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Abstract: Since most classifiers are biased toward the dominant class, class imbalance is a challenging
problem in machine learning. The most popular approaches to solving this problem include oversam-
pling minority examples and undersampling majority examples. Oversampling may increase the
probability of overfitting, whereas undersampling eliminates examples that may be crucial to the
learning process. We present a linear time resampling method based on random data partitioning
and a majority voting rule to address both concerns, where an imbalanced dataset is partitioned into
a number of small subdatasets, each of which must be class balanced. After that, a specific classifier is
trained for each subdataset, and the final classification result is established by applying the majority
voting rule to the results of all of the trained models. We compared the performance of the proposed
method to some of the most well-known oversampling and undersampling methods, employing a
range of classifiers, on 33 benchmark machine learning class-imbalanced datasets. The classification
results produced by the classifiers employed on the generated data by the proposed method were
comparable to most of the resampling methods tested, with the exception of SMOTEFUNA, which is
an oversampling method that increases the probability of overfitting. The proposed method produced
results that were comparable to the Easy Ensemble (EE) undersampling method. As a result, for
solving the challenge of machine learning from class-imbalanced datasets, we advocate using either
EE or our method.

Keywords: classification; data mining; KNN; CART; SVM; SMOTE

1. Introduction

A class imbalance problem occurs when training a dataset that contains examples
belonging to one class that significantly outnumber those belonging to the other class(es).
The first class is normally referred to as the majority class, while the latter is referred to
as the minority. In a single dataset, there may be more than one majority class and more
than one minority class. The core problem with class imbalance is that classifiers trained on
unequal training sets have a prediction bias that is associated with poor performance in
the minority class(es). The bias might range from a minor imbalance to a major imbalance
depending on the dataset used [1–4].

Since the minority class is frequently of crucial importance, as representing positive
instances that are rare in nature or costly to acquire, this problem has grown and has become
a substantial challenge [5]. This is true when considering contexts such as Biometrics [6–14],
disease detection [15–19], credit card fraud detection [20,21], gene profiling [22], face image
retrieval [23], content-based image retrieval [24,25], Internet of Things [23–33], Natural
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Language Processing [34,35], Anomaly Detection [36–46], network security [47–53], image
recognition [54–59], Big Data analytics [60–66], etc.

In formal terms, a supervised machine learning dataset D, containing n examples that
belong to m classes C1, C2, C3, . . . , Cm, is said to be an imbalanced dataset if and only if
any |Ci| >> |Cj|, where i and j are indexes ∈ {1, 2, 3, . . . , m}; and |Ci| is the cardinality
of class i, i.e., the number of examples belonging to class i.

Before classification, there are several approaches that might be used to solve an
imbalanced dataset problem, such as the following:

• More samples from the minority class(es) should be acquired from the discourse do-
main.

• Changing the loss function to give the failing minority class a higher cost [67].
• Oversampling of minority class examples.
• Undersampling of majority class examples.
• Any combination of the preceding methods.

In fact, the ability to collect more data is constrained by time and expense. Furthermore,
in some fields, the minority class is extremely rare, making it impossible to acquire enough
samples at any cost. E.g., in the case of recognizing an abnormal case vs. a normal case,
normal cases are easy to come by, whereas abnormal cases are difficult to obtain the
same quantity.

Cost adjustment, on the other hand, has been proven to be a successful method of
dealing with imbalance; however, it usually requires changes to the classification algorithm
and/or prior knowledge of acceptable misclassification costs.

As a result, we have two options for re-sampling: oversampling or undersampling. The
number of examples belonging to the minority class increases when oversampling is used,
while undersampling methods reduce the number of examples from the majority class.

However, both approaches, in our opinion, have their own set of problems. For
example, oversampling creates new examples out of nothingness based only on their
similarity to one or more of the minority’s examples. This is problematic because such
methods may increase the probability of overfitting the learning process [68,69].

Undersampling, on the other hand, eliminates examples that may be critical to the
learning process, making it even worse. This likewise produces positive results on paper,
but the opposite is true in practice.

In this paper, we present a Random Data Partitioning with Voting Rule (RDPVR)
method for Machine Learning from Class-Imbalanced Datasets to avoid the drawbacks
of both oversampling and undersampling. Here, we partition an imbalanced dataset into
smaller balanced subdatasets to establish a fair learning process for imbalanced datasets.
This is done by randomly selecting several majority’s examples equal to the number of
the minority’s examples, discarding all the extra majority’s examples, and keeping all
of minority’s examples for each subdataset. Thus, we ensure that each subdataset was
balanced. Then, we utilize each of these subdatasets to train a classifier independently,
resulting in several trained models that are all used to classify using a simple voting rule.
Naïve Bayes (NB), K-Nearest Neighbors (KNN), Classification and Regression Tree (CART),
and Support Vector Machine (SVM) are among the classifiers utilized to evaluate our
RDPVR method.

The following is the structure of this paper: The related work on imbalanced datasets
in machine learning is presented in the second section. The RDPVR method is illustrated in
Section 3, and the experimental results are listed and discussed in Section 4.

2. Related Work

In the literature, there is a plethora of ways for machine learning from imbalanced data.
However, we focus on oversampling and undersampling approaches in this study because
they are the most related approaches to our RDPVR method. For a more comprehensive
and extensive assessment, we refer the readers to [70–72].
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2.1. Oversampling

One of the most extensively utilized approaches for mitigating the detrimental conse-
quences of class imbalance is the Synthetic Minority Oversampling Technique (SMOTE) [73].
It interpolates synthetic examples in the training set’s collection of minority class instances
between nearest neighbors. As a result, a synthetic sample is created by combining the
characteristics of seed instances with randomly selected k-nearest neighbors. The user must
specify the k parameter. The SMOTE algorithm’s first version exclusively used synthetic
oversampling. They also combined synthetic oversampling and undersampling, which can
be effective [74]. SMOTE was empirically examined on nine benchmark datasets, and it
was found to boost the classification process.

