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Abstract: Achieving high-quality reconstructions of images is the focus of research in image com-
pressed sensing. Group sparse representation improves the quality of reconstructed images by
exploiting the non-local similarity of images; however, block-matching and dictionary learning in the
image group construction process leads to a long reconstruction time and artifacts in the reconstructed
images. To solve the above problems, a joint regularized image reconstruction model based on group
sparse representation (GSR-JR) is proposed. A group sparse coefficients regularization term ensures
the sparsity of the group coefficients and reduces the complexity of the model. The group sparse
residual regularization term introduces the prior information of the image to improve the quality
of the reconstructed image. The alternating direction multiplier method and iterative thresholding
algorithm are applied to solve the optimization problem. Simulation experiments confirm that the
optimized GSR-JR model is superior to other advanced image reconstruction models in reconstructed
image quality and visual effects. When the sensing rate is 0.1, compared to the group sparse residual
constraint with a nonlocal prior (GSRC-NLR) model, the gain of the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) is up to 4.86 dB and 0.1189, respectively.

Keywords: compressed sensing; group sparse residual; image reconstruction; regularization con-
straints

1. Introduction

Compressed sensing (CS) [1–3] is a signal processing technique that allows for suc-
cessful signal reconstruction with fewer measurements than Nyquist sampling [4]. The
machinery not only overcomes Nyquist sampling’s constraints but also allows for simulta-
neous signal sampling and compression, lowering the cost of signal storage, transmission,
and processing. Among the applications that have aroused the interest of researchers are
single-pixel imaging [5], magnetic resonance imaging [6], radar imaging [7], wireless sensor
networks [8], limited data computed tomography [9], optical diffusion tomography [10],
ultrasound tomography [11], and electron tomography [12].

Since the measurements are much lower than the elements in the image, the recon-
struction model is ill-posed [13], i.e., the solution to the optimization problem is not unique.
In addressing the issue, the image prior information is gradually applied, which is used as
a regularization constraint term in the reconstruction model to attain the optimal solution.
In 2006, Candes et al. [14] proposed a minimum total variation (TV) model based on image
gradient information [15]. It recovers the smoothed areas of the image while destroying
the fine image structure. In 2013, Zhang et al. [16] introduced non-local similarity [17] as a
regularization constraint into the TV model and proposed a non-local [18] regularization
total variation model (TV-NLR). This model not only preserves the edges and details of
the image but also promotes the development of TV-based image CS reconstruction. In
2007, Gan [19] presented a block-based compressed sensing (BCS) type natural image
reconstruction model, which separates the image into image blocks, encodes them, and
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reconstructs each image block individually. However, there are block artifacts in the recon-
structed image. In 2011, the Multi-hypothesis BCS with smoothed projected Landweber
reconstruction (MH-BCS-SPL) [20] model was proposed to eliminate the block artifacts
and improve reconstruction performance. It adopts an MH predictions strategy to attain
an image block made from spatially surrounding blocks within an initial non-predicted
reconstruction. The model is used to construct a preliminary reconstructed image owing
to its short reconstruction time. Meanwhile, the sparse representation model based on
image blocks has developed rapidly. However, the operation based on the image block
ignores the connection of similar image blocks and the dictionaries learned from natu-
ral images with a high computational complexity. In 2018, Zha et al. [21] introduced an
adaptive sparse non-local regularization CS reconstruction model (ASNR). The model
employs the principal component analysis (PCA) [22] algorithm to learn dictionaries from
the preliminary reconstruction of the image rather than genuine images, which reduces
computational complexity and adds non-local similarity to preserve the image’s edges
and details. Meanwhile, it promotes the further development of the patch-based sparse
representation image CS reconstruction model.

The local and spatial connections of images play an important role in the field of
image classification [23]. The goal is to investigate the structural correlation information
between similar image blocks. In 2014, Zhang et al. [24] proposed a group-based sparse
representation image restoration model (GSR). It uses image blocks with similar structures
to build image groups as units for image processing and uses the singular value decompo-
sition (SVD) algorithm to obtain an adaptive group dictionary, which improves the quality
of reconstructed images. In 2018, Zha et al. [25,26] successively proposed a group-based
sparse representation image CS reconstruction model with non-convex regularization and
an image reconstruction model with the non-convex weighted lp nuclear norm. These
models promote sparser group sparse coefficients by using the lp-norm or weighted lp
nuclear norm to constrain the group sparse coefficients, reducing the computational com-
plexity of the model while improving the quality of the reconstructed image. In 2020,
Keshavarzian et al. [27] proposed an image reconstruction model based on a nonconvex
LLP regularization of the group sparse representation, using an LLP norm closer to the l0
norm to promote the sparsity of the group sparse coefficients and thus improve the quality
of the reconstructed images. Zhao et al. [28] proposed an image reconstruction model
based on group sparse representation and total variation to improve the quality of the
reconstructed image by adding weights to the high-frequency components of the image.
Zha et al. [29] proposed an image reconstruction model with a group sparsity residual
constraint and non-local prior (GSRC-NLR), which uses the non-local similarity of the
image to construct the group sparse residual [30] and converts the convex optimization
problem into a problem of minimizing the group sparse residual. The reconstructed image
quality is enhanced. However, the constraint on the group sparse coefficient is disregarded,
resulting in longer reconstruction times.

