i:;l?é electronics

Article

An Adaptive Modeling Framework for Bearing
Failure Prediction

Yuntian Zhao, Maxwell Toothman **, James Moyne and Kira Barton

check for
updates

Citation: Zhao, Y.; Toothman, M.;
Moyne, J.; Barton, K. An Adaptive
Modeling Framework for Bearing
Failure Prediction. Electronics 2022,
11, 257. https:/ /doi.org/10.3390/
electronics11020257

Academic Editor: Davide Astolfi

Received: 19 November 2021
Accepted: 31 December 2021
Published: 14 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA;
clzhao@umich.edu (Y.Z.); moyne@umich.edu (J.M.); bartonkl@umich.edu (K.B.)
* Correspondence: toothman@umich.edu

Abstract: Rolling element bearings are a common component in rotating equipment, a class of
machines that is essential in a wide range of industries. Detecting and predicting bearing failures is
then vital for reducing maintenance and production costs due to unplanned downtime. In previous
literature, significant efforts have been devoted to building data-driven health models from historical
bearing data. However, a common limitation is that these methods are typically tailored to specific
failure instances and have limited ability to model bearing failures between repairs in the same system.
In this paper, we propose a multi-state health model to predict bearing failures before they occur. The
model employs a regression-based method to detect health state transition points and applies an
exponential random coefficient model with a Bayesian updating process to estimate time-to-failure
distributions. A model training framework is also introduced to make our proposed model applicable
to more bearing instances in the same system setting. The proposed method has been tested on a
publicly available bearing prognostics dataset. Case study results show that the proposed method
provides accurate failure predictions across several system failures, and that the training approach
can significantly reduce the time necessary to generate an effective, generalized model.

Keywords: predictive maintenance; bearings; remaining useful life; prognostic model training

1. Introduction

Rotating equipment is widely used in industry applications, with the demand for
system reliability continuing to increase. Equipment failures cause unplanned downtime
across the system, which can lead to production losses and costly repairs. Rolling element
bearings are one of the most common components in modern rotating equipment. During
operation, the race and rolling element surfaces within these bearings are subject to a
variety of stresses. As a bearing nears the end of its fatigue life, these stresses can cause
defects to emerge on bearing surfaces. Continued operation will exacerbate surface defects,
a process that can be accelerated by the presence of contaminating particulates or flakes of
material from the bearing itself. As a result, degradation in health often develops gradually
on the bearings but quickly escalates as the surface defects increase [1]. Approximately 40%
to 50% of machine breakdowns are caused by bearing failures [2]. Therefore, it is critical
to detect the presence and propagation of faults, and estimate the time to failure (TTF) to
prevent unplanned downtime.

Approaches to detect the presence of degradation in bearings and predict imminent
failures may be physics-based, if the degradation process and system parameters are well-
understood, or data-driven, if failure data for training is available. Previous physics-based
approaches have used models that relate vibration characteristics to bearing health based
on the size of the bearings surface defects [3] or changes in the stiffness of the bearings
that result from surface defects [4]. In these works, experimental tests are necessary to
tune the parameters of the dynamic bearing models. A review of similar approaches to
modeling bearing failures can be found in [5]. These methods are well-suited for detecting
specific bearing failure modes but are often not suitable for general health monitoring.
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More recently, there have been significant efforts devoted to data-driven approaches for
modeling and predicting the failure time of bearings [6,7]. Existing work has modeled
bearing degradation as both a series of discrete states [8] and a continuous process [9].
Many different methods for estimating a bearing’s health state and predicting failures
during operation have also been proposed, making use of adaptive regression models [10],
neural networks [11,12], Kalman filters [13], and hidden Markov models [14]. These data-
driven techniques model the dynamical behavior of the monitored bearings in the system,
and adjust the model parameters to capture the recent trend of the degradation signals.