Borderline-SMOTE [75] is a minority oversampling method based on SMOTE, in
which only the minority examples close to the borderline are oversampled. Their experi-
ments demonstrate that this solution improves classification results for the minority class
compared to SMOTE and other random oversampling methods tested.

SVMSMOTE [76] is also based on SMOTE and focuses on building SVM modifications
to address the problem of class imbalance effectively. SVM modeling uses a variety of
heuristics, such as oversampling, cost-sensitive learning, and undersampling. When
compared to other oversampling methods, this method yielded promising results.

Reverse-SMOTE (R-SMOTE) [77], an approach based on SMOTE and the inverse near-
neighbor notion, relies on oversampling by a synthetic inverse minority. After comparing
conventional sampling approaches to some methods including SMOTE, it was found that
R-SMOTE outperforms other oversampling methods in terms of precision, F-measurement,
and accuracy. Three benchmark datasets were used in the comparison.

Constrained Oversampling (CO) [78] is developed in order to limit noise creation in
oversampling. The overlapping regions in the dataset are initially extracted by this method.
Then, to define the limits of minority regions, Ant Colony Optimization is employed. Most
importantly, in order to provide a balanced dataset, oversampling under limitations is used
to synthesis fresh samples. This method differs from others in that it includes limitations in
the oversampling process to reduce noise creation. The reported results indicate that CO
outperforms a variety of oversampling benchmarks.

In addition, the Majority Weighted Minority Oversampling Technique (MWMOTE) [79]
was proposed as a solution to the problem of class-imbalance learning. MWMOTE finds
and weights difficult-to-learn significant minority class samples based on their distance
from neighboring majority class samples. Then, it creates synthetic samples from the
weighted significant minority class samples using a clustering algorithm. The primary
premise of MWMOTE is that all generated samples must belong to one of the minority
class clusters. In terms of numerous assessment measures, the reported results suggest that
MWMOTE is better than or similar to some of the other existing approaches.

In order to minimize bias, and pushing the classification decision border in the direc-
tion of the hard examples, adaptive synthetic (ADASYN) [80] was presented. The primary
idea behind ADASYN is to use weighted values for different minority class examples based
on how difficult they are to learn, with more synthetic data generated for minority class
examples that are more difficult to learn than minority class examples that are easier to
learn. The viability of this technique is proved by the results of experiments performed on
a variety of datasets using five different evaluation methods.

Synthetic Minority Oversampling Technique Based on Furthest Neighbor Algorithm
(SOMTEFUNA) [5] is another exciting and recent method for machine learning from
imbalanced datasets. To produce fresh synthetic minority examples, this method employs
the farthest neighbor examples. SOMTEFUNA has a number of advantages over some other
approaches, one of which being the lack of tuning parameters, which makes it easier to be
used in real-world scenarios. Utilizing Support Vector Machine and Naïve Bayes classifiers,
SOMTEFUNA compared the benefits of resampling to common methods such as SMOTE
and ADASYN. The reported findings show that SOMTEFUNA is a viable alternative to the
other oversampling methods.
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Sampling WIth the Majority (SWIM) [81] is a synthetic oversampling method that is
robust in extreme class imbalance scenarios. SWIM’s main characteristic is that it guides
the generation process using the density of the well-sampled majority class. Both the
radial basis function and Mahalanobis distance were employed to build SWIM’s model.
SWIM was tested on 25 benchmark datasets, and the reported results reveal that SWIM
outperforms some of the common oversampling approaches.

Other ways of oversampling include, but are not limited to, the work of [82–111].

2.2. Undersampling

The undersampling classification algorithm based on mean shift clustering for imbal-
anced data (UECMS) [112] was presented to accomplish the undersampling by using mean
shift clustering and instance selection for the samples of majority classes. A fresh balanced
dataset is created by combining the selected samples with all of the minority samples
from the original dataset. The balanced datasets are also classified using bagging-based
ensemble learning methods. The UECMS approach enhances the classification accuracy for
imbalanced data, according to the findings of the study.

Another undersampling method based on meta-learning was presented to solve
class-imbalance learning [4]. This method’s fundamental idea is to parameterize and
train the data sampler in order to enhance classification performance over the evaluation
measure. For training the data sampler, they applied reinforcement learning to solve the
non-differentiable optimization problem. By including evaluation metric optimization into
the data sampling process, their technique may learn which instances should be discarded
for a particular classifier and evaluation measure. As a data-level approach, this method can
be easily applied to any evaluation measure and classifier. Experiments on both synthetic
and realistic datasets confirmed the efficacy of their method.

DBMIST-US [113] is a two-stage undersampling method that combines the DB-
SCAN [114] clustering algorithm with a minimal spanning tree algorithm to reduce noisy
samples and clear the decision boundary, allowing classifiers to handle imbalance and
class overlap at the same time. The results show that DBMIST-US outperforms a total of
12 undersampling methods.

The Easy Ensemble and Balance Cascade (EE&BC) [115] is maybe one of the most
interesting undersampling approaches we found in the literature. This approach consists
of two methods: Easy Ensemble (EE) and Balance Cascade (BC). EE takes numerous
subgroups of the majority class, trains a learner with each of them, and then combines
their outputs. BC trains the learners in stages, with the majority of class examples properly
classified by the present trained learners being eliminated from consideration at each stage.
Both EE and BC outperform other methods in terms of accuracy and time consumed,
according to the results of balancing a total of 16 datasets.

Other ways of undersampling include, but are not limited to, the work of [116–142].
Oversampling and undersampling both have advantages and disadvantages, and

there is no one-size-fits-all method for fair machine learning from a class-imbalanced
dataset, as previously noted. EE&BC, on the other hand, was the most akin to our views
and thus to our proposed method, because both EE&BC and the proposed RDPVR aim
to benefit from every single example, regardless of whether it belongs to the majority or
minority group.