Motivated by the group sparse representation and group sparse residual, in this paper,
an optimization model is proposed for the group-based sparse representation of image CS
reconstruction with joint regularization (GSR-JR). The model uses image groups as the unit
of image processing. In order to reduce the complexity of the model and improve the quality
of the model-reconstructed images, the group coefficient regularization constraint term
and the group sparse residual regularization constraint term are added, respectively. The
alternating direction multiplier method (ADMM) [31] framework and iterative thresholding
algorithm [32] are also used to solve the model. Extensive simulation experiments verify
the effectiveness and efficiency of the proposed model. The contents of this article are
organized as follows:

Section 2 focuses on the theory of compressed sensing, the construction of image
groups, group sparse representation, and the construction of group sparse residuals. In
Section 3, the construction of the GSR-JR model and the solution scheme are described
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specifically. In Section 4, extensive simulation experiments are conducted to verify the
performance of the GSR-JR model. In Section 5, we present the conclusion.

2. Related Work
2.1. Compressive Sensing

The CS theory reveals an image x ∈ RN , which can be sparsely represented into the
sparse transform domain. It can be expressed as x = Ψα, where Ψ is the sparse matrix,
and α is sparse coding coefficient. The sparse image can project into a low-dimensional
space through a random measurement matrix Φ ∈ RM×N . The matrix needs to meet the
restricted isometry property conditions. The measurements of the image can be expressed
as:

y = Φx = ΦΨα (1)

where y denotes the measurements. The sensing rate is defined as R = M/N. The purpose
of CS recovery is to recover x from y as much as possible, which is usually expressed as the
following lp optimization problem

^
α = argmin

α
(

1
2
‖y−ΦΨα‖+ λ‖α‖p

)
(2)

where λ is a regulation parameter, and ‖•‖p is the lp norm to constrain sparse coding
coefficients. When p is 0, the problem is a non-convex optimization problem, which is an
NP problem and cannot be solved by polynomials. When p is 1, the problem is a convex
optimization problem, which can be solved by various convex optimization algorithms.
Generally, the optimization problem is solved as the l1 minimization problem [30]. Once

the sparsest coding coefficient is attained, the reconstructed image
^
x can be obtained from

the sparse matrix and sparse coding coefficients

^
x = Ψ

^
α (3)

2.2. Image Group Construction and Group Sparse Representation

In this paper, image groups are sparse representation units for image processing.
The following illustrates the image group construction and group sparse representation.
Figure 1 depicts the image group construction. The initial image x ∈ RN is divided into n
overlapped image blocks xi ∈ Rb i = 1, 2, . . . , n (red marked area). For each sample image
block xi, m similar image blocks are searched for in the L× L search window (black marked
area) to form the set Sxi . All elements in the set Sxi are converted into an image group xGi
by column. The construction of the image group can be simply expressed as xGi = RGi (x),
where RGi (·) means the extraction operation of the image group from the image.

Figure 1. The flow chart of image group construction, where Extracting means extracting sample
image blocks, Matching means matching similar image blocks, and Stacking means transforming
similar image blocks to get image groups.
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For each image group xGi , the PCA dictionary learning algorithm is used to attain
the group dictionary DGi and group coefficient αGi , which is directly learned from each
image group, and each image group only needs to perform singular value decomposition
once. Then each image group can be sparsely represented by solving the following l1 norm
minimization problem,

^
αGi = argmin(

∥∥xGi −DGi αGi

∥∥2
2 + λ

∥∥αGi

∥∥
1) (4)

Once all the image groups xGi = DGi

^
αGi are obtained, the image group should be

rearranged and restored according to the corresponding position of the original image to
obtain the reconstructed image. Because the image group contains repeated pixels, it also
needs to perform pixel averaging. The image restoration operation can be expressed as

x = DG ◦
^
αG =

n

∑
i=1

RT
Gi
(DGi

^
αGi )./

n

∑
i=1

RT
Gi
(1b×m) (5)

where RT
Gi
(·) indicates that the reverse operation of image extraction is to put the image

group back to the corresponding position of the image. The 1b×m is a matrix of image group
size with all its elements being 1, which is used to count the weight of each pixel for pixel

averaging. DG denotes the concatenation of all DGi , and
^
αG denotes the concatenation of

all
^
αGi , The ./ denotes the element-wise division of two vectors. The symbol ◦ is a simple

representation of this operation.
According to the CS reconstruction model formula (1), the group sparse representation

minimization problem can be obtained to realize image reconstruction

^
αG = argmin

αG

(
1
2
‖y−ΦDG ◦ αG‖2

2 + λ‖αG‖1)∀i (6)

By solving the minimization problem with different algorithms, the reconstructed

image can be obtained by
^
x = DG ◦

^
αG.

