case study proceeded with the file extraction and recovery of deleted files using the file system. The file extraction proceeded with file carving by searching for file data through a metadata analysis. The recovery of deleted files proceeded by comparing such files with areas where data existed.

5.1. File Extraction

5.1.1. VDFS

To extract data from VDFS, a catalog tree had to be found. To access the catalog tree, we had to find the meta tree start offset in the extended superblock. The xattr tree, catalog tree, inode bitmap, and fsm bitmap were located in this offset. We could find a catalog tree to check the file record. Figure 16 shows the record for the 8669.png file, as well as information on the file name, file modification/generation time, and offset where the file data were stored. Information was also available on the total number of blocks where the data were stored, as well as the number of blocks stored in each offset.

Therefore, the offset in which the data were stored might be known by multiplying the value (0xB3DD) representing the data offset based on the block size. When moving to the offset, it could be confirmed that data on the 8669.png file existed, as shown in Figure 17. Thereafter, a file could be extracted by performing data carving on an area as large as the data size.

5.1.2. JFFS2

To extract a file from JFFS2, it was necessary to determine the inode of the file. However, because file name data did not exist in the inode, we needed to find the dirent node to check the file name. A file might be extracted by finding an inode with the same inode number as the rent node. However, because JFFS2 compressed files when they were stored, file extraction required decompression. Figure 18 shows the dirent node and inode of test3.txt. The file name was located in the dirent node, and data could be found in the inode.

Although data were present in the inode, they were compressed, and the compression type could be checked. The compression type was mainly 0x06, which indicated that the data had been compressed using zlib. In order to confirm the contents of the compressed data, decompression should be performed in the same manner as the compressed type. The data was compressed into zlib, and in the case of zlib, it could be decompressed through a simple python code. Figure 19 is a code for decompressing a file compressed with zlib. The data size of the compressed file could be found through the compressed size metadata, and the original data could be obtained through the code of Figure 19 after carving the data area. The size of the decompressed file could be compared with the decompressed size metadata to verify that the file had been decompressed properly.

5.1.3. UBIFS

A data node had to be accessed to extract the UBIFS files. To do this, we needed to move to the master node, which was placed in the second LEB. The indexing node offset was obtained and we moved through an analysis of the master node. We could then follow the branch of the indexing node to observe the directory entry and inode of the files and folders in that directory. Figure 20 shows the directory entry and inode, which can be distinguished by the node type value.

By searching for the inode number of the file, the file data node could be found. In this case, the last value of the inode number of the data node was changed to 0x20. Figure 21 shows the directory entry and data node of the k2logd.sh file. By comparing the inode number values, we could see that it was the same file.

However, unlike JFFS2, UBIFS applied compression and encryption in the data area, which made it difficult to extract the files. Figure 22 shows the data of the dcu.tar file and the data node of this file stored in the UBIFS. It can be seen that these data differed from existing data owing to the encryption and compression of the UBIFS. Thus, in the case of a UBIFS file, decoding was required for extraction.

5.2. File Recovery

5.2.1. VDFS

In the case of VDFS, data were stored in the form of snapshots, enabling the recovery of the deleted files. We could search for the deleted file name in the catalog tree or check the file size and records that did not have an offset address where the data were stored. Figure 23 shows the deleted 8669.png file’s record. We confirmed that the file size and data area offset address did not exist. This phenomenon occurs when a file is either modified or deleted. However, because VDFS used a snapshot feature, if a new snapshot was not overwritten after the file was deleted, information on the deleted file existed in the previously saved snapshot. Therefore, it was possible to recover deleted data using the previous snapshot information.

Using an editor such as HxD, we could obtain deleted file information from previous snapshots by searching for the file name, or for the file name that we wanted to recover. In the previous saved snapshots, an offset value containing the size and data of the 8669.png file existed, as shown in Figure 24. It was, therefore, possible to recover the deleted file by moving it to the corresponding offset address and copying and storing the data in the corresponding area.

5.2.2. JFFS2

JFFS2 is a journaling file system, so it was also possible to recover deleted files. After deleting the test2.txt file, a partition dump was applied in the present study. Figure 25 shows the inode and dirent node of the test2.txt file. The left side of Figure 25 shows that the version was 0x04 with data prior to the deletion of the file, and the right side shows that the version changed to 0x05 with data after the file was deleted. Therefore, when analyzing the JFFS2 file system, if a deleted file with only a dirent node was found, a search for the inode prior to the file deletion could be conducted, and the deleted file could be recovered.

5.2.3. UBIFS

UBIFS applied compression and encryption when files were stored. As shown in Figure 26, data of dcu.tar file had been encrypted and compressed. Due to this phenomenon, recovery of deleted files in UBIFS was limited.

Through this experiment, the possibility of extracting and recovering files of three types of file systems was studied. According to the results of the study, the possibility of checking the file name by file system, the possibility of file extraction, and the possibility of recovering deleted files were confirmed, which can be seen in Table 1.

6. Discussion

We conducted experiments on file system analysis, file extraction, and the possibility of recovery of deleted files on IoT devices. Since the experiment used a real device in the experiment, the applied analysis method could also be used in other models.

In this study, file system forensics was conducted for Samsung smart TV. As a result of analyzing Samsung smart TV, it was confirmed that Samsung’s own file system, called VDFS, was used. By analyzing metadata, we understood the structure in which the file was stored and the metadata information. Access to the file data area was required to verify file extraction and recoverability of the file system, which was accessible through the previously performed metadata analysis. Studies have shown that VDFS stores data in the form of snapshots, and past snapshots allowed extraction of files and recovery of deleted files.

In addition, file system forensics was conducted on dcu, a power device, as an additional device. As a result of analyzing dcu, it was confirmed that two file systems, JFFS2 and UBFIS, were used. The file systems were also analyzed to confirm metadata and file structures and research on the possibility of file extraction and file recovery. JFFS2 uses a journaling system to extract and recover deleted files. However, since the file is compressed and stored, extraction of the file requires decompression, and decompression is possible through a simple python code. UBIFS is also compressed, but since the file is encrypted, the contents of the file cannot be checked even if decompression is performed.

The results of this study can help in the extraction and recovery of files for IoT devices using the same platform. In addition, if only device data can be obtained, the technology used in this study has the advantage of being able to apply forensics quickly anywhere and does not require additional cost or technology. In particular, this paper’s research was conducted at the file system stage on VDFS, which was previously conducted only with file recovery research. In addition, we analyzed metadata of some file systems installed in IoTs, which have not been implemented much in the past, and this differentiated our study from studies that focused only on file recovery.

However, some limitations existed in this study. In the case of UBFIS, compression and encryption proceed when the file is saved, but the method for decryption could not be confirmed. Accordingly, there was a limitation in that original data stored in UBIFS could not be collected. It also required analysis of some metadata. Analysis did not proceed because it was difficult to confirm what information some metadata stored, which made it difficult to find the desired file in the directory. For example, additional analysis of metadata, such as the data table, required finding the desired file. Therefore, in a future study, additional metadata will be analyzed to enable faster file navigation. In addition, for the file extraction of UBIFS, research on the decryption of encrypted data areas is needed. In addition, further research will be conducted on platforms and file systems used in small IoT devices.