Bearing failure modes are predominately characterized by defects on one or more of
the bearing’s internal surfaces. In practice, bearing failures can be attributed to wear on the
inner race surface, wear on the outer race surface, or wear on the surface of a rolling element.
The underlying cause of wear can also be used to describe bearing failure. Two common
causes of bearing wear are insufficient lubricant and the presence of foreign particles in the
bearing [5]. A limitation of existing approaches is that most of the data-driven models are
tailored for specific failure instances of the bearings. Existing models have a limited ability
to be applied to varying instances of bearing failure within the same system. Thus, these
approaches cannot be used when industrial rotating equipment encounter unanticipated
bearing failure modes. Some deep learning methods have shown high accuracy of the TTF
prediction for a wide range of bearing instances; however, these methods require a large
amount of training data [15,16]. Additionally, these methods cannot retrain or adjust their
models when new failure instances are encountered. Such limitations make these methods
impractical for implementation in agile manufacturing systems.

In this study, we propose a general multi-state health model for rolling element
bearings in rotating equipment that predicts the TTF distribution before failure occurs given
historical condition data. The model employs a regression-based method to detect the health
state transition points. For the prediction of TTF distribution, we extend the exponential
random coefficient model from [17,18] in order to make the model parameters adaptive
and fit it into the proposed multi-state health model. Specifically, we develop a linear
model during early stages of degradation and then transition it to an exponential model
as degradation progresses and we get an understanding from the data of the exponential
time constant. Furthermore, to address the limitation of existing works, a model training
framework is proposed. It trains the multi-state health model based on historical bearing
data, and is able to update the model when new failure instances are encountered.

The first contribution of this work is a general multi-state health model for the purpose
of TTF prediction of rolling element bearings. The second contribution is a model training
framework to make the proposed model generally applicable to different bearings in the
same system and adjustable when the model observes new data.

The rest of this paper is organized as follows: Section 2 explains the general structure
of the proposed multi-state health model as well as the method for state transition points
detection and TTF prediction. Section 3 describes the proposed model training process.
Section 4 introduces the case study on IMS bearing data and obtained results. Finally,
Section 5 presents conclusions and proposals for future work.

2. Multi-State Health Model

This section presents a general multi-state health model which analyzes historical
data of bearings on rotating equipment for the purpose of TTF prediction. In the following
parts of this section, we first introduce the general structure of the health model. Next,
we describe the methods for state transition point detection. Finally, we present how we
predict the TTF distribution using an exponential random coefficient model with Bayesian
updating method.

2.1. Health Model Structure

In the literature, bearing lifetime is commonly represented as a two-state process [19,20].
The first state is the Healthy state, characterized by steady-state behavior of bearing fea-
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tures, and the second state is the Degrading state, characterized by time-series trends in
machine features that can be used to detect and track bearing deterioration [21]. However,
the degradation of bearings can be complex, such that a single model is unable to track
the entire process. So, this study augments the fundamental two-state bearing model by
splitting the Degrading state into two sub-states, Slight Degradation and Severe Degradation,
as shown in Figure 1. As described in later sections, the addition of a Slight Degradation
state allows the health model to detect the presence of degradation, a valuable warning
flag for system operators, even before the degradation process has progressed far enough
to make reliable TTF predictions.

o e -

/, . \
| Degrading )
]
! 1
o Slight p Severe i
E Degradation Degradation | |
e e e e e e ’/'
State Transition Events:
a: Degradation onset B: Degradation intensification

Figure 1. Multi-state health model statechart.

The steady-state descriptor presented by previous approaches is carried over here to
describe bearing behavior in the Healthy state. We make the assumption that the distribu-
tions of machine features in the Healthy state are approximately normal within a bounded
range of a normal mean. When a degradation onset event () occurs, this means the bearing
is about to degrade. The detection of a degradation onset event triggers the bearing to
enter the Slight Degradation state. Generally, the Slight Degradation state is characterized by
a departure from steady-state behavior and the emergence of time-series trends in one or
more features. Within this study, a linear model is used to track slight degradation.