2.3. Image Group Sparse Residual Construction

To improve the quality of the reconstructed image, group sparse residual regularization
constraints are considered for introduction into the reconstructed model. The group sparsity
residual is the difference between the group sparse coefficients of the initial reconstructed
image and the corresponding group sparse coefficients of the original image, which can be
defined as

RG i = αG i − bG i∀i (7)

where the initial reconstructed image is reconstructed by the MH-BCS-SPL model. It is the
strategy to obtain the initial reconstructed image owing to the reconstruction time being
short. Additionally, the model will be compared and analyzed in the subsequent sections.
Where αG i represents the group sparse coefficient of the initial reconstruction image, which
can earn by

αG i = DG i
−1yG i (8)

bG i represents the group sparsity coefficient corresponding to the original image, which
cannot be received directly. Inspired by the non-local mean filter algorithm, it can attain
from αG i . The αG i,j is the vector form of αG i , and the vector estimated bG i is denoted as
bG i,j ,

bGi,1 =
m

∑
j=1

wG i,j αGi,j (9)



Electronics 2022, 11, 182 5 of 18

where wG i,j expresses the weight

wG i,j =
1

W
exp(−

∥∥∥yG i,1 − yG i,j

∥∥∥2

2
/h) (10)

where yG i,1 describes the 1st image block of the i-th image group in the initial reconstruction
image, yG i,j represents the j-th similar image block of the image group yG i , h is a constant,
and W is a normalization factor. The approximation of the group sparsity coefficient of the
original image is obtained by replicating bGi,1 m times.

bG i,j =
{

bGi,1 , bGi,2 , . . . , bGi,m

}
(11)

Therefore, the expressions for the group of sparse residuals are obtained.

3. The Scheme of GSR-JR Model
3.1. The Construction of the GSR-JR Model

The group sparse representation, Equation (6), and group sparsity residuals, Equation
(7), are used to construct the optimization (GSR-JR) model, which can be expressed as

^
αG = argmin

αG

(
1
2
‖y−ΦDG ◦ αG‖2

2 + λ1‖αG‖1 + λ2‖αG − bG‖p) (12)

where the constrained lp norm of the group sparse residuals has not been determined; when
p = 1, the group coefficient residual distribution satisfies the Laplace distribution; and
when p = 2, it satisfies the Gaussian distribution. The image “house” is used to analyze
the group’s sparse residual distribution in Figure 2.

Figure 2. The group sparse residual distribution of the original and initial reconstructed images at
different sensing rates: (a) R = 0.1, (b) R = 0.2.

Figure 2 shows the distribution curves of the group sparse residuals of “House” at
different sensing rates. It demonstrates that the Laplace distribution, as opposed to the
Gaussian distribution, can better fit the group sparse residual distribution. As a result, the
Laplace distribution approximates the statistical distribution of the group sparse residual.
In other words, the l1 norm constrains the group sparsity residual.

The final representation of the proposed optimization model is

^
αG = argmin

αG

(
1
2
‖y−ΦDG ◦ αG‖2

2 + λ1‖αG‖1 + λ2‖αG − bG‖1) ∀i (13)

where the first term is a fidelity term, and the second term is a group sparse coefficient
regularization term, which ensures the sparsity of the group sparse coefficients and reduces
the complexity of the model with a regularization parameter λ1. The third term is the group
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sparse residual regularization term, which improves the quality of the reconstructed image
by increasing the prior information of the image, and the regularization parameter is λ2.
Figure 3 depicts the complete flowchart of the optimized GSR-JR model.

Figure 3. The complete flowchart of the optimized GSR-JR model.

3.2. The Solution of the GSR-RC Model

The ADMM is an effective algorithmic framework for solving convex optimization
problems. The core of the ADMM algorithm is to transform the unconstrained optimization
problem into a series of constrained sub-problems through variable separation and then use
individual algorithms to solve the constrained sub-problems separately. In this paper, the
ADMM algorithm is used to solve the model and find the optimal solution. The complete
solving process of the optimization model is shown in Algorithm 1.

First, the auxiliary variable z and the constraint term z = D ◦ α are introduced to the
optimization problem.

The optimization problem can transform into a constraint form by using the following
formula:

min
α

(
1
2
‖y−ΦDG ◦ αG‖2

2 + λ1‖αG‖1 + λ2‖αG − bG‖1 s.t.z = DG ◦ αG (14)

the augmented Lagrange form

min
α,z

(
1
2
‖y−Φz‖2

2 + λ1‖αG‖1 + λ2‖αG − bG‖1 +
µ

2
‖z−DG ◦ αG − g‖2

2 −
µ

2
‖g‖2

2) (15)

decomposes into three sub-problems

zt+1 = argmin
z

(
1
2
‖y−Φz‖2

2 +
µ

2

∥∥∥z−DG ◦ αt
G
− gt

∥∥∥2

2
) (16)

αt+1
G

= argmin
αG

(λ1‖αG‖1 + λ2‖αG − bG‖1 +
µ

2

∥∥∥zt+1 −DG ◦ αG − gt
∥∥∥2

2
) (17)

gt+1 = gt − (zt+1 −DG ◦ αt+1
G

) (18)

where µ is the regularization parameter, and the g is the Lagrange multiplier. z and αG
sub-problems are specifically solved below, and the number of iterations t will be ignored
for clarity.

A. Solve the z sub-problem

Given αG, the z sub-problem is transformed into

^
z = argmin

z
(

1
2
‖y−Φz‖2

2 +
µ

2
‖z−DG ◦ αG − g‖2

2) (19)
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where Φ is the Gaussian random projection matrix, and it is difficult to solve the inverse of
Φ in each iteration. To facilitate the solution, the gradient descent algorithm is used

^
z=z− ηd (20)

where η represents the step size, and the d represents the gradient direction of the objective
function.