7. Conclusions

Various IoT platforms are currently in use, and analysis studies applying to IoT platforms are extremely important from a forensic or security maintenance perspective. As various platforms are used, various evidence acquisition approaches are needed in the event of a crime. In this study, we analyzed the file systems VDFS, JFFS2 and UBIFS which are used on the Tizen and Linux platforms. This study presented an approach for conducting a metadata analysis, as well as an approach for data acquisition and recovery when analyzing other file systems for reference. In this study, the file storage structure of a specific file system was analyzed through metadata analysis. It also showed the possibility of extracting stored files by suggesting methods, such as decompression and decryption, according to methods, such as encryption and compression, used when storing files. In addition, when the file was deleted, a method of recovering the deleted file was studied according to the method of storing the file in the file system, such as journaling and snapshots. Finally, the division into file name verification, file extraction, and file recovery stages facilitates checking the applicability of the file system step by step. Through this, more diverse data can be secured from IoT devices and used as evidence in the event of a crime. Moreover, based on the analysis results of this study, future IoT devices with greater security can be developed. Through the metadata analysis, it is expected that the results of this study will contribute to securing evidence in the event of a crime. In particular, since VDFS analysis has not been previously studied, it may be helpful to secure evidence from smart TVs through this study. In addition, it is expected to help secure evidence when investigating IoT devices using file systems with similar structures. Therefore, the metadata analysis on the file system conducted in this study is expected to help improve the overall security technology of the IoT platform, as well as the forensics aspect.

Author Contributions

Conceptualization, J.L. and T.S.; methodology, J.L. and T.S.; validation, J.L.; formal analysis, J.L.; investigation, J.L.; writing—original draft preparation J.L.; writing—review and editing, J.L. and T.S.; project administration, J.L.; All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by Korea Electric Power Corporation.(Grant number: R21XO01-45).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Cui, J.; Cui, L.; Huang, Z.; Li, X.; Han, F. IoT Wheelchair Control System Based on Multi-Mode Sensing and Human-Machine Interaction. Micromachines 2022, 13, 1108. [Google Scholar] [CrossRef] [PubMed]

	

Jo, W.; Kim, S.; Kim, H.; Shin, Y.; Shon, T. Automatic whitelist generation system for ethernet based in-vehicle network. Comput. Ind. 2022, 142, 103735. [Google Scholar] [CrossRef]

	

Kim, S.; Jo, W.; Shon, T. APAD: Autoencoder-based payload anomaly detection for industrial IoE. Appl. Soft Comput. 2020, 88, 106017. [Google Scholar] [CrossRef]

	

Zhou, H.; Deng, L.; Xu, W.; Yu, W.; Dehlinger, J.; Chakraborty, S. Towards Internet of Things (IoT) Forensics Analysis on Intelligent Robot Vacuum Systems. In Proceedings of the 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), Las Vegas, NV, USA, 25–27 May 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]

	

Hackers Gain Access to Home Security Camera Footages, Share Over 3TB Worth Videos. Available online: https://www.ibtimes.sg/hackers-gain-access-home-security-camera-footages-share-over-3tb-worth-videos-online-52439 (accessed on 21 July 2022).

	

Sungmoon, K.; Yoo, H.; Shon, T. IEEE 1815.1-based power system security with bidirectional RNN-based network anomalous attack detection for cyber-physical system. IEEE Access 2020, 8, 77572–77586. [Google Scholar]

	

Mehran, P.; Ekbatanifard, G. An efficient forensics architecture in software-defined networking-IoT using blockchain technology. IEEE Access 2019, 7, 99573–99588. [Google Scholar]

	

Dhelim, S.; Ning, H.; Farha, F.; Chen, L.; Atzori, L.; Daneshmand, M. IoT-enabled social relationships meet artificial social intelligence. IEEE Internet Things J. 2021, 8, 17817–17828. [Google Scholar] [CrossRef]

	

Kim, M.; Shin, Y.; Jo, W.; Shon, T. Digital forensic analysis of intelligent and smart IoT devices. J. Supercomput. 2022. [Google Scholar] [CrossRef]

	

Shin, Y.; Kim, H.; Kim, S.; Yoo, D.; Jo, W.; Shon, T. Certificate injection-based encrypted traffic forensics in AI speaker ecosystem. Forensic Sci. Int. Digit. Investig. 2020, 33, 301010. [Google Scholar] [CrossRef]

	

Jo, W.; Shin, Y.; Kim, H.; Yoo, D.; Kim, D.; Kang, C.; Jin, J.; Oh, J.; Na, B.; Shon, T. Digital forensic practices and methodologies for AI speaker ecosystems. Digit. Investig. 2019, 29, S80–S93. [Google Scholar] [CrossRef]

	

Vilches, V.M.; Kirschgens, L.A.; Gil-Uriarte, E.; Hernández, A.; Dieber, B. Volatile memory forensics for the robot operating system. arXiv 2018, arXiv:1812.09492. [Google Scholar]

	

Jonas, P.; Dewald, A. Forensic apfs file recovery. In Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018. [Google Scholar]

	

Bharadwaj, N.K.; Singh, U. Acquisition and analysis of forensic artifacts from raspberry pi an internet of things prototype platform. In Recent Findings in Intelligent Computing Techniques; Springer: Singapore, 2019; pp. 311–322. [Google Scholar]

	

Hou, J.; Li, Y.; Yu, J.; Shi, W. A survey on digital forensics in Internet of Things. IEEE Internet Things J. 2019, 7, 1–15. [Google Scholar] [CrossRef]

	

Alex, A.-B.; John, A.; Mukherjee, T. Iot Software & Hardware Architecture and Their Impacts On Forensic Investigations: Current Approaches And Challenges. J. Digit. Forensics Secur. Law JDFSL 2021, 16, 1–19. [Google Scholar]

	

Hyunji, C.; Choo, K.-K.R. The need for Internet of Things digital forensic black-boxes. Wiley Interdiscip. Rev. Forensic Sci. 2020, 2, e1385. [Google Scholar]

	

Randi, R.; Hikmatyar, M. Investigation Internet of Things (IoT) Device using Integrated Digital Forensics Investigation Framework (IDFIF). J. Phys. Conf. Ser. 2019, 1179, 012140. [Google Scholar]

	

Mazhar, M.S.; Saleem, Y.; Almogren, A.; Arshad, J.; Jaffery, M.H.; Rehman, A.U.; Shafiq, M.; Hamam, H. Forensic Analysis on Internet of Things (IoT) Device Using Machine-to-Machine (M2M) Framework. Electronics 2022, 11, 1126. [Google Scholar] [CrossRef]

	

Seokjun, L.; Shon, T. Improved deleted file recovery technique for Ext2/3 filesystem. J. Supercomput. 2014, 70, 20–30. [Google Scholar]

	

Kim, H.; Kim, S.; Shin, Y.; Jo, W.; Lee, S.; Shon, T. Ext4 and XFS File System Forensic Framework Based on TSK. Electronics 2021, 10, 2310. [Google Scholar] [CrossRef]

	

Lee, H.; Chung, T. A Virtual File System for IoT Service Platform Based on Linux FUSE. IEMEK J. Embed. Syst. Appl. 2015, 10, 139–150. [Google Scholar] [CrossRef]

	

Zhang, K.; En, C.; Qinquan, G. Analysis and implementation of NTFS file system based on computer forensics. In Proceedings of the 2010 Second International Workshop on Education Technology and Computer Science, Wuhan, China, 6–7 March 2010; IEEE: New York, NY, USA, 2010. [Google Scholar]

	

Ohad, R.; Bacik, J.; Mason, C. BTRFS: The Linux B-tree filesystem. ACM Trans. Storage (TOS) 2013, 9, 1–32. [Google Scholar]

	

Nemayire, T.; Ogbole, A.; Park, S.; Kim, K.; Jeong, Y.; Jang, Y. A 2018 Samsung Smart TV Data Acquisition Method Analysis. J. Digit. Forensics 2019, 13, 205–218. [Google Scholar]

	

Li, S.; Choo, K.K.R.; Sun, Q.; Buchanan, W.J.; Cao, J. IoT forensics: Amazon echo as a use case. IEEE Internet Things J. 2019, 6, 6487–6497. [Google Scholar] [CrossRef]

	

Kim, S.; Jo, W.; Lee, J.; Shon, T. AI-enabled device digital forensics for smart cities. J. Supercomput. 2022, 78, 3029–3044. [Google Scholar] [CrossRef]