Following this state, a degradation intensification event () can be detected, at which
point the degradation process is accelerated such that the model used in the Slight Degrada-
tion state can no longer describe the bearing’s degradation. At this point, the bearing enters
the Severe Degradation state. In this state, the degradation process has progressed enough
that it becomes possible to make reliable TTF predictions using a new degradation model.
An exponential model is used here to track severe degradation, a choice that is supported
by previous studies on bearing degradation [17,18,22].

The failure prediction process proposed by this work is illustrated in Figure 2. All
components necessary to predict the TTF distribution of a bearing are included in an
entity called a multi-state model (M). A multi-state health-model consists of a model for
degradation onset detection (Q,), a model for degradation intensification (Qg), and a
failure time predictor model (P). Each of these components are described later sections,
and can be written as functions of their model parameters, as in Figure 2.

Model parameter
correction

Update prior

distribution

paramcters

. s . TTF
Health o detector Linear [ detector Elwany’s Exponential L
ind 1 model Qs(N ) Degradation model S
index values Qg BN, Yo, V15 V2 g4 prediction
\ )
Y
Failure time predictor
P(119,6%),6%K . Ko)

Figure 2. Framework of a multi-state health model M(Qu, Qg, P).
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2.2. Detection of Degradation Onset

The proposed method uses a combination of machine features as the multivariate
detection health index Ip = (iy,ip, - - - i) to detect the occurrence of the degradation onset
event («) for each bearing. The features chosen here should show dynamic behaviors when
in the early stage of bearing degradation, deviating from the uniform behavior in Healthy
state. The method for a detection consists of the detection based on each individual feature
ig (d € Z,1 < d < m), which is normalized independently. The a detection begins with
a window of n feature values, where the mean of these n values in the window (X) is
computed. Meanwhile, the mean (a) and the standard deviation () of all of the measured
values are computed. As the window moves, the mean value over the window (X) is
continuously compared to the historical mean (a). Based on the assumption that all the
features included in Ip follow normal distributions in the Healthy state, approximately
99.7% of the data points should lie within three standard deviations of the mean. So we set
the threshold to a 4= 3¢. Thus, if

|X —a| > 30, 1)

then a candidate degradation onset is detected. If a candidate degradation onset is detected
in all of the features i; € Ip, then « is detected and the bearing should transition to Slight
Degradation state. Alternatively, other a detection criteria, such as a majority of features
crossing the threshold, can also be used in different system contexts.

2.3. Detection of Degradation Intensification

Once a bearing enters a Slight Degradation state, a univariate prognostic health index
Iy is used to track degradation. The physical quantity represented by Iy, can vary based
on the bearing and the monitoring system’s sensing capabilities. For example, this index
may track the internal bearing temperature or the power present in a particular vibration
frequency band. So, knowledge from system experts should be relied upon to select an
index that reliably indicates system degradation. Automated processes for health index
selection proposed in recent literature can also be utilized [23,24].

The approach for degradation intensification () detection begins with a window of N
prognostic health index values. The moving window is updated once a new data point is
observed. In each iteration, a least squares linear regression and an exponential regression
are performed over the window. Additionally, a linear regression model is fitted to all
of the observed data. An example of the expected behavior of three regressions during
the detection of B is shown in Figure 3. The R-squared (R?) values are computed for each
regression model. The R? thresholds 7, 71, and -y, are predefined for the linear regression
on the window data, exponential regression on window data and the linear regression on
all of the observed data, respectively. Usually, these thresholds are initially determined
from historical instances. The condition that represents the detection of 8 is given by

R% < Y0
R% > 7 (2)
R% <72

where R} , R? , and R3 are the R-squared values for the linear regression on window
data, exponential regression on window data, and the linear regression on all observed
data. The first instance when all these regression values violate their respective thresholds
simultaneously indicates the time of degradation intensification ().
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Figure 3. Detection of degradation intensification ().