B. Solve the αG sub-problem

Given z, the αG sub-problem is transformed as

^
αG = argmin

αG

(λ1‖αG‖1 + λ2‖αG − bG‖1 +
µ

2
‖z−DG ◦ αG − g‖2

2) (21)

^
αG = argmin

αG

(λ1‖αG‖1 + λ2‖αG − bG‖1 +
µ

2
‖x− l‖2

2) (22)

where l=z− g, x = DG ◦ αG. λ1 and λ2 are two regularization parameters, which will be set
in subsequent operations.

Theorem 1. Let x, l ∈ RN XGi , LGi ∈ Rb×m, where e(j) represents the j-th element in the error
vector e ∈ RN , where e = x− l, assuming that e(j) is an independent distribution with a mean of
zero and variance of σ2

n , so when ε > 0, the relationship between ‖x− l‖2
2 and ∑n

i=1
∥∥XGi − LGi

∥∥2
2

can be expressed according to the following properties

lim
N → ∞
K → ∞

P(| 1
N
‖x− l‖2

2 −
1
K

n

∑
i=1

∥∥XGi − LGi

∥∥2
2| < ε) = 1 (23)

where the P represents the probability, K = b×m× n . The proof of the theorem is in Appendix A.

Formula (22) can simplify as

^
αG = argmin

αG

( 1
2 ∑n

i=1
∥∥XGi − LGi

∥∥2
2 +

λ1K
µN ‖αG‖1 +

λ2K
µN ‖αG − bG‖1)

= argmin
αG

∑n
i=1 (

1
2

∥∥XGi − LGi

∥∥2
2 + η1

∥∥αGi

∥∥
1 + η2

∥∥αGi − bGi

∥∥
1)

(24)

where η1= λ1K
µN and η2= λ2K

µN .
The PCA learned a dictionary DGi is an orthogonal dictionary. The problem can be

reduced to

^
αG = argmin

αG

n

∑
i=1

(
1
2

∥∥αGi − uGi

∥∥2
2 + η1

∥∥αGi

∥∥
1 + η2

∥∥αGi − bGi

∥∥
1) (25)

where the LGi = DGi uGi . According to the solution of the l1 convex optimization problem

^
x = argmin

x
(

1
2

∣∣∣∣∣∣∣∣x− a
∣∣∣∣|22 + τ

∣∣∣∣∣∣∣∣x∣∣∣∣∣∣∣∣1) (26)

the solution is
^
x = soft(a, τ) = sign(a)�max(

∣∣∣∣a∣∣∣∣−τ, 0) (27)

where soft(·) describes the operator of soft thresholding and � denotes the element-wise
product of two vectors. The sign(·) represents a symbolic function. The max(·) means to
take the larger number between two elements.
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Then
^
αGi can be attained

^
αGi = soft(soft(uGi , η1)− bGi , η2) + bGi (28)

Therefore, the group sparsity coefficients
^
αG of all groups can be obtained, combined

with the image group dictionary DG, which is obtained by PCA dictionary learning, and

the reconstructed high-quality images can be obtained by
^
x = DG ◦

^
αG.

Algorithm 1: The optimized GSR-JR for CS image reconstruction

Require: The measurements and the random matrix Φ

Initial reconstruction:
Initial reconstruction image y by measurements
Final reconstruction:
Initial t, σn, b, L, m, h, W, c, µ

For t = 0 to Max-Iteration do
Update zt+1 by Equation (16);
l = zt+1 − g;
for Each group LGi in l do
Construction dictionary DG i by yGi

using PCA.
Update αG i by computing Equation (8).
Estimate bG i by computing Equation (9) and Equation (10).
Update λ1, λ2 by computing λ1 = c× 2

√
2σn/σAi λ2 = c× 2

√
2σn/σRi .

Update η1, η2 by computing η1 = λ1K/µN, η2 = λ2K/µN
Update αG

t+1 by computing Equation (17).
end for
Update Dt+1

G
by computing all DG i .

Update αt+1
G

by computing all αG i .
Update gt+1 by computing Equation (18).
end for
Output: The final reconstruction image

^
x = DG ◦

^
αG

4. Experiment and Discussion

In this paper, extensive simulation experiments are conducted to validate the per-
formance of the optimized GSR-JR model. Peak signal-to-noise ratio (PSNR) [33] and
structural similarity (SSIM) [34] are used to evaluate the quality of the reconstructed image.
The experiment uses ten standard images with the size of 256× 256 from the University
of Southern California’s image library as the test image, as shown in Figure 4. All experi-
mental simulation data are obtained by MATLAB R2020a simulation software on a Core
i7-8565U 1.80 GHz computer with 4 GB RAM.
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Figure 4. Ten experimental test images: (a) Cameraman, (b) House, (c) Peppers, (d) Starfish, (e)
Monarch, (f) Airplane, (g) Parrot, (h) Man, (i) Resolution chart, and (j) Camera test.

PSNR and SSIM are defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖I(i, j)− J(i, j)‖2 (29)

PSNR = 10 log10(
2552

MSE
) (30)

SSIM = l(X, Y) · c(X, Y) · s(X, Y) (31)

l(X, Y) =
2µXµY + C1

µX2 + µY
2 + C1

c(X, Y) =
2σXσY + C2

σX2 + σY
2 + C2

s(X, Y) =
σXY + C3

σXσY + C3
(32)

where MSE represents the mean square error between the original image I(i, j) and the
reconstructed image J(i, j), and m and n represent the height and width of the image,
respectively. l(X, Y) means brightness, c(X, Y) means contrast, s(X, Y) means structure,
µX , µY represents the mean value of image X and Y, σX , σY represents the variance of image
X and Y, σXY represents the covariance of the image, and C1 C2 C3 is a constant.