	

MacDermott, Á.; Lea, S.; Iqbal, F.; Idowu, I.; Shah, B. Forensic analysis of wearable devices: Fitbit, Garmin and HETP Watches. In Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary Island, Spain, 24–26 June 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]

	

Shinelle, H.; Karabiyik, U. Forensic Analysis of the August Smart Device Ecosystem. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 16–18 June 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]

	

Kim, H.; Shin, Y.; Kim, S.; Jo, W.; Kim, M.; Shon, T. Digital Forensic Analysis to Improve User Privacy on Android. Sensors 2022, 22, 3971. [Google Scholar] [CrossRef]

	

Shin, Y.; Kim, S.; Jo, W.; Shon, T. Digital Forensic Case Studies for In-Vehicle Infotainment Systems Using Android Auto and Apple CarPlay. Sensors 2022, 22, 7196. [Google Scholar] [CrossRef]

	

Gómez, J.M.C.; Carrillo-Mondéjar, J.; Martínez, J.L.M.; García, J.N. Forensic analysis of the Xiaomi Mi Smart Sensor Set. Forensic Sci. Int. Digit. Investig. 2022, 42, 301451. [Google Scholar] [CrossRef]

	

Barral, H.; Jaloyan, G.A.; Thomas-Brans, F.; Regnery, M.; Géraud-Stewart, R.; Heckmann, T.; Souvignet, T.; Naccache, D. A forensic analysis of the Google Home: Repairing compressed data without error correction. Forensic Sci. Int. Digit. Investig. 2022, 42, 301437. [Google Scholar] [CrossRef]

	

Sundresan, P.; Norita, N.; Valliappan, R. Internet of Things (IoT) digital forensic investigation model: Top-down forensic approach methodology. In Proceedings of the 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC), Sierre, Switzerland, 7–9 October 2015; IEEE: New York, NY, USA, 2015; pp. 19–23. [Google Scholar]

	

Zia, T.; Liu, P.; Han, W. Application-specific digital forensics investigative model in internet of things (iot). In Proceedings of the 12th International Conference on Availability, Reliability and Security, Calabria, Italy, 29 August–1 September 2017; pp. 1–7. [Google Scholar]

	

Zulkipli, N.H.N.; Alenezi, A.; Wills, G.B. IoT forensic: Bridging the challenges in digital forensic and the internet of things. In Proceedings of the International Conference on Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017; SCITEPRESS: Setúbal, Portugal, 2017; pp. 315–324. [Google Scholar]

	

Engelhardt, F.; Güneş, M. A/sys Filesystem for the Internet of Things. In Proceedings of the NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]

	

Matt, J.; Morris, S. Purple dawn: Dead disk forensics on Google’s Fuchsia operating system. Forensic Sci. Int. Digit. Investig. 2021, 39, 301269. [Google Scholar]

	

Sandvik, J.P.; Franke, K.; Abie, H.; Arnes, A. Coffee forensics—Reconstructing data in IoT devices running Contiki OS. Forensic Sci. Int. Digit. Investig. 2021, 37, 301188. [Google Scholar] [CrossRef]

[image: Electronics 11 03219 g001 550]

Figure 1. VDFS architecture on Tizen.

Figure 1. VDFS architecture on Tizen.

[image: Electronics 11 03219 g001]

[image: Electronics 11 03219 g002 550]

Figure 2. JFFS2 and UBIFS architecture on Linux.

Figure 2. JFFS2 and UBIFS architecture on Linux.

[image: Electronics 11 03219 g002]

[image: Electronics 11 03219 g003 550]

Figure 3. Nand flash chip (KU43T5300AFXKR) present on pcb of smart TV.

Figure 3. Nand flash chip (KU43T5300AFXKR) present on pcb of smart TV.

[image: Electronics 11 03219 g003]

[image: Electronics 11 03219 g004 550]

Figure 4. Smart TV partition.

Figure 4. Smart TV partition.

[image: Electronics 11 03219 g004]

[image: Electronics 11 03219 g005 550]

Figure 5. VDFS superblock structure in form of hex value.

Figure 5. VDFS superblock structure in form of hex value.

[image: Electronics 11 03219 g005]

[image: Electronics 11 03219 g006 550]

Figure 6. VDFS extended superblock structure in form of hex value.

Figure 6. VDFS extended superblock structure in form of hex value.

[image: Electronics 11 03219 g006]

[image: Electronics 11 03219 g007 550]

Figure 7. The airplay-service.md file records in a catalog tree with magic number 0x644E.

Figure 7. The airplay-service.md file records in a catalog tree with magic number 0x644E.

[image: Electronics 11 03219 g007]

[image: Electronics 11 03219 g008 550]

Figure 8. Catalog tree data structure in form of hex value.

Figure 8. Catalog tree data structure in form of hex value.

[image: Electronics 11 03219 g008]

[image: Electronics 11 03219 g009 550]

Figure 9. Two different offsets (blue) of ‘browser-data.db’ file (red).

Figure 9. Two different offsets (blue) of ‘browser-data.db’ file (red).

[image: Electronics 11 03219 g009]

[image: Electronics 11 03219 g010 550]

Figure 10. PCB of DCU.

Figure 10. PCB of DCU.

[image: Electronics 11 03219 g010]

[image: Electronics 11 03219 g011 550]

Figure 11. JFFS2 inode structure in form of hex value.

Figure 11. JFFS2 inode structure in form of hex value.

[image: Electronics 11 03219 g011]

[image: Electronics 11 03219 g012 550]

Figure 12. JFFS2 dirent node in form of hex value.

Figure 12. JFFS2 dirent node in form of hex value.

[image: Electronics 11 03219 g012]

[image: Electronics 11 03219 g013 550]

Figure 13. UBI common header in form of hex value.

Figure 13. UBI common header in form of hex value.

[image: Electronics 11 03219 g013]

[image: Electronics 11 03219 g014 550]

Figure 14. UBIFS master node in form of hex value.

Figure 14. UBIFS master node in form of hex value.

[image: Electronics 11 03219 g014]

[image: Electronics 11 03219 g015 550]

Figure 15. UBIFS data node in form of hex value.

Figure 15. UBIFS data node in form of hex value.

[image: Electronics 11 03219 g015]

[image: Electronics 11 03219 g016 550]

Figure 16. File record representing metadata where the 8669.png file is stored.

Figure 16. File record representing metadata where the 8669.png file is stored.

[image: Electronics 11 03219 g016]

[image: Electronics 11 03219 g017 550]

Figure 17. 8669.png file data.

Figure 17. 8669.png file data.

[image: Electronics 11 03219 g017]

[image: Electronics 11 03219 g018 550]

Figure 18. Dirent node (top) and inode (bottom) of ‘test3.txt’ file.

Figure 18. Dirent node (top) and inode (bottom) of ‘test3.txt’ file.

[image: Electronics 11 03219 g018]

[image: Electronics 11 03219 g019 550]

Figure 19. Zlib Python code to decompress files and the result of decompression.

Figure 19. Zlib Python code to decompress files and the result of decompression.

[image: Electronics 11 03219 g019]

[image: Electronics 11 03219 g020 550]

Figure 20. UBIFS directory of entry (top)/inode (bottom).

Figure 20. UBIFS directory of entry (top)/inode (bottom).

[image: Electronics 11 03219 g020]

[image: Electronics 11 03219 g021 550]

Figure 21. UBIFS directory of entry (top)/data node (bottom).

Figure 21. UBIFS directory of entry (top)/data node (bottom).

[image: Electronics 11 03219 g021]

[image: Electronics 11 03219 g022 550]

Figure 22. Actual file data in dcu.tar file(top)/data node which is dcu.tar file is stored (bottom).

Figure 22. Actual file data in dcu.tar file(top)/data node which is dcu.tar file is stored (bottom).