2.4. Prediction of TTF Distribution with Bayesian Updating Method

Once degradation intensification (p) is detected, the bearing is assumed to be in the
Severe Degradation state, for which an exponential random coefficient model is applied
to predict the distribution of TTE. The method described here treats slight degradation
and severe degradation as separate processes with distinct trend models. So, only prog-
nostic health index values measured after degradation intensification are used to fit the
exponential severe degradation model. The similarity between a linear trend and an early
exponential trend suggests that it may be reasonable to the view slight degradation stage as
the beginning of a single exponential degradation process. However, our analysis of several
bearing failure instances has shown that segmenting the degradation process results in
more accurate TTF predictions.

2.4.1. Exponential Random Coefficient Model

Random coefficient models are often used to describe stochastic degradation processes
by adding random coefficients into degradation models [25]. When online measurements
are available to track the process being modeled, the distributions of the random coefficients
can be adapted using a Bayesian update rule, as in [17]. In [18], linear and exponential
random coefficient models with error terms that follow Brownian motion were proposed
and the mean remaining life was used for TTF estimation. We extend the random coefficient
model from these works and incorporate it into the proposed multi-state health model.

For simplicity of computation, we assume the exponential curve passes through the
last data point of the linear curve in the Slight Degradation state to fix the offset (b) of the
exponential model. The exponential random coefficient model with one parameter can be
written in the form

S(ty) = ¢- ePhetelt) 1p (3)

where S(t) is the value of the prognostic health index Iy at time f, ¢ is a constant
deterministic parameter, 0 is a random variable coefficient assumed to follow a normal
distribution (71(6)) with mean yg and variance 03, b is the fixed offset determined by the
linear Slight Degradation model, and ¢(f) is an error term following a Brownian motion
with mean zero and variance parameter o2. For mathematical convenience, we take the
logarithm of S(#;). Then the model can be written as follows:

L(tx) =In(S(t) — b) = ¢' + 0t + e(ty), @
where L(#) is the logarithm of S(t;) and ¢’ = In(¢).

2.4.2. Bayesian Updating of the Distribution Parameters

A Bayesian update method is used to adapt the exponential model parameter § when
new measurements of the prognostic health index are made. With this approach, the prior
distribution of the model parameter is updated based on a new measurement, resulting
in a posterior distribution that becomes the prior for the next measurement. A method
for defining a prior distribution before any measurements have been made is presented in
Section 3.
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Equations to compute the posterior distribution parameters are derived in [18] and
defined by (5) and (6).

poo? + (L(tx) — ¢')o3

Mot = top + 02 ©)
2,2
2 7%
Oh, = —5— 6
O po2 + o2 ©)

One limitation of this update method, however, is that the closed-form solutions in (5)
and (6) force the exponential model to weigh each historical data point equally, thus making
the exponential curve emphasize early data and fail to capture the rapid increase when
the TTF becomes smal. In order to solve this problem, our proposed method introduces a
correction term to adjust g, before using it to update the prior distribution for the next
prediction. The error correction process can make the model more adaptive to the rising
trends of actual data, and improve the accuracy of the TTF estimation.

To correct the posterior mean for 6 at time t;, an error term is defined, as shown in (7),
as the sum of the weighted difference between actual and predicted Iy from the beginning
of the Severe Degradation state to time t;, when the most recent data is observed.

k
e(ty) = ;ZU(Kw/ti) ~(s(t) = S(t:)) )

In (7), e(t) is an error term for the correction of g, at time fy, s(t;) is the actual I at
ti, S(t;) is the predicted Iy calculated as S(t;) = ¢ - exp(pgy, - tx) + b, and w(Ky, t;) is an
exponential weighting term, w(Ky, t;) = (1 — Ky )K", A correction term is given as

AB(t) = Ke - e(ty), ®)

where K, is a constant correction gain. Now, the value we use to update the mean of the
model parameter 6 in the prior distribution for the next prediction is

Ho, = o, -+ DO(t). )

2.4.3. Computing the TTF Distribution

Having computed the posterior distribution of 8 at time t;, we would now like to
determine the distribution of the TTF of the monitored bearing. For this purpose, we need
to find a predefined failure threshold J for the prognostic health index Iy;. In general,
such failure thresholds are not always clearly defined and are mostly unavailable in on-
line analysis, so estimating one for a given application requires knowledge of industrial
standards, application precision and engineering judgment [17]. The following method is
extended from the approach in [18].