4.1. The Model Parameters Setting

In the simulation experiment, a random Gaussian matrix is employed to obtain mea-
surements based on an image block of size 32 × 32. The variance of the noise σn is set
to
√

2, and the small constant c is set to 0.4. Because the choice of regularization pa-
rameters will directly affect the performance of the model, two adaptive regularization
parameters based on the representation-maximum posterior estimation relationship [35]
are used. The forms of adaptive regularization parameters are λ1 = (c× 2

√
2σn)/σAi and

λ2 = (c× 2
√

2σn)/σRi , where σAi , and σRi represents an estimate of the variance of the
group sparse coefficient. The parameter µ is finally set to 0.01, 0.015, 0.025, 0.07, and 0.042
at different sensing rates. The size of the image block, the size of the search window, and
the number of image similar blocks are all determined during the construction of an image
group, as shown in Figures 5 and 6.
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Figure 5. The PSNR and Time for “House” with different block sizes and different search win-
dows sizes.

Figure 6. The SSIM and PSNR with the number of similar blocks for three images.

Based on previous studies [24–29], the PSNR and reconstruction time are discussed
for image block sizes from 5 × 5 to 9 × 9 and search window sizes from 20 × 20 to 50 × 50.
From Figure 5, it can be observed that the PSNR varies less under different search windows
for the same image block size, which indicates that the search window has less influence
on the reconstruction model quality. The large variation of PSNR for different image block
sizes under the same search window indicates that the image block size has a large impact
on the model. It can be found that the PSNR is higher when the image block size is 7 × 7
and 8 × 8, and the PSNR is highest when the search window is 35 × 35. It can be noticed
that the image reconstruction time increases with the increase of image blocks. However, it
is worth noting that there is a minimum value of reconstruction time for each image block
at different search windows. This indicates that the image blocks and the search window
are matched. This is the reason why we discuss image blocks and search windows together.
Considering the model performance and time together, the image block size is set to 7 × 7,
and the search window size is set to 35 × 35.

In Figure 6, the effect of the number of similar blocks in an image group on the
reconstruction model is discussed. It can be observed that as the sensing rate increases, the
SSIM and PSNR of the images first increase and then decrease. The reason may be that
when the image group contains a few image blocks, similar image blocks are processed in
the same image group, increasing the connection between image blocks and thus improving
the image quality. However, when the image group contains a large number of image
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blocks, i.e., the blocks with low similarity are processed in multiple image groups, errors
occur in recovering the average pixels of the image group. Considering the SSIM and PSNR
of the three images, the quality of the reconstructed image is relatively better when the
number of image blocks is 60. Therefore, the number of similar blocks is set to 60. Based on
the above discussion, the size of the image block is set to 7 × 7, the search window is 35 ×
35, and the number of similar image blocks is 60.

4.2. The Effect of Group Sparse Coefficient Regularization Constraint

The goal of the group sparse coefficient regularization constraint is to reduce the
complexity of the model by constraining the group sparse coefficients. Mallet demonstrated
that when the signal is represented sparsely, the sparser the signal representation, the
higher the signal reconstruction accuracy [36]. This section focuses on the role of the
group sparse coefficient regularization constraint in the model. It is discussed whether the
proposed model has the reconstruction performance under the group sparse representation
regularization constraint when the sensing rate is 0.1, as shown in Table 1.

Table 1. The results of the model with and without group sparse coefficient regularization.

Regularization
Constraint

With Group Sparse
Coefficient Regularization

Without Group Sparse Coefficient
Regularization

Image PSNR SSIM Time PSNR SSIM Time

House 34.30 0.880 692.50 34.14 0.8770 1746.53
Peppers 28.26 0.8196 796.02 28.17 0.8189 2098.52
Monarch 27.60 0.8910 1291.21 26.94 0.8887 2102.25
Airplane 25.91 0.8405 1227.76 25.62 0.8393 2093.47

From Table 1, it can be observed that the PSNR and SSIM of the reconstructed im-
ages are relatively high when the model contains group sparse coefficient regularization
constraints. In terms of reconstruction time, the reconstruction time of the model with
the regularization constraint is significantly reduced by about a factor of two. This indi-
cates that the group sparse coefficient regularization constraint term can drive the group
coefficients to be more sparse and reduce the complexity of the model. The discussion
demonstrates that adding group sparse coefficient regularization constraints to the model
improves the efficiency of the model.