[image: Electronics 11 03219 g022]

[image: Electronics 11 03219 g023 550]

Figure 23. Record of deleted 8669.png file without file size and offset.

Figure 23. Record of deleted 8669.png file without file size and offset.

[image: Electronics 11 03219 g023]

[image: Electronics 11 03219 g024 550]

Figure 24. Records of the 8669.png file stored in snapshot format.

Figure 24. Records of the 8669.png file stored in snapshot format.

[image: Electronics 11 03219 g024]

[image: Electronics 11 03219 g025 550]

Figure 25. Recovery of deleted files in JFFS2 by verifying file versions.

Figure 25. Recovery of deleted files in JFFS2 by verifying file versions.

[image: Electronics 11 03219 g025]

[image: Electronics 11 03219 g026 550]

Figure 26. Encrypted data area in dcu.tar file.

Figure 26. Encrypted data area in dcu.tar file.

[image: Electronics 11 03219 g026]

[image: Table]

Table 1. The possibility of information available for each file system.

Table 1. The possibility of information available for each file system.

	File System
	File Name Check
	File Extract
	File Recovery

	VDFS
	Able
	Able
	Able

	JFFS2
	Able
	Able
	Able

	UBIFS
	Able
	Disable
	Disable

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
1CE3R000
1CE3R010
1CE3R020
1CE3R030
1CE3R040
1CE3R0S0
1CE3R060
1CE3R070
1CE3R080
1CE3R080

02 00
00
72 70

£ 00 00

00
SF 4D
04 00
00 00
€9 00

&
00
00
&
00
00
s
00
00
00

SIIIIIA. £

media/file4.png
User . .
Space Application
\ J ¢
s ~
Virtual Filesystem
m\
CEB 1D 4
UBIFS
(LEB 2]
/
Kernel ¢ JFES?
Space ~
UBI
3
MTD
¥
SR
Hardware NAND flash

media/file52.png
04CDEF60
04CDEF70
04CDEF80
04CDEF90
04CDEFAOQ
04CDEFBO
04CDEFCO
04CDEFDO
04CDEFEO
04CDEFFO
04CDFO000
04CDF010
04CDF020

31
92
00

18
OB
00

10
00
00

06
00
00

2B
0l
00

2C
00
00

SE
00
00

20
00
00

CF
6B
00

5C
14
10

37
01
00

00
00
00

00
18
0l

00
00
00

00
00
00

00
20
00

9F
A0
8D
57
gD
FF
o8
ES
02

4F
ES
El
E2
El
E2
EB
92
78

03

C4
04
0S5
00
79
04
4C
27
20
30

18
10
00
60
0l
00
CD
4D
82
AO

SF
AQ
AQ
AO
00
RO
OA
01l
E2
E3

ES
El
El
El

El
1B
23
7D
CD

TA
30
0l
SO
16
74
31

SE
6D

20
E?
30
08
4B
18
4D
OA
14
OA

82
FF
AQ
SE
gD
SF
0l
48

3A

E2
EB
E3
ES
E2
ES
E2
29
07
AF

A7
00
F7
oC
4C
79
6D
4C
BD
OA

10
AF
40
40
20
OA
01l
14
48

Fr
AQ
00
40
84
82
2h
06
06
08

EB
El
EB
E2
E2
E2
AF
24
2D
93

AQ
06
0S5
04
16
92
0A
18
4C
27

08
20

00
2B

4C
OF
0l

4D)

OA.Yaz ,as«ve .
¥a.. aocye.. a.
&.. 4.0 a= .&.8
.4." aP.za.@ea..
Way....K.8L@,&.+
B.. e TRy A&
yeLi..1M.&m.*" .L
M. $1.H)L..S.¥
ax ,a)".e.%..-L.
oot BBmus LM

media/file39.jpg
0 crestesanum () Mogic Number
) totevpe £ tnodetumber

GaFTERDG 00 28 CF
04F7FFE0 94 76 37 00 00 A0 00 00 00[00)02
04F7EFFO 01 00 00 00 00 90 00 09 00 00 00 00 00 00
04Fz0000 E0 04 00 00 00
0sFso010 28 50 CB T3 F3 A0 SE €2 00
0sFs0020 F3 A0 SE 00 00 00 00 00 00 00
osFs0030 00 90 99 00 00 00 00 00
osFz0040 ED 00 99 00 00 00 00 00
0sFs00s0 00 00 00 00 00 00 00 01
osFs0060 00 00 00 00 00 00 00 00

15 10 oeJss 53 G F2 . (E.451¢1.. .58

00

(6456250 G0 60 00 65 00 36 00 G031 1L 10 o Fa 78

0ars0260 52 76 37 90 00 00 00 00 3D 06 00 G0[02)or

0460270 01 00 00 00 cs oD c4 41 00 00 00 00T 00

osrs02s0 90 02 04 00 00

pirsezse TR T e
o

0srs0280 7E sC 37 00 00 00 00 00 40 00 00 oo[02)or
04750280 SE 02 00 00 SF 39 25 55 00 99 00 00 6 00
osrsoaco (8 13 o1 oo 00 00 00 59 00 99 07 00 00
[oseso200 GTETTETE T eI 7200 31 26 20 06 71 5D

media/file18.png
1D30A450 00 OO0 OO0 OO 30 00 €8 01 03 33 00 00O 00 00 00 0D +4e.0.h..3......
1D30A460 04 33 00 00 00 OO0 00 OO0 02 10 2E 62 72 6F 77 73 [.3..ccusss..brows
1D30A470 €5 72 2D 64 61 74 61 2E 64 €2 00 00 00 00 00 OO Jer-data.db......
1D30A480 00 OO0 00 OO O4 OO0 OO0 OO 00 70 01 00 00 00 00 DO .casasssss |+ [Ty
1D30A490 01 00 00 OO0 00 OO0 00 OO FF FF FF FF FF FF FF FF ..cccsss A atatatatatataY
1D30A4A0 A4 21 02 00 C9 00 00 00 00 OO0 00 00 68 C2 6F 60 H...E....... hio"
1D30A4B0 00 00 00 00 AD 73 2C 16 57 C2 6F €0 00 00 00 00 s, .Who“....
1D30A4C0 Bl 06 B9 05 CD 1F 79 €0 00 00 00 00 34 D3 F2 01 #.*.I.y"....400.
1D30A4D0O » Qi ! Q0 17 00 00 00 00 00 00 00 .Pececcccscncnnsns
1D30A4EQ |7F 08 00 00 00 00 00 00j16 00 00 00 00 00 00 00 .ceeccscssnncssnse
1D9%%640 00 00 Q00 OO 30 00 €8 01 1A 1F 00 OO 00 OO 00 0O R | I .
1DS99650 1B 1F 00 OO0 00 OO0 00 00 02 10 2E 62 72 6F 77 73 [eeeessssnas brows
1DS99%660 &5 72 2D €4 61 74 61 2E 64 62 00 00 00 00 00 0O [ér-data.db......
1DS9S670 00 OO0 QOO0 OO0 05 00 00 OO0 00 70 01 OO0 00 00 00 DD e eeessssPoecssese
1DS99%680 01 OO0 OO0 OO0 00 OO0 OO0 OO0 FF FF FF FF FF FF FF FF . ccceesss Tvvvvvy
1DSS%690 A4 81 00 00 89 13 00 00 1B 04 00 00O CD 1F 79 60 H,...%..ceeses i.v*
1DS9%6A0 00 00 00 00 34 27 DD 2C CD 1F 79 €0 00 00 00 004'¥,I.v
1D9996B0O 34 27 DD 2C CD 1F 79 60 00 00 00 00 34 30 1A 2D 4'Y,I.y"....40.-
1DSSSeCO 00 70 01 00 00 OO0 00 OO 17 00 00 OO0 00 00 00 D0 . Pecessssssssnnse
1D9%%¢D0 [&A B4 00 00 00 0O 00 0&]1? 00 00 00 00 00 00 00 8 iecececscsssns