Since the proposed RDPVR removes the excessive majority examples, it can be re-
garded as an undersampling method; nevertheless, the eliminated ones in one subdataset
may exist in another, avoiding the aforementioned major problem of undersampling.

3. The Proposed Method

When it comes to data classification, class imbalance occurs when one majority class’s
training samples vastly outnumber those of the other minority class. The fundamental issue
with class imbalance is that classifiers trained on an imbalanced dataset have a prediction
bias, resulting in poor performance in the minority class.
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We opt for randomly partitioning the dataset into smaller balanced subdatasets to
mitigate the effect of class imbalance in a machine learning dataset and build a fair learning
process while avoiding the downsides of both oversampling and undersampling. This is
accomplished by selecting a number of majority examples equal to the number of minority
examples at random, removing any excess majority examples, and maintaining all minority
examples for each subdataset. As a result, we make certain that each subdataset is balanced.
Then, using each of these subdatasets separately, we train a classifier, yielding a number
of trained models that are all utilized to classify using a simple voting rule, as shown in
Figures 1 and 2. One important factor that needs to be considered here is the number of
subsets (partitions). The number of subsets needed by the algorithm is a hyper parameter
that needs to be tuned for each dataset.
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Figure 1. Illustration of the proposed RDPVR method, Green color represents minority examples,
blue represents majority examples.

We employed the following classifiers to evaluate the proposed RDPVR method: KNN,
SVM, NB, and CART, because they are commonly used in this type of work. It is worth
noting that we utilize the same classifier across all data partitions, as depicted in Figure 2.

One important point to mention here is that the EE method works in a similar way
to our proposed method. However, the main difference is that the proposed method uses
strong classifiers instead of employing weak learners.
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4. Data

In order to compare the proposed RDPVR method to some of the other methods,
we selected 33 small, medium, and large benchmark datasets, all of which had only two
classes [5]. The datasets were retrieved from the Kaggle website (https://www.kaggle.com/
accessed on 1 December 2021). The datasets are described in Table 1 in terms of the number
of examples, features, classes, and imbalance ratios.

To compare the proposed RDPVR method to the other methods in this study, we
used the f-score measure. The F-score is a widely used classification measure for evaluat-
ing classifiers, particularly those trained on poorly balanced datasets, mostly because it
harmonically combines recall and precision. Therefore, it helps to comprehend the perfor-
mance of a classifier after the resampling process. The F-score can be calculated using the
following formula.

F− score = 2× Precision× Recall
Precision + Recall

(1)

https://www.kaggle.com/
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Table 1. Description of the datasets used to compare the methods in this work.

ID Name No. of
Instances

No. of
Features

No. of
Classes

Imbalance
Ratio

DS1 Ar1 121 30 2 13.4
DS2 Ar3 63 30 2 7.875
DS3 Ar4 107 30 2 5.45
DS4 Ar5 36 30 2 4.5
DS5 Ar6 101 30 2 6.7
DS6 Kc1 2109 22 2 60.5
DS7 Kc2 522 22 2 4.9
DS8 Pc1 1109 22 2 14.4
DS9 Pc3 1563 38 2 9.8

DS10 Pc4 1458 38 2 8.2
DS11 Australian 690 42 2 1.25
DS12 Bank 1372 4 2 1.25
DS13 Heart 270 25 2 1.25
DS14 Oil-Spill 937 49 2 21.85
DS15 Phoneme 5404 5 2 2.41
DS16 Apalone19 4174 8 2 129.44
DS17 Apalone9-18 731 8 2 16.4
DS18 Page-blocks0 5472 11 2 8.79
DS19 Pima 768 9 2 1.87
DS20 Segment0 2308 20 2 6.2
DS21 Shuttle-c0 1829 10 2 13.87
DS22 Vehicle0 846 19 2 3.25
DS23 Vehicle1 846 19 2 2.9
DS24 Vehicle2 846 19 2 2.88
DS25 Vehicle3 846 19 2 2.99
DS26 Vowe10 988 14 2 9.98
DS27 Wisconsin 683 10 2 1.86
DS28 Yeast-1-2-8-9 947 9 2 30.57
DS29 Yeast-1-4-5-8 693 9 2 22.1
DS30 Yeast1 1484 9 2 2.46
DS31 Yeast3 1484 9 2 8.1
DS32 Yeast4 1484 9 2 28.1
DS33 Yeast5 1484 9 2 32.73

5. Experiments and Results

We used the Python programming language on Google Collaboratory, a Google Re-
search gift, to program and evaluate the proposed RDPVR and the other methods compared.
It is a gift to researchers all over the world because this free technology allows groups to
collaborate, write, and run any Python code, and it is especially well-suited to machine
learning while also providing free access to computer resources such as GPUs [143]. Table 2
shows the specifications of the Google Collaboratory hardware utilized.

Table 2. Hardware specifications of Google Collaboratory.

Property Value

CPU Model Name Intel (R) Xeon (R)
CPU Freq. 2.30 GHz
No. CPU Cores 2
CPU Family Haswell
Available RAM 12 GB (upgradable to 26.75 GB)
Disk Space 25 GB

We arbitrarily used the CART classifier on different numbers of subdatasets in the
range of 10 to 100 and 100 to 1000 to find the best number of subdatasets to use for the
comparisons, as shown in Table 3. Our method has a parameter that needs to be tuned,
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which is the number of subdatasets generated from the original dataset. We do not report
the results of using a small number of subdatasets, such as 1 or 2, because we believe that
doing so is illogical because a large number of the majority examples will be excluded,
potentially affecting the learning process.

Table 3. The CART classifier average F-score result of the proposed RDPVR over all datasets for each
number of subdatasets.