4.3. Data Results

To validate the performance of the proposed model GSR-JR, the proposed GSR-JR
model is compared with five existing image reconstruction models, TV-NLR, MH-BCS-SPL,
ASNR, GSR, and GSRC-NLR. All comparison models are loaded from the authors’ website
and parameters are set to default values according to the authors. Table 2 shows the PSNR
and SSIM for 10 test images with different reconstruction models at sensing rates ranging
from 0.1 to 0.3. The best values are shown in bold for observation. From Table 2, it can
be observed that the proposed model significantly outperforms the other models at low
sensing rates. When the sensing rate is 0.1, the average PSNR (SSIM) of the GSR-JR model is
improved by 3.78 dB (0.0929), 3.72 dB (0.1291), 1.40 dB (0.0227), 1.80 dB (0.0298), and 1.164
dB (0.0209), respectively, compared with the other models. It is also detected that the PSNR
and SSIM of the image reconstruction model increases significantly with the sensing rate.
To visualize the trends of the PSNR and SSIM of the reconstructed images, Figure 7 shows
the PSNR and SSIM of “Pepper” and “Monarch” at different sensing rates, respectively.
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Table 2. The PSNR (dB) and SSIM of six image reconstruction models at various sensing rates.

Images Methods

Sensing Rates

R = 0.1 R = 0.15 R = 0.2 R = 0.25 R = 0.3

PSNR|SSIM PSNR|SSIM PSNR|SSIM PSNR|SSIM PSNR|SSIM

Cameraman

TV-NLR 22.98|0.7498 24.51|0.7973 25.76|0.8295 27.38|0.8603 27.99|0.8746
MH-BCS-SPL 22.13|0.6791 24.37|0.7664 25.88|0.8111 27.16|0.8408 28.08|0.8607

ASNR 23.76|0.7802 26.17|0.8377 27.75|0.8668 28.87|0.8889 29.96|0.9037
GSR 22.90|0.7680 25.50|0.8309 27.17|0.8627 28.40|0.8847 29.62|0.9041

GSRC-NLR 23.79|0.7778 26.38|0.8387 27.19|0.8575 28.62|0.8833 29.66|0.9021
GSR-JR 24.57|0.7938 26.62|0.8408 28.16|0.8702 29.15|0.8914 30.19|0.9073

House

TV-NLR 29.55|0.8326 31.55|0.8604 33.18|0.8819 34.39|0.8969 35.48|0.9104
MH-BCS-SPL 30.28|0.8357 32.49|0.8736 33.84|0.8934 34.95|0.9029 35.69|0.9186

ASNR 33.60|0.8836 35.79|0.9079 36.97|0.9250 38.12|0.9407 39.06|0.9503
GSR 33.75|0.8807 35.88|0.9121 37.31|0.9322 38.36|0.9451 39.29|0.9539

GSRC-NLR 34.07|0.8794 35.77|0.9065 37.11|0.9276 38.36|0.9443 39.30|0.9539
GSR-JR 34.30|0.8805 35.71|0.9031 37.04|0.9239 38.29|0.9415 39.13|0.9506

Peppers

TV-NLR 25.72|0.7624 27.72|0.8105 29.04|0.8418 30.13|0.8630 30.70|0.8752
MH-BCS-SPL 25.16|0.7187 27.44|0.7874 28.61|0.8157 29.63|0.8405 30.20|0.8513

ASNR 27.50|0.8030 29.74|0.8490 30.91|0.8700 32.33|0.8919 33.28|0.9050
GSR 26.93|0.7944 29.30|0.8411 30.83|0.8693 32.11|0.8890 33.02|0.9028

GSRC-NLR 27.88|0.8134 29.92|0.8514 30.97|0.8696 32.17|0.8883 32.94|0.9003
GSR-JR 28.26|0.8196 30.13|0.8557 31.51|0.8793 32.61|0.8953 33.48|0.9075

Starfish

TV-NLR 22.84|0.6709 24.40|0.7476 25.73|0.7991 26.52|0.8314 28.33|0.8739
MH-BCS-SPL 22.54|0.6843 24.78|0.7617 25.93|0.7972 26.96|0.8289 27.90|0.8506

ASNR 24.33|0.7554 27.22|0.8392 29.66|0.8909 31.77|0.9229 33.15|0.9387
GSR 23.60|0.7344 26.99|0.8400 29.41|0.8901 31.38|0.9186 33.00|0.9375

GSRC-NLR 24.41|0.7614 27.20|0.8408 28.24|0.8703 29.86|0.9028 31.37|0.9256
GSR-JR 25.65|0.7952 28.20|0.8588 30.26|0.8997 32.02|0.9268 33.58|0.9415

Monarch

TV-NLR 23.01|0.7726 25.66|0.8484 27.16|0.8832 29.24|0.9128 29.73|0.9239
MH-BCS-SPL 23.19|0.7575 25.64|0.8383 27.10|0.8660 28.25|0.8856 29.20|0.9005

ASNR 25.86|0.8703 28.97|0.9194 31.88|0.9475 33.46|0.9595 34.78|0.9670
GSR 25.29|0.8640 28.22|0.9179 30.77|0.9433 32.79|0.9578 34.25|0.9659

GSRC-NLR 26.33|0.8795 29.01|0.9227 30.32|0.9388 32.15|0.9540 33.43|0.9626
GSR-JR 27.60|0.8910 29.95|0.9270 32.05|0.9483 33.75|0.9613 35.06|0.9680

Airplane

TV-NLR 23.44|0.7568 25.32|0.8197 26.81|0.8646 28.33|0.8917 28.79|0.9018
MH-BCS-SPL 23.67|0.7638 25.44|0.8199 27.19|0.8525 28.59|0.8870 29.67|0.8945