media/file21.jpg
00 | o1 | o2 | o3 |oa|os|os| o7 o [o0s|oaos o | o | o
00 | 0x1985 | node type node len header ctc inode number
10 version e mode ui gid isze
atime. miime ctime Offset
compressed size decompressed size [camo | 5%, | flogs data_crc
node_crc data

media/file44.png
D Magic Number D Node type [[__) Data
00000000 64 €3 75 2F 00 00 00 00 00 00 00 00 00 0O 00 dCU/eevennnnnnans
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 un 00 weveeecsnnnnnnsns
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .seeessesnccsnnanns
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +seeessessccnnnns
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 wuesessesseannnns
Q0000050 00 00 00 00 00 OO0 00 OO0 00 OO0 00 00 00 00 00 VO .seeesessssssssss
00000060 00 00 00 00 30 30 30 30 37 35 35 00 30 30 30 300000755.0000
00000070 30 30 30 00 30 30 30 30 30 30 30 00 30 30 30 30 000.0000000.0000
00000080 30 30 30 30 30 30 30 00 31 34 32 34 37 35 30 33 0000000.14247503
00000090 33 36 36 00 30 31 30 33 34 31 00 20 35 00 00 00 366.010341. 5...
O29FEC80 00 18 10 06 4C %0 92 €p[31 12 10 0el41 B3 D5 1CL.'ml...A%*0.
029FECS0 86 5C 37 00 00 00 00 :staxm 00 00 t\7..... Bevennns
O29FECAO0 6B 14 01 00 00 00 00 20 00 00 00 00 00 00 00 00 Kuveees soasessss
029FECBO 00 10 00 00 01 00 00 00J02 €4 63 75 2F 00 20 3E] dcu/. >
029FECCO 00 | 37 35 35 00 7C 00 4C 00 2E|] ...0000755.].L..
029FECDO 00 31 34 32 34 37 35 30 33] ..H...0.14247503
029FECEO 33 34 31 00 20 35 20 3E 5C| 366.010341. 5 >\
029FECFO0 €1 72 20 20 00 72 6F 6F 74] .~..ustar .root
029FED0O 00 35 D8 00 20 7F 58 00 04] €.5..>|.5@8. .X..
029FED10 20 3C 98 02 60 3C 36 FC 07] dcu/dcu <™. <6i.

media/file26.png
00

01 02

03

04

05

06 07

08

09

0A

0B

0oC

oD

OE

OF

00

magic number

crc

sghum

10

len

node

type

group
type

padding

media/file7.jpg
(5@ tvimg

(- ddrinit (1) (OMB)

il ddr.init (2) [OMB]

- seret,bin (3) [3MB]

-l seret.bin (4) (3MB]

f&-m ulmage (5) [15MB]

(&-m ulmage (6) [15MB]

- dtb,bin (7) [IMB]

- dtb,bin (8) (IMB]

- sign,bin (9) [OMB]

- sign.bin (10) [OMB]

- VD-HEADER (11) [OMB]
(&-% secos, bin (12) [4MB]

- secos,bin (13) [4MB]

(&-s secos_drv.bin (14) [IMB]

- secos.drv,bin (15) [IMB]
NONE (16) [2vB]

s NONE (17) [12MB]

s platform,img (18) (834MB]
- platform,img (19) [634MB]
4 systemrw.img (20) [20MB]
@-wu data_peakSeason.img (21) [1319MB]
&) factory_peq.img (22) [18MB]
- factory_peq.img (23) [1BMB]
s common,img (24) [558MB]
sub.img (25) [55MB]
reserved (26) [4MB]

media/file28.png
00 01 02 03 04 05 06 07 08 09 0A 0B 0C oD OE OF
00 - highest_inum
10 cmt_no flags log_Inum
20 root_lnum root_offs root_len gc_lnum
30 ihead_|Inum ihead_offs Index_size
40 total _free total_dirty
50 total_used total_dead
60 total_dark Ipt_Inum Ipt_offs
70 nhead_Inum nhead_offs ltab_Inum ltab_offs
80 Isave_Inum Isave_offs Iscan_Inum empty_lebs
20 ldx_lebs leb_cnt padding

media/file10.png
00 01 02 03 04 05 06 07 08

09

0A 0B 0C oD OE

OF

00 signature version maximum block count
10 creation timestamp
20 creation timestamp volume uuid
30 volume uuid volume name
40 volume name mkfs version
50 mkfs version

log
A0 blk

size

media/file49.jpg
[L e = L)

o

55338
e
52222

media/file11.jpg
0 | o1 | o2 [03| os|os|o0s|or|o0s oa | o8 | oc oo | oe
o fle count folder count
0 volume start volume end
generaton inode
20 | mount counter sync counter umount counter e e
B debug area
biree extents total
“ Re st padding tables
50 tables meta biree start offset
& meta buree length

media/file6.png
-
e
'3

. .g N‘:

» ERaan
LA T
»
a0 DL AL
s

(3}

N\

=
-

media/file36.png
. Compressed size

D Node type

D File name

D Decompressed size D Compression type : data

OlASSOEO /S LS JFF FF

01A95040 6A 4D 6A DC 85 19 0L EOJ 31 00 00 00 1D D9 82 42 JMjU....al....U,B
01A95050 O1 00 00 00 07 00 00 OO0 06 00 00 00 63 16 C2 62 .ceeescsssses c.Ab
01A95060 09 02 00 00 DF ED 00 E1 6B 25 6D 3D[74 65 73 74Bi.akSm=test
| 01295070 [33°2E 74 76 74)FF FF FF 85 19 02 EO 6A 00 00 00 3.tXTyy¥....aj...
01A95070 33 2E 74 78 74 FF FF FF 85 1% @2 EQJ 6A 00 00 00 3.txty¥¥...aj...
01A95080 10 23 1A DS 06 00 00 00 02 00 00 00 A4 81 00 00 .#.0.ceecen. X, .

0lA95090 00 00 00 00 57 01 00 00 63 16 C2 62 63 16 C2 62W...c.Abc.ib
0lA950A0 63 00 00 00 0026 00 00 OC 0] sollasia
01A950B0 r: g ce..2Q'ZJ0 WX *E
01A950C0 E,V.¢’0d.c%'5.®
01A950D0 Q.6B. €.tqg....I3

-
S~

v.¥V.... .aD....0=

media/file15.jpg
oo [or [0z [oa [os [os [os [[on [onon]om[oc oo[o[or
IR e E
20 B il size (byte) -

B -

B e

| oo p——

60 access time file size (byte)

w| o P

0| om otk otk

0| oo o et
5o | o etiode 2 o

nav.xhtml

 electronics-11-03219

 		
 electronics-11-03219

media/file2.png
User

Application
Space
J
— v
Virtual Filesystem
Kernel
Space ¢
VDFS
¢
Hardware NAND flash

S

media/file23.jpg
0 | o1 [o2 03| os|os| 06| or | o8| 0o onlom|ocon|oe]or

00 | 0985 | node type nodelen header crc parent inode.