#Subsets Avg. F-Score #Subsets Avg. F-Score Improvement

10 0.778 100 0.798 2.0%
20 0.785 200 0.806 2.1%
30 0.780 300 0.803 2.3%
40 0.780 400 0.802 2.2%
50 0.781 500 0.799 1.8%
60 0.783 600 0.808 2.5%
70 0.786 700 0.809 2.3%
80 0.782 800 0.815 3.3%
90 0.788 900 0.810 2.1%

100 0.787 1000 0.804 1.7%

Table 3 shows that with a few exceptions, the RDPVR’s performance improves as the
number of the subdatasets increases. These exceptions are necessary for two reasons: (1)
The majority examples are chosen at random, and (2) Different types of datasets prefer
a different number of subdatasets. In general, the larger the number of subdatasets, the
more examples from the majority class that can participate; however, the larger the number
of subdatasets, the more training time is required. Here, we utilized 400 subdatasets for
comparative purposes because using that many boosts the F-score by 2.2% when compared
to using 40 subdatasets for instance, with the caveat that using 800 should be better in
terms of accuracy but requires more training time. According to the results in Table 3,
employing 300 is better than 400, but we want to make sure that a higher number of the
majority examples participate in the learning process.

We compared our method to a number of the most common resampling methods
used to solve class-imbalance problem, which is also implemented on the same Google
Collaboratory platform. These methods include EE [115], SMOTE [73], ADASYN [80],
SOMTEFUNA) [5], SVMSMOTE [76], and Borderline-SMOTE [75]. After applying these
methods to the datasets mentioned in Table 1, we used different classifiers to classify each
dataset. The comparison accuracy results using SVM are shown in Table 4. In Tables 4–7,
The values with gray background are superior compared to EE method.

As shown in Table 4, the best results are obtained when SMOTEFUNA is used for
oversampling on almost all datasets. SMOTEFUNA, on the other hand, has a significant
disadvantage: it is time consuming. SMOTEFUNA searches for the farthest neighbor using
quadratic time. Furthermore, it takes another quadratic time for each created point to
determine the class of the closest point to the created one. As a result, it may not be suitable
for large datasets.

Theoretically, the proposed RDPVR has a linear O(n) time complexity because it
works on the training data set a constant (C) times to generate C random undersampled
subdatasets. However, the actual time complexity is O(Cn); this means that the higher
the number of the subdatasets, the more time it consumes, even though it is significantly
faster than SMOTEFUNA even when we used 400 subdatasets, especially when dealing
with large datasets. Furthermore, in certain cases where the number of examples in the
minority class is much smaller than n (the size of the dataset), the time complexity becomes
constant, i.e., O(C), which is asymptotically equivalent to O(1), because we will have a
constant number of very small subdatasets.
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Table 4. SVM classification results using F-score, with shaded cells with gray indicate the best
performance of the proposed method compared to EE.

Dataset
ID

Proposed EE SMOTE ADASYN SVMSMOTE Borderline-SMOTE SMOTEFUNA
AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD

DS1 0.51 0.08 0.52 0.09 0.58 0.10 0.53 0.08 0.53 0.07 0.56 0.09 0.95 0.03
DS2 0.63 0.17 0.55 0.10 0.66 0.13 0.63 0.10 0.69 0.13 0.72 0.11 0.95 0.04
DS3 0.69 0.05 0.59 0.07 0.56 0.08 0.58 0.05 0.65 0.06 0.59 0.07 0.90 0.04
DS4 0.79 0.13 0.83 0.14 0.81 0.14 0.80 0.15 0.79 0.12 0.78 0.15 0.90 0.06
DS5 0.55 0.10 0.52 0.10 0.59 0.12 0.58 0.12 0.57 0.11 0.57 0.10 0.93 0.02
DS6 0.75 0.02 0.99 0.00 0.92 0.02 0.92 0.02 0.91 0.02 0.92 0.02 0.99 0.00
DS7 0.85 0.04 0.98 0.02 0.91 0.03 0.93 0.03 0.90 0.03 0.94 0.01 0.98 0.01
DS8 0.70 0.05 0.97 0.02 0.82 0.03 0.82 0.03 0.83 0.03 0.83 0.03 0.97 0.01
DS9 0.63 0.02 0.58 0.03 0.63 0.02 0.62 0.02 0.66 0.02 0.65 0.03 0.94 0.01

DS10 0.65 0.02 0.74 0.02 0.71 0.01 0.70 0.02 0.72 0.02 0.70 0.02 0.91 0.03
DS11 0.84 0.02 0.84 0.02 0.86 0.02 0.86 0.02 0.86 0.03 0.85 0.02 0.98 0.01
DS12 0.95 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.87 0.01
DS13 0.79 0.02 0.79 0.04 0.79 0.04 0.79 0.04 0.79 0.03 0.78 0.04 0.98 0.01
DS14 0.74 0.04 0.64 0.03 0.71 0.04 0.70 0.03 0.75 0.07 0.74 0.06 0.79 0.02
DS15 0.75 0.01 0.78 0.01 0.79 0.01 0.77 0.01 0.78 0.01 0.77 0.01 0.98 0.00
DS16 0.47 0.01 0.43 0.01 0.50 0.01 0.50 0.01 0.52 0.02 0.52 0.03 0.97 0.01
DS17 0.65 0.04 0.64 0.04 0.68 0.05 0.66 0.04 0.72 0.04 0.71 0.04 0.91 0.01
DS18 0.84 0.01 0.86 0.01 0.87 0.01 0.83 0.01 0.85 0.01 0.85 0.02 1.00 0.00
DS19 0.70 0.03 0.71 0.03 0.71 0.02 0.71 0.02 0.72 0.03 0.71 0.02 0.80 0.02
DS20 0.88 0.03 0.98 0.01 0.99 0.00 0.98 0.01 0.98 0.01 0.98 0.01 0.84 0.02
DS21 0.99 0.01 1.00 0.01 0.99 0.01 0.99 0.00 0.99 0.00 0.99 0.00 0.97 0.01
DS22 0.74 0.05 0.94 0.02 0.95 0.01 0.95 0.02 0.94 0.02 0.94 0.02 0.90 0.01
DS23 0.65 0.03 0.73 0.03 0.76 0.03 0.76 0.03 0.75 0.03 0.76 0.03 1.00 0.00
DS24 0.80 0.02 0.95 0.01 0.97 0.01 0.96 0.01 0.96 0.01 0.96 0.01 0.99 0.00
DS25 0.62 0.03 0.71 0.02 0.74 0.02 0.75 0.02 0.74 0.02 0.74 0.02 0.84 0.02
DS26 0.81 0.03 0.90 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.02
DS27 0.96 0.01 0.97 0.01 0.97 0.01 0.97 0.01 0.97 0.01 0.97 0.01 1.00 0.00
DS28 0.67 0.05 0.90 0.05 0.77 0.05 0.77 0.05 0.77 0.07 0.77 0.06 0.84 0.01
DS29 0.72 0.05 0.93 0.05 0.83 0.06 0.82 0.06 0.84 0.05 0.84 0.05 0.94 0.01
DS30 0.65 0.03 0.72 0.02 0.69 0.02 0.67 0.02 0.69 0.02 0.67 0.02 0.96 0.01
DS31 0.88 0.03 0.83 0.01 0.86 0.03 0.83 0.02 0.87 0.03 0.85 0.02 0.98 0.01
DS32 0.65 0.04 0.57 0.03 0.61 0.04 0.61 0.04 0.65 0.06 0.63 0.05 1.00 0.00
DS33 0.74 0.03 0.73 0.02 0.82 0.03 0.82 0.03 0.80 0.04 0.82 0.04 0.98 0.01