ASNR 25.13|0.8248 27.35|0.8764 29.10|0.9065 30.50|0.9253 32.15|0.9432
GSR 24.57|0.8219 26.56|0.8703 28.96|0.9086 30.48|0.9283 32.03|0.9440

GSRC-NLR 25.36|0.8335 27.54|0.8819 28.93|0.9070 30.49|0.9280 31.91|0.9432
GSR-JR 25.91|0.8405 28.19|0.8897 29.98|0.9173 31.35|0.9361 32.70|0.9475

Parrot

TV-NLR 24.60|0.8273 25.93|0.8599 27.29|0.8852 28.21|0.9005 29.16|0.9139
MH-BCS-SPL 25.34|0.8219 27.36|0.8749 29.23|0.8975 30.08|0.9133 31.01|0.9254

ASNR 26.73|0.8707 28.44|0.8977 30.38|0.9189 31.46|0.9314 33.12|0.9420
GSR 26.34|0.8747 28.97|0.9075 31.16|0.9247 32.36|0.9331 33.82|0.9472

GSRC-NLR 27.35|0.8815 29.52|0.9079 30.74|0.9221 31.49|0.9331 32.41|0.9427
GSR-JR 27.66|0.8805 29.84|0.9073 31.54|0.9237 32.16|0.9355 33.73|0.9450

Man

TV-NLR 23.49|0.6363 24.77|0.7067 26.05|0.7584 27.32|0.8077 27.85|0.8274
MH-BCS-SPL 23.00|0.5746 24.44|0.6534 25.36/0.6959 26.44|0.7451 27.36|0.7811

ASNR 24.16|0.6800 26.08|0.7636 27.55|0.8195 28.55|0.8499 29.81|0.8786
GSR 23.80|0.6658 25.80|0.7602 27.440.8182 28.71|0.8551 29.81|0.8836

GSRC-NLR 24.42|0.6900 26.29/0.7686 27.61/0.8180 28.86|0.8538 29.80|0.8804
GSR-JR 24.91|0.6957 26.64|0.7695 28.06|0.8206 29.22|0.8582 30.45|0.8846
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Table 2. Cont.

Images Methods

Sensing Rates

R = 0.1 R = 0.15 R = 0.2 R = 0.25 R = 0.3

PSNR|SSIM PSNR|SSIM PSNR|SSIM PSNR|SSIM PSNR|SSIM

Resolution
chart

TV-NLR 20.66|0.8802 25.05|0.9470 28.72|0.9710 32.29|0.9811 36.05|0.9880
MH-BCS-SPL 17.69|0.6482 20.32|0.7626 22.75|0.8600 25.12|0.9051 27.10|0.9330

ASNR 20.68|0.8636 25.95|0.9560 30.07|0.9785 32.70|0.9861 36.88|0.9911
GSR 20.20|0.8489 26.03|0.9562 30.16|0.9764 36.28|0.9890 38.07|0.9912

GSRC-NLR 20.26|0.8268 25.37|0.9427 25.55|0.9390 29.49|0.9733 31.83|0.9826
GSR-JR 25.12|0.9466 31.99|0.9818 35.07|0.9889 34.65|0.9903 41.63|0.9953

Camera test

TV-NLR 15.72|0.6992 19.10|0.8330 21.74|0.9007 23.93|0.9434 22.32|0.8614
MH-BCS-SPL 19.63|0.7416 22.25|0.8074 24.04|0.8428 26.09|0.8864 27.68|0.9025

ASNR 24.14|0.9578 28.23|0.9859 32.03|0.9919 34.62|0.9944 36.78|0.9954
GSR 24.47|0.9658 29.00|0.9856 32.52|0.9913 35.05|0.9937 36.42|0.9937

GSRC-NLR 24.34|0.9579 28.51|0.9852 29.43|0.9861 32.45|0.9935 34.84|0.9956
GSR-JR 25.87|0.9734 29.98|0.9888 33.30|0.9936 35.40|0.9956 37.83|0.9966

Figure 7. The PSNR and SSIM of different images at all sensing rates. (a) The PSNR of “Peppers”,
(b) the SSIM of “Peppers”, (c) the PSNR of “Monarch”, and (d) the SSIM of “Monarch”.

Figure 7 shows the PSNR and SSIM of the six reconstructed models of “Peppers” and
“Monarch” at different sensing rates. It can observe that the PSNR and SSIM increase
gradually as the sensing rate increase, and the PSNR and SSIM of the proposed model are
significantly higher than those of the other models. In the PSNR images of Figure 7a,c, it
can be concluded that the PSNR growth rate of different models changes when the sensing
rate is 0.2. The PSNR of the ASNR model increases significantly, the GSRC-NLR model
increases slowly, and the PSNR of the proposed GSRC-JR model increases steadily.
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4.4. Visual Effects

Visual perception is the subjective evaluation of the quality of reconstructed images.
To illustrate the visual differences of the reconstructed images by six image reconstruction
models, the reconstructed images of “Cameraman”, “Peppers”, “Monarch”, and “Resolu-
tion chart” at sensing rates of 0.1 and 0.2 are plotted, as shown in Figures 8 and 9. Specific
areas of the images are also enlarged to show the differences in the details of the images
reconstructed by the reconstructed model.

Figure 8. Visual effects of images with various reconstruction models when R = 0.1. (a) Original
image, (b) TV-NLR, (c) MH-BCS-SPL, (d) ASNR, (e) GSR, (f) GSRC-NLR, and (g) GSR-JR.