10 version inode number metime oo | unused

B node_crc name_crc name

media/file24.png
00 | 01 02 03 | 04 | 05 06 | 07 | 08 | 09 | OA | OB | OC | OD | OE OF
00 0x1985 node type node_len header_crc parent inode
10 version inode number mctime “;;‘; type unused
20 node_crc name_crc name

media/file29.jpg
ompr | compr_

i type sze

data

media/file1.jpg
User

-

ol Application
Virtual Filesystem

Kernel

Space. 6

VDFS

]

Hardware|

NAND flash

media/file12.png
00 01 02 03 04 05 06 07

08

09

0A

0B 0C oD OE OF

00 file count folder count
10 volume start volume end
20 mount counter sync counter umount counter generation moc_le
number generation
30 debug area
btree extents total :
40 block count padding tables
50 tables meta btree start offset
60 meta btree length

oE A5

media/file9.jpg
o1 [o2 [03 [o4 [05| o6 or[os oo onfos]ocoo|oe]or
o sgnature verson masimum block count
0 creation timestamp
2 ceaton timestamp, volume wid
0 olume uid volume name
w© volume name. mkfs vrsion
5 ki version
o
0 e

media/file42.png
D Data

D Magic Number

D Node type D Inode Number
O04FBE90 |31 18 10 0€6]|7A F1 8E 48 87 OF 00 00 00 00 00 00 1...zfAZH%.......
OO4FBEAO 42 00 00 00OJ0O2)00 00 00 EA 02 00 00 AC SF OB 4F B..::c.. &...nY.0
OO4FBEBO 00 00 00 00 00 00 00 OOJF4 02 00 00 00 00 00 00 ecccecces Oiiasnae
OO4FBECO 0O 00 09 00 00 00 00 00 ©B 32 ©oC ©6F ©7 69 2E 73 .ccecsscoe k2logd.s
OO4FBEDO 68 00 FF FF FF FF FF FF 31 18 10 06 95 E2 15 69 h.Vyyyyvl...-eé.i
O04FBD80 |31 18 10 OGJEB 42 7E 72 85 OF 00 00 00 00 00 00 1...8B~r....ec:ss.
004FBD90 70 00 00 00]01)00 00 00 [F4 02 00 0O 00 0O 00 20) Pevece-. T
O04FBDAO 00 00 00 00 00 00 00 00 40 00 00 OO0 OO0 OO0 00 OO0 ..ceecee Bosnnuwns
004FBDBO [23 21 2F 62 69 6E 2F 73 €8 20 OA 77 €68 €9 6C €5) #!/bin/sh .while
O04FBDCO 20 74 72 75 €5 20 OA €4 6F OA 09 2F €61 70 70 2F true .do../app/
O04FBDDO | 4B 32 45 4D 53 2F 62 69 6E 2F 4B 32 4C 4F 47 64| K2EMS/bin/K2LOGd
Q0O4FBDEO |OA 09 73 €C €5 €5 70 20 31 20 OA ©4 6F ©E 65 0OA) ..sleep 1 .done.

media/file47.jpg
File size () Data offset

[fE7RESRD
1E7AEsB0
1E78Esc0
l1e7azs00
1E7AzsE0
1E7REsED
1E7Az600
1E7RE€10
1E7AE620
1E7Aze30
iE7Azes0

e B :

P - S—
as -s66s.p|
G e

media/file38.png
import z11ib
file = open(
data
file.close()
d_data = z11ib
print(d_data)

file.read()

.decompress(data)

media/file17.jpg
1D30R450

G0 00 00 60 30 00 68 01 03

1D30Rs60 04 35 00 00 00 00 00 00 02
10308570 €5 72 2D 64 61 74 61 2E 64

10308480 00 00 00 00 04 00 00 00 00

10308450 01 90 00 00 00 00 00 00 FF

1030AsA0 A4 o1 02 00 C3 00 00 00 00

1D30AsB0 00 00 00 00 AD 73 2C 16 57

1b30AsCo B1 06 B9 05 CD 1F 75 €0 00

1030400 0 17

1030R4E0 [7F 06 00 00 00 00 00 00)16 00 00 00 00 00 00 00 ..iiirrriissnns
15555630 00 00 00 00 30 00 €8 0L 1A 1F 00 00 00 00 00 00

10559650 18 1F 00 00 00 00 00 00 02 10 2E €2 72 6F 77 73

10555660 €5 72 2D 64 €1 74 61 2E 64 52 00 00 00 00 00 0O

10555670 00 00 00 00 05 00 00 00 00 70 01 99 00 00 00 00

10555680 01 00 00 00 00 00 00 00 FF FE FF FF FF FF FF FF

10955650 A4 51 00 00 88 13 00 00 1B 03 00 0O CD IF 79 &0

10555680 00 00 00 00 34 27 DD 2C CD 1F 75 €0 00 00 00 00

10959680 34 27 DD 2C CD 1F 79 60 00 00 00 00 34 30 1A 2D

1psss6co 90 70 01 O 2 00 99 17 00 00 00 00 00 00 00

1pssseno A+ 00 00 00 ﬂJﬁu 00 00)17 00 00 00 00 00 00 00 87....iiiiiiiiir

media/file30.png
00 01 02 03 04 05 06 07 08 09 0A 0B 0ocC oD OE OF
00 - key
: compr_ compr_
10 key size type cize
20 data

media/file51.jpg
[o4coEreo
loscoez7o
loscoerso
loscoeFso
loscoezao
loscoerzo
loscoerco
loscoerpo
loscoerzo
loscoerFo
loscorooo
loscorol0
loscoroz0

£
00
00

Bl
o0
o0

£
00
00

oF

o0

ES
14
o0

Ed
o
%

o
00
00

%
18
o1

5
o0
%0

LG
20
09

B3
E1
£
£
nm
£
1B
23
»
o

3
30
o1
s0
16
74
N

=
e

20
£
30
oz
Y
18
D
o
14

52
3

&
o
o1
s
£
n

2
=
3
Es
E2
Es
2
25
01
AF

a7
)

i
75
e
ac

oA

10
A
40
0
20
o
o
13
a8

00
0
4
82
22
o6
06
08

=
1
=
E2
£2
E2
aF
26
F)
o3

02
20

ool
28]

acl
o]
o
4n)

-Oh.¥iz ,dSepe .
.. docge.. &
4. 8.0 8.8
.60 P.24.004..
Wey. .. K.ALO. 4.4
... ety ,4'd
gLt M. am. 1)
U AL AL
ix 87
.0 &fm.

media/file35.jpg
() compressed size () Modetype [File name.
3 vecomprned e () compresion e € s

CIRSS0T0 ER
01AsS0S0 01
01As5060 05

G5 00 1D D5 82 32 3W30..a1....T 3|
00 00 63 16 C2 62 e

60 30 (4 es 73 74) .. 54, akwmeent
000000 3.ekcyie..a3.

TIR5070 75 3 Exegey. .83
01Rs5080 3 I P
01as5080 s701 <rc.hve.ip
01AS50A0 cudb....6... .
01As5080 it z3a Wa R
o1assoco £,V.er08. 003,
01R55000 Q.e8. €.cq.
01As50E0 ¥.99..3D. .

media/file48.png
1E7AESAO
1E7AESBO
1E7AESCO
1E7AESDO
1E7AESEO
1E7AESFO
1E7AE600
l1E7AE€10
1E7AE620
1E7AE630
1E7AE640

CE

00
EO
6E

\, C'
"

()
J

00
00
00

00
00
00

28
00
00

00
00

00

60
00
00

01 D2
00 02
00 00

WM
o

0l

00

00

00

00

oojo1

Fr
64
D9
00

FF
00
D2

00

FF
00

00

FF
00
60

- -
Uy
v

FF
DY
00
EC

| 3
D2
00
82

FrF
DA
00
70

FF A4
60 00
00 EC
02 6F

25
08
00
00
81
00

c
~

39

00
38
00
00
00
00
22

oL

Q0

00
00
00
00
18

00

00
36
oC
00
89
EC
D9
00

00
39
00
Q0
13

00
2E
00
00
00
22
DA
00

00
70
00
00
00
18
60
00

14
14

00
00

00
00

00
Q0

00
00

00
00

00
00

00 DD
00 00

B3
00

00
00

00
00

00
00

00
00

00
00

00

00

00

00

00

00

00

00 00

00

00

00

00

00

00

D File size D Data offset

WS Bt . —
& s seuewes 8669.p
B il i s R
09:ccosscsns PP

9??????yu...k...
dl.lﬁou‘i...iun.
0001ipu".000"

media/file27.jpg
o1 | o2 [03| o4 [os|os|or|os|os|onfos]oc|on]oe
0 - highest inum

10 emtno flags Tog loum
) oot lnum oot offs oot len gednum
0 ihead_Inum ihead_offs Index size

o tota free total_dity

50 total used total dead

) tota dark Iptinum Iptoffs
1 Phead Joum nhead_offs Htab Jnum tab_offs
0 Isave_Inum Isave_offs Iscan Inum empty lebs
%0 i lebs lebent padding

media/file3.jpg
User

— Application
Virtual Filesystem

Kerel JFFS2

Space

MTD

]