Give the failure threshold ¢ and a time t;, we define the random variable L(f; + t) as
the logged value of I observed after t time units, f > 0. Given L(t1), - - -, L(#;) observed
at times t1, - - -, t, the mean and variance of L(t; + t) are given as

fi(ty +1t) = po,rt + L(t) (10)

7 (te+t) = o, 12+ 07t (11)

Next, we define a random variable T to be the remaining life of a partially degraded
bearing such that L(t; + T) = 4. Then the conditional cumulative distribution function
(cdf) of T given L(t1),- - -, L(t;) can be computed as follows:

P(T < t|L(ty), -, L(t)) :@(W), (12)
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where @©(-) is the cdf of a standard normal random variable. Now, we have shown how
to find the conditional cdf of the remaining life of a bearing at time t;. We can easily find
the cdf of the TTF by adding current time f; to the remaining life. This procedure for
Bayesian updating of prior distribution parameters and estimation of the TTF distribution
is performed every time a new prognostic health index Iy is observed by the model.

3. Model Training Process

This section presents the training process of the multi-state health model described in
Section 2. This process makes the model more adaptive to a wide range of bearing instances
in the same system. During a continuous manufacturing process, a well-suited health
model for operating equipment should be adjustable when new condition data is observed.
It is helpful to consider this training process in the context of an example equipment
lifetime, shown in Figure 4. A multi-state health model generated from scratch (or from
historical data if available) detects a degradation onset event on a bearing component, and
triggers a transition from the Healthy state to the Degrading super-state. Next, based on the
TTF prediction provided by the proposed model during the Severe Degradation state, an
equipment shutdown is prompted for repair. After that, the equipment is brought back to a
Healthy state, and the training method generates a new health model based on previous
model and last failure instance. The newly generated model detects state transition points
and predicts the TTF distribution until a repair event happens. In other words, with the
application of the training method, the proposed health model is updated once a new

failure instance is encountered.
. Down for . Down for

Time

Figure 4. Example operating timeline.

The remainder of the section first describes the evaluation metrics that are used to
evaluate the performance of generated models in the training process. Next, we elaborate
on the training method that enables the proposed model to be adjustable when new failure
instances are encountered.

3.1. Evaluation Metrics

This section presents the metrics that are used to evaluate the model performance.
For each prediction of TTF made at time #;, a percentage prediction error is computed as
follows: N
|Ts — Ttk|

D, =
k T,

x 100%. (13)
where Ty is the actual TTF and Ttk is the TTF predicted at time f;.

For further evaluation of the TTF distribution, we calculate an approximate 90th
Percentile Interval (PI), (ag, by), for the predicted TTF Ty at each given time t;. We let a;
denote the 5th percentile and by denote the 95th percentile of the TTF distribution. The
calculation of a; and by uses the following expressions:

P(T < ax | S(t1),5(t2), -+, S(t)) = 0.05 (14)

P(Ty < by | S(t1),S(t2), -+, S(t)) = 0.95. (15)

A higher accuracy metric would involve the conversion to a logarithm chart, but it
would be more complicated. Given the sparsity of data, we use the approach described
above for simplicity.
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Moreover, in order to evaluate the performance of a model over the whole degradation
process of a bearing, we use an evaluation metric from [26] called mean absolute percentage
error (MAPE) which is given by

L|Ts — T,
MAPE = (Y M x 100%) /T. (16)
k=1 4

A multi-state health model that makes more accurate TTF predictions over a long
period has a lower MAPE value. This metric is used for single failure model evaluation in
the following training process.