Average 0.74 0.04 0.78 0.03 0.79 0.04 0.78 0.03 0.79 0.04 0.79 0.04 0.94 0.04

Table 5. NB classification results using the F-score, with shaded cells with gray indicate the best
performance of the proposed method compared to EE.

Dataset
ID

Proposed EE SMOTE ADASYN SVMSMOTE Borderline-SMOTE SMOTEFUNA
AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD

DS1 0.45 0.05 0.51 0.08 0.41 0.07 0.41 0.07 0.43 0.08 0.42 0.07 0.89 0.04
DS2 0.77 0.13 0.57 0.11 0.77 0.12 0.72 0.14 0.79 0.13 0.78 0.12 0.94 0.07
DS3 0.68 0.09 0.64 0.04 0.67 0.09 0.68 0.06 0.68 0.08 0.66 0.07 0.90 0.04
DS4 0.67 0.15 0.69 0.17 0.66 0.14 0.67 0.16 0.67 0.16 0.67 0.16 0.90 0.06
DS5 0.55 0.09 0.49 0.07 0.61 0.13 0.63 0.12 0.59 0.12 0.61 0.11 0.88 0.03
DS6 0.89 0.04 1.00 0.00 0.75 0.02 0.73 0.02 0.72 0.02 0.74 0.02 0.92 0.01
DS7 0.83 0.03 0.98 0.01 0.73 0.03 0.73 0.05 0.71 0.04 0.73 0.04 0.90 0.02
DS8 0.88 0.06 0.96 0.02 0.70 0.04 0.70 0.04 0.70 0.04 0.70 0.04 0.97 0.01
DS9 0.62 0.03 0.60 0.02 0.37 0.13 0.32 0.11 0.57 0.06 0.46 0.12 0.93 0.01

DS10 0.68 0.02 0.74 0.02 0.68 0.04 0.68 0.03 0.65 0.05 0.68 0.04 0.90 0.01
DS11 0.85 0.01 0.83 0.02 0.74 0.07 0.72 0.07 0.72 0.07 0.73 0.07 0.97 0.01
DS12 0.89 0.03 1.00 0.00 0.85 0.02 0.85 0.02 0.84 0.02 0.84 0.02 0.79 0.01
DS13 0.80 0.04 0.79 0.02 0.81 0.06 0.82 0.07 0.80 0.06 0.80 0.06 0.94 0.01
DS14 0.65 0.03 0.64 0.04 0.22 0.08 0.21 0.08 0.37 0.10 0.31 0.12 0.42 0.01
DS15 0.76 0.01 0.78 0.01 0.69 0.01 0.67 0.01 0.68 0.01 0.67 0.01 0.95 0.00
DS16 0.47 0.03 0.43 0.01 0.36 0.01 0.37 0.01 0.41 0.04 0.40 0.05 0.98 0.01
DS17 0.58 0.03 0.64 0.05 0.49 0.03 0.48 0.03 0.53 0.03 0.50 0.03 0.73 0.01
DS18 0.84 0.01 0.87 0.01 0.73 0.02 0.77 0.01 0.71 0.02 0.76 0.02 0.94 0.01
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Table 5. Cont.

Dataset
ID

Proposed EE SMOTE ADASYN SVMSMOTE Borderline-SMOTE SMOTEFUNA
AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD

DS19 0.69 0.03 0.74 0.03 0.73 0.03 0.73 0.02 0.73 0.03 0.74 0.03 0.79 0.02
DS20 0.91 0.02 0.98 0.01 0.75 0.03 0.71 0.02 0.71 0.03 0.73 0.04 0.79 0.10
DS21 0.99 0.01 1.00 0.00 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.80 0.02
DS22 0.73 0.04 0.92 0.01 0.64 0.03 0.60 0.03 0.62 0.03 0.61 0.03 0.79 0.01
DS23 0.67 0.03 0.71 0.02 0.63 0.03 0.60 0.03 0.62 0.03 0.59 0.03 1.00 0.00
DS24 0.90 0.04 0.95 0.01 0.73 0.04 0.71 0.03 0.73 0.06 0.78 0.05 0.94 0.01
DS25 0.64 0.04 0.70 0.03 0.62 0.03 0.62 0.03 0.61 0.03 0.61 0.04 0.69 0.02
DS26 0.85 0.03 0.91 0.02 0.76 0.03 0.77 0.06 0.77 0.03 0.77 0.04 0.72 0.04
DS27 0.96 0.01 0.96 0.01 0.96 0.01 0.95 0.02 0.95 0.01 0.95 0.02 0.84 0.02
DS28 0.91 0.06 0.90 0.03 0.88 0.06 0.88 0.06 0.89 0.05 0.88 0.05 0.70 0.02
DS29 0.94 0.05 0.94 0.04 0.85 0.06 0.85 0.07 0.88 0.08 0.86 0.07 0.69 0.01
DS30 0.65 0.03 0.71 0.02 0.27 0.01 0.26 0.01 0.26 0.01 0.27 0.01 0.71 0.02
DS31 0.88 0.02 0.82 0.03 0.27 0.09 0.21 0.07 0.23 0.08 0.21 0.07 0.99 0.00
DS32 0.64 0.04 0.58 0.03 0.15 0.05 0.14 0.06 0.23 0.09 0.18 0.08 0.95 0.00
DS33 0.80 0.04 0.71 0.02 0.50 0.03 0.49 0.03 0.42 0.06 0.49 0.03 0.79 0.02

Average 0.76 0.04 0.78 0.03 0.63 0.05 0.63 0.05 0.64 0.05 0.64 0.05 0.85 0.05

Table 6. CART classification results using the F-score, with shaded cells with gray indicate the best
performance of the proposed method compared to EE.

Dataset
ID

Proposed EE SMOTE ADASYN SVMSMOTE Borderline-SMOTE SMOTEFUNA
AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD

DS1 0.58 0.08 0.50 0.08 0.52 0.09 0.56 0.15 0.56 0.10 0.54 0.10 0.93 0.04
DS2 0.74 0.08 0.56 0.11 0.70 0.14 0.66 0.10 0.70 0.15 0.67 0.14 0.89 0.05
DS3 0.68 0.11 0.64 0.06 0.62 0.08 0.61 0.06 0.63 0.07 0.63 0.09 0.87 0.04
DS4 0.68 0.17 0.76 0.20 0.69 0.21 0.63 0.16 0.63 0.25 0.58 0.17 0.88 0.04
DS5 0.54 0.12 0.53 0.10 0.54 0.07 0.53 0.08 0.53 0.06 0.55 0.08 0.87 0.02
DS6 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00 0.99 0.01 1.00 0.00 1.00 0.00
DS7 0.97 0.01 0.98 0.01 0.97 0.01 0.96 0.02 0.95 0.02 0.97 0.02 0.99 0.01
DS8 0.98 0.01 0.97 0.01 0.99 0.01 0.99 0.01 0.98 0.01 0.99 0.01 1.00 0.00
DS9 0.63 0.03 0.58 0.02 0.61 0.02 0.62 0.03 0.63 0.02 0.62 0.02 0.91 0.01

DS10 0.64 0.02 0.74 0.02 0.73 0.03 0.72 0.05 0.73 0.02 0.71 0.03 0.93 0.02
DS11 0.86 0.02 0.84 0.02 0.81 0.03 0.81 0.02 0.82 0.02 0.81 0.02 0.96 0.01
DS12 0.92 0.01 1.00 0.00 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.89 0.01
DS13 0.77 0.06 0.81 0.05 0.74 0.05 0.76 0.04 0.74 0.04 0.73 0.03 0.96 0.01
DS14 0.65 0.04 0.60 0.04 0.64 0.05 0.63 0.06 0.64 0.05 0.63 0.04 0.74 0.01
DS15 0.72 0.01 0.78 0.01 0.83 0.01 0.83 0.01 0.84 0.01 0.83 0.02 0.98 0.00
DS16 0.49 0.01 0.43 0.01 0.51 0.02 0.51 0.02 0.50 0.01 0.50 0.01 1.00 0.00
DS17 0.61 0.06 0.63 0.04 0.63 0.04 0.61 0.08 0.62 0.06 0.62 0.04 0.92 0.00
DS18 0.80 0.03 0.88 0.01 0.91 0.01 0.90 0.01 0.91 0.01 0.90 0.01 0.99 0.00
DS19 0.70 0.04 0.71 0.02 0.67 0.02 0.64 0.03 0.66 0.04 0.65 0.02 0.74 0.01
DS20 0.93 0.03 0.98 0.01 0.98 0.00 0.99 0.01 0.98 0.01 0.99 0.01 0.77 0.05
DS21 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.94 0.01
DS22 0.76 0.04 0.93 0.02 0.90 0.03 0.89 0.03 0.90 0.03 0.89 0.03 0.91 0.01
DS23 0.61 0.02 0.70 0.03 0.69 0.02 0.67 0.02 0.66 0.04 0.65 0.01 1.00 0.00
DS24 0.86 0.03 0.95 0.02 0.93 0.02 0.94 0.02 0.94 0.02 0.93 0.02 0.98 0.01
DS25 0.62 0.01 0.71 0.04 0.68 0.03 0.69 0.04 0.66 0.04 0.67 0.03 0.81 0.02
DS26 0.85 0.02 0.91 0.03 0.94 0.03 0.94 0.02 0.92 0.02 0.92 0.02 0.85 0.02
DS27 0.94 0.02 0.95 0.01 0.94 0.02 0.94 0.02 0.93 0.02 0.94 0.02 0.98 0.01
DS28 0.97 0.04 0.92 0.05 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 0.80 0.02
DS29 0.98 0.03 0.92 0.06 0.99 0.01 0.99 0.01 0.99 0.02 0.99 0.01 0.94 0.01
DS30 0.65 0.02 0.72 0.02 0.66 0.03 0.66 0.03 0.66 0.02 0.66 0.02 0.95 0.01
DS31 0.80 0.02 0.82 0.04 0.84 0.02 0.83 0.01 0.84 0.02 0.83 0.02 1.00 0.00
DS32 0.65 0.03 0.56 0.03 0.62 0.06 0.63 0.04 0.60 0.04 0.62 0.03 0.99 0.00
DS33 0.73 0.05 0.73 0.05 0.81 0.07 0.82 0.05 0.79 0.05 0.82 0.03 0.96 0.02

Average 0.77 0.04 0.78 0.04 0.79 0.04 0.79 0.04 0.79 0.04 0.78 0.03 0.92 0.04
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Table 7. KNN classification results using the F-score, with shaded cells with gray indicate the best
performance of the proposed method compared to EE.