NAND flash

media/file22.png
00 | 01 | 02 | 03 | 04 | O5 | 06 | O7 | 08 | 09 | OA | OB [OC | OD | OE | OF
00 0x1985 node type node_len header crc inode number
10 version file mode uid gid Isize
20 atime mtime ctime Offset
30 compressed size decompressed size comp c;’::p flags data_crc
40 node crc data

media/file19.jpg

media/file40.png
D Create_sgnum D Magic Number
D Node type D Inode Number

04F7FFDO 00 28 C8 01 : 53 53 CE F2 .(E.4$]&l...5516
04F7FFE0 94 76 37 00 00 00 00 00 AO 00 00 0OJ00J02 00 00 “¥7...vr sseeces
04F7FFF0 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .+ueeesosccncnnss
04F80000 |01 00 00 00 00 00 00 OOJEO 04 00 00 00 00 00 00 Beeennnn
04F80010 O C8 53 00 00 00 00 F3 RO S9E 62 00 00 00 00 (°ES....06 2b....
04F80020 F3 R0 9E 62 00 00 00 00 00 00 00 00 00 00 00 00 O ZD.veeeeeesenn
04F80030 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 ..ceeeececacncns
04F80040 ED 41 00 00 01 00 00 00 00 00 00 00 00 00 00 00 3A...cececocsnss
04F80050 00 00 00 00 00 00 00 00 00 OO 00 00 Ol 00 00 00 .veeeescccncnnns
04F80060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...ceee. e
04F80250 00 00 00 00 00 00 00 00| 31 18 10 0O¢JFA 2B 46 02 1...0+F.
04F80260 92 76 37 00 00 00 00 00 3D 00 00 00]02)01 00 00 ’v7..... TR
04F80270 01 00 00 00 CS DD C4 41 00 00 00 00 00 00 00 00AVAA........
04F80280 [99 14 01 00 00 00 00 0OJ 00 01 04 00 00 00 00 00 ™,eeeecocens
04F80290 74 65 73 74 00 30 31 99|31 18 10 06]JCé ED 95 6B test.01™1...Ei-k
04F802A0 7E 5C 37 00 00 00 00 00 40 00 00 00J02)01 00 00 ~\7..... (S
04F802B0 9E 02 00 00 9F 39 25 44 00 00 00 00 00 00 00 00 Z...¥Y9%D........
04F802C0 |€éB 14 01 00 00 00 00 00] 00 00 07 00 00 00 00 00 Kiveeewsesonoonns
04F802D0 64 63 75 2E 74 61 72 00 31 18 10 06 71 SD ED 27 dcu.tar.l...gl]i’

media/file33.jpg
0B3DDO0O
0B3DDO10
0B3DD020
083DD030
0B3DDO4O
08300050
0B3DDOEO
0B3DDO70
083DD0S0

00
03
01

17
04
1
1

T

1 00

03
08
oE
16
04

00
04
oc
S
14
o5

00
B
03

o
18
09

10
8
03
oc
10
12
05

00
08

1€
1
05

(3
3
05
o
15
08

g
00
08

1
14
1

g
03
05
e
13
=
o

00
02
o5
o
14

B

o1
02
04
o0

00
o

[
03
0
o
15
3
1

00
02
05
12
15
14

00
02
o
10

03
14

3
03
01
o
oF

04

media/file32.png
[] File name | | Number of all blocks | | Data offset
~ Filesize [] Number of blocks_1

1E7AESAO 00 00 00 00 28 00 60 Ol D2 25 00 00 00 00 00 00(. .0%......
1E7AESBO EO 2F 00 00 00 00 00 00 02 ~—|38 36 36 39 2E 70| &/cceve... 8669.p
1ETAESCO oo 00 00 00 00 00 00 00 00 0O OC OO0 0O OO0 NQGevevececacenns
1ETAESDO 6F 39 01 00 00 00 00 00 01 00 00 00 00 00 00 00 ©09..ccevevenoens
1E7AESEQ FF FF FF FF FF FF FF FF A4 81 00 00 89 13 00 00 y¥yyyyyym...%...
1E7AESFO 64 00 00 00 D9 D2 DA €0 00 00 00 00 EC BS 22 18 d...U00'....in".

1IE7AE600 D9 D2 DA €0 00 00 00 00 EC BS 22 18 D9 D2 DA €0 000"ip". 000"

1E7AE610 00 00 00 00 EC 82 70 02 39 01 00 00 00 00 OC ..1,p.09
1E7AE620 [14 OC 00 B3 00 00 00 00 00 00] ..cecvw. . 3 PO
1E7AE630 [12 s 00 00 00 OO0 00 00 00 00 evvevevcncncacens
1E7AE640 00 00 00 00 OO0 0O 00 0O 00 00 00 00 00 00 00 00 +veveveccoecenn.

media/file14.png
1CE3A000 CA 74 A8 01 00 00 06 00 00 00 AO 11
1CE3A010 DF 01 00 00 DE 01 00 00 E2 01 00 00 02 00
1CE3A020 00 00 00 00 30 00 30 00 22 41 00 00 00

1CE3A030 20 41 00 00 00 00 00 00 05 12 61 €9

1CE3A040 79 2D 73 €5 72 76 €9 €3 65 2E €D €F 00 0C
1CE3A050 00 00 00 00 28 00 78 00 24 41 00 00 00 00
1CE3A060 26 41 00 00 00 00 00 00 01 OB 4C 43 SF 4D
1CE3A070 53 41 47 45 53 00 00 00 00 00 00 00 04 00
1CE3A080 01 00 00 00 00 00 00 00 01 00 00 00 00 00
1CE3A090 FF FF FF FF FF FF FF FF ED 41 15 13 C9 00

media/file41.jpg
) ou

) Magic Number

] ot spe £ e umber

ToTFEES0 (3115 10 OEJ7A F1 §E 9% §7 OF 00 00 00 00 00 00 I...zAZEV. ..,
0o4FBEAO 42 0000 00(92)00 00 00 EA 02 00 00 AC SF OB 4F B.......d&...-%.0
Gotrszso 00 90 00 60 09 00 00 oo(FT T oL T or T v)

G04FBECO 00 00 09 00 00 00 00 00 TE T ETTFETT:

00SFBEDO 68 00 FF FF FF FF FF FF 31 10 10 06 95 E8 15 65

Goarbe0 (311 10 DE]EB 42 7E 72 85 OF G0 G0 00 00 00 00

coareso 7050 G0 wolex)oo 00 oo (FT5E 50 o0 89 o0 9)

00sFBDA 00 00 00 00 00 00 TOBTBTETETETTLODT -...... .
00sFBDBO (23 21 2F 2 €5 GE 2F 73 68 20 OA 77 68 65 6C 65| #i/bin/eh .while
0047BDCO |20 74 72 75 €5 20 OA 64 6F OR 09 2F €1 70 70 25| crue .do../app/
004FBDDO 4B 32 45 4D §3 2F 62 69 GE 2F 4B 32 4C 4F 47 63| K2EMS/bin/K2L0GA
oosrepE0 (oA 05 73 ec es s 70 53 6F ¢E €5 0n) ..sleep 1 .done.

media/file37.jpg
import zlib
file open(
data = file.read()
file.close()

d_data = zlib.decompress(data)

print(d_data)

media/file46.png
D File size D Data offset

1D705C80
1D705C90
1D705CA0Q
1D705CBO
1D70SCCO
1D705CDO
1D70SCEO
1D70SCFO
1D705SD00
1D70S5D10
1D705D20

00
25
08
00
00

8l

00

82

00
00
36
00
00
00
00
02

00
00
39
00
00
13
82
D2

00 00 00 00 00 28
00 EO 2F 00 00 00 00 00 00
70 6E €7 00 00 00 00 00 OO
Q0 FF FF FF FF FF FF FF FF
Q0 00 00 00 DS DA €0
02 D2 DA €0 00 00 00
60 00 00 00 EC 70 02

00 €0 01

€4
DS
00

00

00

00

00 00 00 00 00 00 00

(..