3.2. Training Method

In this section, we describe a training framework used across multiple bearing in-
stances between repair events in the same system. Initially, when the model has not seen any
bearing instances before, we generate a model with all the parameters shown in Figure 2
randomly generated for on-line analysis on the first bearing instance and use the MAPE
value to evaluate the model. In the testing done for this study, parameters N and po were
generated by sampling from a uniform distribution with bounds [0, 10], and parameters
Y0, 71,72, 0¢ and 0? were generated by sampling from a uniform distribution with bounds
[0,1]. Using these prior distributions resulted in models with reasonable failure prediction
here, but may need to be adjusted for other systems. Once the first bearing has failed, we
can undergo a training process within this single bearing in order to learn an optimal set
of model parameters for it. After that, if we need to do another on-line analysis on a new
bearing instance, then we can apply the optimal model obtained from the first bearing to the
new bearing. Due to the assumption that all the bearings are operating in the same system,
there should be some common patterns in the bearing degradation process. Therefore, we
suppose that a model that provides accurate predictions on historical bearing instances will
also work well on subsequent bearing instances.

Figure 5 shows an example of the model training process. At this point in the training
process, three bearing failure instances have been encountered, and our model uses this
historical data to train a revised model for the next instance.

. Model performance
Multi-state model evaluation

Mui(@ay» @5,» Po)
~
Bearing M p |:> Optimal model
@u 09,70 [~ maPE, | My’ (Qayr 0y Por)

M, 1(Qayr @y Pr)

Bearing cee Optimal model
instance 2 L My, (Qay,r Qpyys Poz)

Bearing .o Optimal model
instance 3 M3’ (Qaysr QBysr Poz)

-

Multi-state model for
next instance

Muu(Qayyr Qpyyr Poa)

Y

Figure 5. Framework of the training process. (given three observed bearing failure instances).

For a single known bearing instance, k multi-state models, expressed as

M(QDU Q,BO/PO)/M(QBU Qﬁll Pl)/ Tty M(QDC/ Qﬁk’ Pk)/

with different parameters for B, detector Qg, and TTF predictor P will be generated. In our
implementation, the window size N, the R? thresholds Y0, Y1, Y2, the mean g and variance
o¢ for the prior distribution of 6, and the variance o for the distribution of the error term
€(ty) are randomly generated for each model. In this analysis, the weighting parameter
(Kw) and correction gain (K;) constants are set to K, = 0.8 and K. = 0.1. These values
establish an appropriate balance between trusting historical observations and adapting to
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new observations in this analysis, but can be modified for other systems. If the time of
degradation intensification (B) is detected too close to the actual TTF, there is too little time
left to obtain prediction results and schedule a repair event. Thus, we set a threshold that if
B is detected less than 5 h before the TTF, then that model will be discarded because the
time left is too little for operators to schedule maintenance work before bearing failure.
We compare the MAPE values for all of the remaining models, and choose the one that
minimizes the MAPE value as the optimal model M'(Q,, Q/g, P) for this bearing instance.
Indeed, a more intelligent gradient descent algorithm could be used here so that we can
find the optimal model with the lowest MAPE in a step-wise procedure.

Once a bearing instance or several bearing instances are known, a multi-state health
model can be trained with these instances. Since each known bearing instance is paired with an
optimal model, we take the average of the learned model parameters (N, yo, 71, Y2, Ho, 0'3, 0'2)
to construct a model that is used for online testing with new bearings.

4. Case Study

In this section, we describe how the proposed multi-state health model and training
process is implemented to analyze the bearing run-to-failure dataset provided by the Center
for Intelligent Maintenance Systems (IMS) [27] and discuss the results of the model training
experiments.

4.1. IMS Dataset

The proposed method is tested on the IMS bearing data. Four Rexnord ZA-2115 double
row bearings are installed on the shaft and High Sensitivity Quartz ICP accelerometers
are installed on the bearing housing. An AC motor is coupled to the shaft to keep the
rotation speed constant at 2000 RPM and a radial load of 6000 Ibs is applied onto the shaft
and bearings by a spring mechanism. The data packet includes the vibration data of four
bearings in the test system through three test-to-failure experiments. Each data set that
corresponds to each test consists of individual files that are 1-s vibration signal snapshots
recorded every 10 min. Each file consists of 20,480 points with the sampling rate set at
20 kHz. These data are recorded every 10 min (except the first 43 files for test 1 are taken
every 5 min).