Dataset
ID

Proposed EE SMOTE ADASYN SVMSMOTE Borderline-SMOTE SMOTEFUNA
AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD AVG ±STD

DS1 0.47 0.07 0.50 0.09 0.52 0.09 0.52 0.09 0.57 0.11 0.54 0.10 0.95 0.03
DS2 0.75 0.15 0.62 0.10 0.65 0.08 0.62 0.10 0.72 0.13 0.73 0.11 0.93 0.05
DS3 0.69 0.07 0.68 0.06 0.59 0.08 0.60 0.05 0.66 0.07 0.62 0.07 0.90 0.04
DS4 0.78 0.15 0.78 0.15 0.76 0.14 0.76 0.14 0.81 0.17 0.77 0.15 0.88 0.05
DS5 0.61 0.15 0.56 0.05 0.65 0.09 0.65 0.10 0.65 0.10 0.64 0.09 0.91 0.02
DS6 0.77 0.02 0.99 0.01 0.90 0.01 0.90 0.01 0.89 0.01 0.89 0.01 0.97 0.01
DS7 0.86 0.04 0.99 0.01 0.92 0.03 0.92 0.02 0.92 0.03 0.92 0.02 0.98 0.01
DS8 0.72 0.03 0.97 0.02 0.79 0.04 0.78 0.03 0.79 0.04 0.79 0.04 0.98 0.01
DS9 0.62 0.02 0.59 0.02 0.62 0.02 0.61 0.02 0.64 0.03 0.63 0.03 0.93 0.01

DS10 0.60 0.03 0.74 0.03 0.69 0.03 0.68 0.03 0.69 0.03 0.69 0.03 0.90 0.02
DS11 0.86 0.02 0.85 0.02 0.82 0.02 0.80 0.02 0.81 0.02 0.81 0.01 0.98 0.01
DS12 0.94 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.91 0.01
DS13 0.80 0.03 0.79 0.05 0.77 0.04 0.75 0.03 0.76 0.02 0.76 0.02 0.98 0.00
DS14 0.68 0.04 0.61 0.02 0.68 0.05 0.69 0.04 0.71 0.06 0.71 0.05 0.76 0.01
DS15 0.75 0.01 0.78 0.01 0.85 0.01 0.84 0.01 0.85 0.01 0.84 0.01 0.98 0.00
DS16 0.46 0.01 0.44 0.02 0.52 0.02 0.52 0.02 0.51 0.02 0.51 0.02 0.94 0.01
DS17 0.61 0.04 0.62 0.03 0.64 0.04 0.64 0.03 0.66 0.04 0.66 0.04 0.92 0.01
DS18 0.78 0.01 0.88 0.01 0.92 0.01 0.90 0.01 0.92 0.01 0.92 0.01 1.00 0.00
DS19 0.72 0.03 0.74 0.03 0.66 0.03 0.66 0.03 0.67 0.04 0.67 0.03 0.78 0.02
DS20 0.60 0.03 0.99 0.00 0.97 0.01 0.97 0.01 0.96 0.01 0.98 0.00 0.82 0.03
DS21 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.93 0.01
DS22 0.68 0.02 0.93 0.01 0.88 0.02 0.88 0.02 0.88 0.02 0.88 0.02 0.91 0.01
DS23 0.59 0.02 0.71 0.02 0.67 0.02 0.67 0.02 0.67 0.02 0.67 0.02 1.00 0.00
DS24 0.69 0.05 0.96 0.01 0.92 0.01 0.92 0.01 0.91 0.01 0.92 0.01 0.98 0.00
DS25 0.61 0.02 0.71 0.03 0.66 0.01 0.67 0.02 0.67 0.02 0.66 0.02 0.77 0.02
DS26 0.80 0.02 0.90 0.03 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.83 0.02
DS27 0.97 0.01 0.96 0.01 0.97 0.01 0.96 0.01 0.96 0.01 0.96 0.01 1.00 0.00
DS28 0.66 0.05 0.91 0.05 0.72 0.05 0.71 0.04 0.73 0.05 0.74 0.06 0.77 0.03
DS29 0.65 0.03 0.93 0.04 0.75 0.05 0.74 0.04 0.80 0.05 0.80 0.03 0.93 0.01
DS30 0.60 0.03 0.71 0.02 0.66 0.03 0.64 0.03 0.66 0.03 0.65 0.03 0.95 0.00
DS31 0.84 0.03 0.81 0.02 0.83 0.01 0.83 0.02 0.83 0.02 0.83 0.02 0.95 0.01
DS32 0.64 0.03 0.56 0.02 0.61 0.03 0.61 0.03 0.61 0.04 0.61 0.05 0.99 0.00
DS33 0.72 0.05 0.70 0.04 0.77 0.05 0.77 0.05 0.77 0.05 0.77 0.05 0.96 0.01

Average 0.71 0.04 0.79 0.03 0.77 0.03 0.76 0.03 0.78 0.04 0.77 0.04 0.92 0.04

When excluding the results of SMOTEFUNA, the proposed RDPVR outperforms the
other methods on four datasets, namely DS3, DS13, DS31, and DS32, when SVM is used.
In comparison to other methods, EE is also an efficient resampling method. Comparing
to EE, the proposed RDPVR is better in 11 datasets, and it obtains comparable results in
the other datasets; therefore, we make a direct comparison between the RDPVR and EE in
Figure 3. A closer inspection of this graph reveals that the proposed RDPVR and EE yield
comparable results.