O‘ &/ Bee 8w .
«8669.PNCg.ccc.e
- " """ .v. ‘y‘ .y' .H. .y- .y. y y

u...t...d...ﬁéﬁ‘
oo..i,poﬁbﬁ‘o.c-
i’p.ﬁéﬁ‘....i'p.

media/file45.jpg
) File size D Data offset

G5 00 00 00 00 28 00 60 01 ..
00 E0 2F 00 00 00 00 00 00 S%..

00090000 00 00 0 000]) ...

T

AL
o0 -.8669.png.

FEET
DA &0
00 00
79 02

5o o0
90 o0
N

media/file16.png
00 01 02 03 04 05 06 07 08 09 0A 0B 0oC oD OE OF
00 key len record len object id parent id
_ File _ key
10 parent id type | name file name - len
len end
20 - file size (byte) -
30 -
40 creation time
50 creation time modification time
60 access time file size (byte)
70 file size (byte) number of all blocks data offset
80 data offset number of blocks_1 start block
920 start block data offset_2 number of blocks_2
A0 number of blocks 2 start block_2

media/file20.png
,

-

media/file50.png
01252040
01A52050
01a%2060
01A52070
01A52080
01Aa582090
01AS92040
01252080
01AS20C0
01A520D0

Sa D7 T4 4C 85

15 01 E0 30

01 00 00 oofo4 00 00 00)o4

08 08 20 ZF 0Oe

2E 74 78 74|85

04 00 00 00 02

12 00 00 00 F1 ¢
00 00 00 00 1A OO

FF 10

Ce 3A C3 12
% 02 EO SE
0 00 00 A4
Cl 82 F1 &
00 00 1A 00

 &F 7

D File name

D Version number D Data

53]

02 EO 44 0

¥.4.8aDythis is
test for recvoer
v.¥y....aD....0="

01AS2800
01AS2810
01AS2820
01RS2830
01A52840
01AS2850
01AS2860
01AS2870
01AS2880
01AS2890

§5 15 01 EO
00 00 00
00 :

05

85
0o
0o
0o
0o

0o

26

5 04
00 00
00 0o
00 0o
00 00
00 00
00 0o

00

%]
=]

[]
oo

[
-

=]
]

[I |
[-]

30 00
00 0o
12 5

Do

00 00
00 0o
00 0o
00 00
00 0o
) 00 00

(]

0o
0o
EB
oo
00
00
0o
0o
00
0o

00 78 BE 3E FA 01

00 0B SF Cl 62 08 0O
D3 (74 65 713 7

50 D6 90 00 OO
00 00 00 00 O
00 00 00 00 00

00
00
00
00
00
00
00

[w]¥]
00

74

AD
00
0o
0o
00
0o
0o

00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00 OO

00
00
(w]¥]
Qg
0o
00
(w]¥]

media/file5.jpg

media/file31.jpg
) Number of all blocks || Data offset
3 Number of blocks 1

[E7AESAG
l1e7azsz0
hemesco
lE73EsD0
le7azszo
1278Es0
hE7aze00
emaze10
1E78E620
hE7azes0
l1e7azes0 99 90 00

media/file25.jpg
o1 | 02 | o3 [os o5 | os |07 | os|oso0afos|oc

magic number ac sqnum

it

o2 | padding -

media/file0.png

media/file8.png
=& tv.img
&) ddr,init (1) [OMB)
@& ddr.init (2) [OMB]
@-ma seret.bin (3) [3MB]
wa seret,bin (4) [3MB]
@-ma ulmage (5) [15MB]
@ -m ulmage (6) [15MB]
@)-wa dtb,bin (7) [IMB]
@) dtb, bin (8) [1MB]
- sign,bin (9) [OMB]
@-m sign,bin (10) [OMB]
«-ms VD-HEADER (11) [OMB]
(+-w secos,bin (12) [4MB]
@-m secos,bin (13) [4MB]
@-m secos_drv,bin (14) [IMB]
&)-m secos_drv,bin (15) [IMB]
@-ma NONE (16) [2MB]
@-ma NONE (17) [12MB]
@ -wa platform,img (18) [834MB]
-u platform,img (19) [834MB]
- systemrw,img (20) [20MB]
#-m data_peakSeason.img (21) [1319MB]
s factory_peq,img (22) [18MB]
% -w factory_peq.img (23) [18BMB]
&= common,img (24) [558MB]
@ sub,.img (25) [55MB]
& -m reserved (26) [4MB]

media/file43.jpg
) magic Number D Node type

50606000
00000020
00000020
00000030
00000040
00000050
90000060
00000070
00000080
00000050

@ &
00 00
00 00
00 00
00 00
00 00
00 00
30 30
30 30
33 3¢

7%

00 0

00 0

00

00
30
30

00

36 00 00 00 00 00 00 00 00 G0

o0
o0
%
o0
o0
30
30
30
30

00
00
00
%
00
30
30
30
3

00
00
00
00
00
30
30
30
30

00 00 00 00 00 00 00
00 00 00 00 00 00
90 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
30 37 35 35 00 30 30
30 30 30 30 00 30 30
00 31 33 32 34 37 35
33 34 31 00 20 35 00

)
00
00
00
00
30
30
33
00

dcur..

-.0000755.0000
000.0000000.0000
0000000. 14247503
366.010341. S...

025FECE0
o207EC30
025FECR0
025FECE0
025FECCO
029FECDO
o29FECED
o20ECED
029FEDO0
029FED10

00 18
86 sC
&

Jeo 02

les &3

©
3
o1

35
7

[
00

00

10
2

i
00
00

oL

B
%0
%

B

00 o

00
00

eo[3L 1t To oefar 3
B 0 00 00|01) 00
20 99 90 00 00 00 00

e eF 74|
35 D8 00 20 7F 58 00 03
3C 98 02 €0 3C 36 FC 07)

....L.'ml...A%6.
SRR
..

.dew/. >
0000755 | .L..
L.H...0.14247503.
366.010341. 5 >\
.*..ustar .root.
€.5..5.50. X..
dou/deu <*.<6i.

media/file34.png
0B3DD0O00
0B3DDO10
0B3DD020
0B3DD0O30
0B3DD040
0B3DDOS0
0B3DD0O&0
0B3DDO70
0B3DD0O80

FF
00
03
07
OE
17

04 O

14
14

D8
01
03
06

FF
00

03 O
08 O
OE O

le

04 O

14
14

0 00

FF
03
04
0B
18
09
14
14

10
DB
03
0C
10
12
05
14
14

44
00
04
0oC
16
14
05
14
14

43
05
0B
10
15
09
14
14

49
00
08
04
11
14
14
14
14

46
03
05
0B
13
FF
0D
14
14

00 O

02

05 O

0B
14
DB
0B
14
14

01
03
04
OE
15
43
14
14
14

b O O OO
BB o O

bt
v

00
02
04
10

0C O

03
14
14
14

01
03
07
0D

04
14
14
14

v e a0.Covnnnnn.