4.2. Model Implementation

To detect degradation onset in this dataset, a combination of kurtosis, skewness, peak
frequency, and peak-to-peak features, defined in Table 1 was used as the multivariate
detection health index Ip. The root mean square (RMS) feature, as defined in Table 1,
was selected as the univariate prognostic health index I for the detection of degradation
intensification () and the prediction of TTF distribution. In order to obtain a fixed failure
threshold value §, we perform an ordinary linear regression on the last 10 data points before
failure, and take the last value from the linear model as §.

Table 1. Statistic feature expressions.

Feature Expression
)4
Kurtosis % Zfi 1 L‘Of)
_7)3
Skewness 5N, (X’USX)
Peak Frequency max(f)
Peak-to-peak Xmax — Xmin

Root Mean Square (RMS) (% N, xiz)%

We first applied the proposed model to a single bearing, bearing 3 in test 3 of the
IMS dataset, to observe how the TTF distribution changes as more data are given to the
model. The model parameters are fine-tuned after several off-line tests. The bottom plot in
Figure 6 shows the two-stage degradation regression model fit to this bearing’s prognostic
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health index Ips. The predicted trajectory for Ips in the Slight Degradation state is generated
by a linear model, while that for Ij; in the Severe Degradation state is generated by an
exponential model. We find that the bearing’s prognostic health index I closely follows
the degradation trajectories predicted by the proposed model and that the exponential
model reaches the failure threshold at approximately the same time as the I); measurements.
This behavior supports the decision to model bearing degradation as a two-stage process
with linear and exponential trajectories. For comparison, the top plot in Figure 6 shows the
exponential regression model that would be generated if bearing degradation was treated as
a single-stage process. This plot shows close agreement between the exponential model and
early Iy measurements, but the exponential model does not adapt to the increased rate of
bearing degradation later in the test. As a result, the exponential model reaches the failure
threshold significantly after the I; measurements, leading to inaccurate TTF predictions.

0.7

0.6 T - T T
Iv in Degradation state

0.5] —— exponential model

------- predefined failure threshold

Im (RMS)

0 5 10 15 20 25 30 35 40
Time (hour)

Iy in Severe Degradation state

0.6; « Iyin Slight Degradation state
linear model

—— exponential model

------- predefined failure threshold ....:

Im (RMS)

0.1

0.0

0 5 10 15 20 25 30 35 40
Time (hour)

Figure 6. I); degradation trajectories and regression models for single-stage degradation process
(top) and 2-stage degradation process (bottom).

Figure 7 shows the probability density function (PDF) of TTF at different degrees
of degradation. The bearing is at 0% severe degradation the instant that degradation
intensification (B) is detected, and at 100% severe degradation the instant that it fails. As
time passes, the peak of the PDF approaches zero hours, indicating that TTF predictions
become smaller as the degradation progresses. Furthermore, the peak value of the PDF
becomes larger as time passes, indicating that TTF can be predicted with higher confidence.
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Figure 7. PDF of remaining useful life at different percentage of bearing’s life.

Table 2 illustrates the prediction results on bearing 3 in test 3 at 25%, 50%, 75%, and 95%
percentage of the severe degradation time. At each listed prediction time, the predicted TTE,
an approximate 90th percentile interval, and a percentage prediction error D are computed
and shown in the table. As more degradation data is seen by the model, the predicted TTF
approaches the true TTF. The range of the 90th percentile interval also becomes smaller,
illustrating that model prediction becomes more confident.

Table 2. TTF prediction results on bearing 3 in test 3 in the IMS dataset.