Compared to the SVM classifier, the Naive Bayes (NB) classifier produced significantly
better F-score results. Table 5 shows the NB classifier’s F-score results after applying each
resampling method to all datasets.

Table 5 shows that the proposed RDPVR results are better than other methods on
11 datasets, excluding the SMOTEFUNA results. On the other hand, on 19 datasets, the
EE method achieved better. As shown in Table 5, when using NB for classification, the
RDPVR’s performance improves significantly in terms of the F-score (from 74% to 76% on
average), achieving competitive results as shown in Figure 4, where the proposed RDPVR’s
curve is almost identical to that of the EE resampling method, which was possibly due to
the similar voting system used by both methods.
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Figure 4. NB-based F-score comparison of RDPVR and EE methods on all datasets.

As can be seen in Tables 4 and 5, the classification results are influenced by the classifier
used to some extent, so we decided to run more tests with more classifiers, namely, CART
and KNN.

On 12 datasets, we see an improvement in the F-score obtained by CART when using
the proposed RDPVR generated subdatasets; the results are higher than both SVM and
NB (77% on average). The F-score results obtained by all classifiers on all resampled data
generated by the resampling methods compared, including the proposed RDPVR, are
shown in Table 6.

As shown in Tables 4–6, SMOTEFUNA has significantly better performance, even with
different classifiers. RDPVR and EE methods, on the other hand, show comparable results
as with the previous classifiers, however, with better performance than NB and SVM when
using CART. It is worth noting that the proposed RDPVR resampling method recorded a
perfect F-score (see DS21 in Table 6 and Figure 5).
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Figure 5. CART-based F-score comparison of RDPVR, EE, and SMOTEFUNA methods on all datasets.

As can be seen in Table 7, which displays KNN (k = 1) classification results using the
F-score, the performance of the proposed RDPVR is detracted if compared to its results
obtained by the previous classifiers, recording only a 71% F-score on average. Figure 6
shows that when RDPVR and EE were compared using KNN, the results were comparable,
and this is similar to the previous findings in Figures 3–5.
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Figure 6. KNN-based F-score comparison of RDPVR, EE, and SMOTEFUNA methods on all datasets.

The performance of the SMOTEFUNA resampling method was not affected by any of
the classifiers used, as shown in Tables 4–7 and Figures 3–6, and it achieved the best results
compared to all the resampling methods investigated. On the contrary, we notice that the
classifier had a significant impact on all other resampling methods, including our proposed
method. We also notice that the second place can go to either EE or the proposed RDPVR
in most cases, as both methods have roughly similar performance. We attribute this to the
core of both methods, as they both use a voting rule on a number of subdatasets, and both
methods employ the majority of examples from the majority class as well as those from the
minority class.

Most of the oversampling methods, namely SMOTE, ADASYN, SVMSMOTE, and
Borderline-SMOTE, are faster than both EE and the proposed RDPVR, according to the
time comparison. This is to be expected, given that these approaches only utilize one
training dataset, whereas EE uses ten estimators and RDPVR (in this experiment) uses ten
subdatasets. Figure 7 compares the training times of RDPVE and EE only for the same
reason. The SMOTEFUNA is an exception, which is to be expected given that it requires
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quadratic time to find the farthest point (example) in the feature space while using only
one training—partially generated—dataset.
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Figure 7. Training time comparison of the RDPVE and EE undersampling methods, using
CART classifier.

The proposed method is faster than the EE, as seen in Figure 7. This is most likely
due to the EE’s time-consuming endeavor to find the best deterministic examples for its
estimators, whereas ours select them at random. However, in order to make the comparison
fair, we used only ten subdatasets for the proposed RDPVE, because RDPVE achieves
reasonable results with only ten subdatasets, as shown in Table 3, and the EE already uses
ten estimators.

6. Conclusions

In this paper, we propose a random data partitioning with majority voting rule for
undersampling machine learning class-imbalanced datasets. The proposed method divides
an imbalanced dataset into a number of small subdatasets, each of which is enforced to
be class balanced. Then, a specific classifier is trained on each subdatasets, and the final
classification result is obtained by performing the majority rule voting on all the results
obtained by the trained models.

The proposed method takes linear time and, in some cases, constant time, especially
when the number of examples in the minority class is small in comparison to the total
number of examples in the training dataset. We chose an undersampling-like approach
because we believe that the oversampling approach is problematic because it may increase
the probability of overfitting.

On 33 benchmark machine learning class-imbalanced datasets, we evaluated the
performance of the proposed method to some of the most well-known oversampling and
undersampling methods, employing a variety of classifiers. Except for the SVMSMOTE,
which is an oversampling method that may overfit the learning process, the classification
results obtained by the classifiers employed on the generated data by the proposed method
were better than most of the resampling methods tested.

Apart from that, the proposed method performed the best in at least 11 datasets
scoring 71% to 77% average F-score depending on the classifier used. In general, the results
of the proposed method were comparable to that of the EE, which is also an undersampling
method. Therefore, we recommend the use of any of these undersampling methods for
solving the problem of machine learning from class-imbalanced datasets.
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The proposed method’s weakness is obviously its classification accuracy, since it is
outperformed by one of the oversampling methods, which we do not care about as much
as discussed earlier, but it is also outperformed by one of the undersampling methods
on occasion. The explanation could be due to a random selection of the majority cases
in a certain subdataset. As a result, we need to come up with a better technique for
such selection, aiming to preserve the most deterministic majority example possible while
applying some criteria. Another weakness of the proposed method is its lack of ability
to optimally determine the number of subdatasets, since we observed that this varies
depending on the type of datasets used. Therefore, we need to develop a better strategy to
propose the best number of subdatasets based on the trained data browning techniques
from [144–146].

Our future plan to improve the proposed method’s performance will focus mostly on
its weaknesses, namely, accuracy and determining the appropriate number of subdatasets.
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