Figure 9. Visual effects of reconstructed images with various reconstruction models when R = 0.2.
(a) Original image, (b) TV-NLR, (c) MH-BCS-SPL, (d) ASNR, (e) GSR, (f) GSRC-NLR, and (g) GSR-JR.
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Figure 8 shows the visual effect of the reconstructed image when the sensing rate is
0.1. It can observe that the reconstructed images of the TV-NLR model are severely blurred,
and the contour boundaries and texture details of the images are hardly identified. The
reconstructed images of the MH-BCS-SPL model can only identify the contours of the
“Peppers” and “Monarch” images among the four images. The ASNR model also has a
significant blurring effect on the reconstructed images, which is mainly around the image
details. In the GSR model, although the “Monarch” still has unidentifiable artifacts, the
stem of “Peppers” and the horizontal lines in the “Resolution chart” are identifiable. The
GSRC-NLR model reconstructs the images visually well, although there are still some
artifacts. Compared with the other models, the proposed GSR-JR model reconstructs the
images with the best visual effect even though there are also artifacts, and the details of the
images are easier to identify when comparing the magnified areas of the four images.

Figure 9 shows the visual effect of the reconstructed image when the sensing rate is
0.2. The TV-NLR model reconstructs the image with more detail, although there is still
blurring in the “Peppers”. The MH-BCS-SPL model reconstructs the image with more
details and textures, while the GSRC-NLR model reconstructs the image with relatively
serious artifacts, and the GSR model reconstructs the image with some artifacts, but the
reconstructed image has obvious visual effects. The visual effect of the reconstructed image
of the ASNR model can only reach that of the proposed reconstructed model when the
sensing rate is 0.2.

4.5. Reconstruction Time

Reconstruction time is also an important metric for evaluating image reconstruction
models. The reconstruction times of the six image reconstruction models are analyzed in
Figure 10. From the figure, it can be observed that the TV-NLR and MH-BCS-SPL models
take relatively less time, but the quality of the reconstructed images is also worse. The
optimized GSR-JR model takes less time than the ASNR model, though the reconstructed
image is comparable. The proposed GSR-JR model combines the group sparse residual
regularization constraint, so the reconstruction time is slightly higher than that of the GSR
model. The reconstruction time is less than that of the GSRC-NLR model, owing to the
group sparse coefficient regularization constraint. Considering the reconstruction quality
and reconstruction time together, the proposed GSR-JR model is more practical. Meanwhile,
it can be found that although the reconstruction time of the GSR-JR model is better than
other reconstruction models based on image groups, it cannot achieve real-time image
reconstruction, which is the limitation of the reconstruction model, and how to further
reduce the reconstruction time of the model and achieve real-time image reconstruction is
the direction that the model will continue to work on.

Figure 10. The reconstruction time for the various model at R = 0.1.
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5. Conclusions

In this paper, image groups are used as the sparse representation units to discuss and
determine the parameters of image group construction, where the image block is set to 7 ×
7; the search window is set to 35× 35; and the number of similar blocks is set to 60. A group
coefficient regularization constraint term is also introduced to reduce the complexity of the
model, and the group sparse residual regularization constraint term to increase the prior
information of the image to improve the quality of the reconstructed images. The ADMM
algorithm framework and iterative thresholding algorithm are used to solve the model.
The experimental simulation results verify the effectiveness and efficiency of the GSR-JR
model; however, the reconstruction model cannot achieve real-time image reconstruction.
In view of the current rapid development of convolutional neural networks and some
cases of successful image reconstruction by combining traditional algorithms with neural
networks, future research focuses on how to implement the proposed model by solving it
using neural networks so as to achieve real-time high-quality image reconstruction and
promote further development in the field of image CS reconstruction.
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Appendix A

Proof of Theorem 1. Due to assuming an independent distribution with the mean E(e(j)) = 0
and the variance Var(e(j)) = σ2, then each e(j)2 is also independent and the mean is

E(e(j)2) = Var[e(j)] + E(e(j)]2 = σ2 j= 1, . . . , N (A1)

By invoking the Law of Large Numbers in probability theory, for any ε > 0, it produces

limN→∞P

{∣∣∣∣∣ 1
N

N

∑
j=1

e(j)2 − σ2
∣∣∣< ε

}
= 1 (A2)

limN→∞P
{∣∣∣∣ 1

N
‖x− l‖2

2 − σ2
∣∣∣∣< ε

}
= 1 (A3)

Further, let XG, LG denote the series of all the groups XGi and LGi , i = 1, . . . n, and
denote each element of XG − LG by eG(i), i = 1, . . . , K. Due to the assumption, the eG(i) is
independent with zero mean and the variance is σ2. Therefore, it is possible to obtain

limN→∞P

{∣∣∣∣∣ 1
K

K

∑
i=1

eG(i)
2 − σ2

∣∣∣< ε

}
= 1 (A4)

limN→∞P

{∣∣∣∣∣ 1
K

n

∑
i=1

∥∥XGi − LGi

∥∥2
2 − σ2

∣∣∣< ε

}
= 1 (A5)

Therefore, the relationship between ‖x− l‖2
2 and ∑n

i=1
∥∥XGi − LGi

∥∥2
2 is proved. �
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