Time % Severe Actual Failure Predicted Failure 5th 95th %
(Hour) Degradation Time Time (Hour) Time (Hour) Percentile Percentile Error D
26.0 25% 30.5 33.02 25.60 >100 8.25%
27.5 50% 30.5 31.31 25.25 >100 2.64%
29.0 75% 30.5 30.96 24.86 76.06 1.50%
30.2 95% 30.5 31.02 24.79 63.69 1.69%

4.3. Results

To test the effectiveness of the proposed model training process, we set up a training
and testing sequence using the IMS dataset. The bearings in this dataset encountered
multiple failure modes, each characterized by surface defects at different internal bearing
surfaces. An inner race defect occurred in bearing 3 in test 1, outer race defects occurred in
bearing 3 in test 3 and bearing 1 in test 2, and a rolling element defect occurred in bearing 4
in test 1. Bearing 3 in test 3 and bearings 3 and 4 in test 1 are used for training sequentially.
Bearing 1 in test 2 is treated as a test bearing for the purposes of evaluating the proposed
training process. In Table 3, we compare the performance of a randomly generated model
and an optimal model for a single bearing in the upper part, and compare the performance
of the models with different knowledge of historical bearing failures on the testing bearing
in the lower part.

Table 3. Model training results.

Model Bearing MAPE 1

Randomly generated Test 3 Bearing 3 16.637%

Optimal model among 50 randomly generated models Test 3 Bearing 3 4.594%
Randomly generated 5.962%

Model trained with Test 3 Bearing 3 Test 2 Bearing 1 3.792%

Model trained with Test 3 Bearing 3 and Test 1 Bearing 3 & 5.483%
Model trained with Test 3 Bearing 3, Test 1 Bearings 3 & 4 5.156%

1 The MAPE value for a randomly generated model is an average MAPE of all valid models from the 50 randomly

generated ones.
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Comparing the two models in the upper part of Table 3, the MAPE score of the optimal
model for bearing 3 in test 3 is much smaller than that of the randomly generated model,
indicating that the training method within a single bearing results in more accurate TTF
predictions. Additionally, a comparison of the randomly generated model for bearing 1
in test 2 with the models trained on data from historical bearing failures shows that all
trained models result in a lower MAPE score than the randomly generated model. This
indicates that the proposed training process helps to increase TTF prediction accuracy for
new failures. It is notable that these improvements in prediction accuracy are achieved
across tests with different failure modes. This underscores the general nature of this training
process, making it suitable to learn and make predictions across different bearing failure
modes. The training approach takes only a few seconds to determine the optimal model
for test bearings, making it suitable for online TTF prediction. The IMS bearing dataset
contains a limited number of bearing failures, so it is difficult to determine whether a larger
number of historical failure instances would improve prediction accuracy further.

5. Conclusions

In this paper, a multi-state health model is proposed to predict the TTF distribution of
rolling element bearings on rotating equipment. Given historical data of bearing failure, this
approach employs a regression-based method to detect degradation state transition points,
and applies an exponential random coefficient model to predict a TTF distribution. A
model training framework is introduced to make our proposed model adjustable to unseen
bearing instances in the same system. A case study demonstrates that the proposed method
provides accurate TTF predictions across multiple bearing failures. The training method
enables the health model to be adaptive to condition changes in the system, especially when
new failure instances are obtained after a rotating equipment gets repaired, and reduces
the time for generating a reliable model for an unknown bearing instance. Therefore, the
proposed approach is a compelling solution to the problem of online bearing prognosis.

Future improvement can be done to develop a more efficient parameter search al-
gorithm, which will be able to narrow down the search space of the adjustable model
parameters as more failures are observed. An efficient parameter search algorithm would
reduce the time to find an optimal model for a single run-to-failure bearing instance. More-
over, since the IMS bearing data contains a limited number of bearings that failed during
run-to-failure experiments, averaging the learned model parameters in the model training
framework can satisfy the need to generate a proper model for future failures in the system.
Future work could be done to determine and separate the common and varying aspects of
the model if more failure instances are available. The methods proposed here were effective
at making failure predictions for bearing failures induced by natural friction between
the bearing components. However, other mechanisms, such is improper lubrication and
contaminating particles, can also induce failure, and further testing is necessary to validate
these methods with those failure modes (which were not introduced in the experiments
used for this work). The multi-state health model and training process proposed here
should also be applied to other systems that exhibit exponential degradation.
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