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Abstract: Wind generation has recently become an essential renewable power supply option. Wind
generators are integrated with electrical machines that require correct functionality. However, the
increasing use of non-linear loads introduces undesired disturbances that may compromise the
integrity of the electrical machines inside the wind generator. Therefore, this work proposes a
five-step methodology for power quality disturbance detection in grids with injection of wind farm
energy. First, a database with synthetic signals is generated, to be used in the training process. Then,
a multi-domain feature estimation is carried out. To reduce the problematic dimensionality, the
features that provide redundant information are eliminated through an optimized feature selection
performed by means of a genetic algorithm and the principal component analysis. Additionally,
each one of the characteristic feature matrices of every considered condition are modeled through a
specific self-organizing map neuron grid so they can be shown in a 2-D representation. Since the SOM
model provides a pattern of the behavior of every disturbance, they are used as inputs of the classifier,
based in a softmax layer neural network that performs the power quality disturbance detection of six
different conditions: healthy or normal, sag or swell voltages, transients, voltage fluctuations and
harmonic distortion. Thus, the proposed method is validated using a set of synthetic signals and is
then tested using two different sets of real signals from an IEEE workgroup and from a wind park
located in Spain.

Keywords: artificial intelligence; electrical machines; optimization techniques; self-organizing map;
power quality; wind generation

1. Introduction

Modern society is experiencing a series of challenges in matters of power generation
associated with the use of fossil fuels in the power generation process. This situation has
led to an increase in greenhouse gas emissions, which has caused severe air pollution
problems [1]. Moreover, fossil fuels are non-renewable resources that have become in-
creasingly depleted in recent years, resulting in a rise in their prices [2,3]. To deal with
these problems, power generation has started using use renewable sources as fuels (such as
sunlight and wind); in fact, nearly one-third of the global electricity demand is fulfilled only
with the use of renewable energies [4]. Among all the renewable energies, wind energy
among the most widely spread, because it is mature from a technological point of view, it
presents a competitive levelized cost of energy (LCOE) and it is relatively easy to obtain
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an important amount of energy by means of this renewable resource [5]. Nonetheless,
the use of wind energy implies some important challenges. For instance, the amount of
generated energy is location-specific, and a study of the wind conditions in the location
is required to properly select the wind turbine and to guarantee that energy production
is sufficient to represent monetary earns [6]. Also, the policies regarding wind generation
are different from one country to another [7]. Additionally, wind generators are complex
systems that combine mechanical, electric, and electronic devices to transform wind energy
into electricity, and they must provide a robust, reliable, and high-quality power supply.
Maintaining this high-quality supply is a challenge due to the large amount of non-linear
loads that are used nowadays. These non-linear loads introduce a high number of har-
monics that contaminate the power grid and cause waveform distortion. An electric grid
that presents power quality (PQ) issues generates damages in domestic loads and leads
to unexpected stops at industrial facilities that will translate into financial losses. In this
sense, the electric generator becomes of great importance in any wind turbine. Therefore, in
order to optimally design a wind generator, it is necessary to develop strategies that allow
determining the existence of failures that compromise the quality of the generated energy.
PQ problems cause erratic operation of electronic controllers and computer data loss [8].
They also lead to the inappropriate operation of relays, programmable logic controllers, and
computers. Therefore, the methodologies for disturbance detection allow for improving
the design of wind generators and preventing the malfunctioning of their components.

PQ monitoring has been widely explored, and several techniques have been developed
to determine the presence of waveform distortion or power quality disturbances (PQD)
in electrical signals. To properly perform this identification, it is important to carry out a
feature extraction that provides information regarding the occurrence of any event. One of
the most common techniques for this feature extraction is the Fourier transform (FT) [9,10],
which delivers good results in the evaluation of stationary disturbances such as harmonic
distortion. However, the conventional FT-based methodologies present some important
drawbacks, such as the existence of spectral leakage and the fact that this technique can-
not be applied in the analysis of transient disturbances. Moreover, the FT cannot provide
temporal information related to the occurrence of the PQD. To overcome the issues related
with the FT, some other time-frequency transforms have been explored, for instance, the
short-time Fourier transform [11], S-transform [12]; the wavelet transform [13]; empirical
mode decomposition (EMD) [14]; and the Hilbert Huang transform [15], among others.
These techniques are able to detect not only stationary PQD but also non-stationary PQD;
furthermore, they provide accurate information associated with the time when the distur-
bance occurs. However, these time-frequency techniques demand a higher computational
effort and lose accuracy in frequency information, since they work with modes that contain a
group of frequencies instead of a single frequency component. Also, they suffer from mode
mixing, so the information regarding a specific PQD can appear in more than one mode,
hindering the disturbance identification. This is why some other works prefer to extract
features like high-order statistics (HOS) directly in the time domain [16]. The use of HOS
features presents some interesting advantages; for instance, the insensitivity to Gaussian
noise and the low computational burden. On the other hand, HOS are highly sensitive to
window size, and the use of a different number of samples of the same signal may lead
to different results, especially when the PQD is short. Finally, it is important to mention
that all the aforementioned techniques can be implemented to work along with artificial
intelligence techniques such as artificial neural networks (ANN) [17], fuzzy logic-based
classifiers [8], support vector machines [18], genetic algorithms (GA) [19], and even with
some deep learning approaches [20]. This combination of strategies allows for performing
an automatic classification of the founded PQD accurately. Yet, the number of extracted
features in all the aforementioned approaches can be high, and many of them do not deliver
important information regarding the existence of a specific disturbance. Thus, it is necessary
to develop strategies to perform a proper feature selection. Specifically speaking of power
quality in grids with injection of wind energy, it has been reported that the disturbances
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that more commonly appear are harmonic distortions, notch, voltage swell/sag, momentary
interruptions, and voltage fluctuations [21]. To deal with these issues, some wind generators
incorporate distribution static compensators [22] or passive and active filters [23,24]. These
devices are intended to suppress the presence of harmonics and to work as reactive power
compensators, and the PQ of the grid improves as a result of their action. Since, in this
field, attention is focused on the development of devices for mitigating PQ issues, there is
a lack of methodologies for the detection and identification of disturbances. Nonetheless,
the development of techniques for PQ analysis can work along with the devices for PQ
issues mitigation, because they can estimate the features required for tuning the filters
and compensators used in wind turbines. Additionally, information from PQ monitoring
allows for improvement in the design of blades, mechanical transmission systems, electric
generators, in order to obtain a more reliable and robust machine.

Indeed, several methodologies have been reported for carrying out optimal feature
selection in order to discard redundant information. Thus, some optimization techniques,
like k-means [25] and bio-inspired algorithms [26], are used to set a model that describes
the behavior of the PQD and select the features that better describe such behavior. In this
way, it is possible to reduce the required computational effort and to increase the efficiency
of the results. Also, in recent years, the use of dimensionality reduction techniques such
as the linear discriminant analysis (LDA) [27] and principal component analysis (PCA)
has been explored [28] for dealing with a complex set of features and reducing it to a
three-dimensional or two-dimensional view. Additionally, with the use of these techniques,
it is possible to maximize the distance between clusters, making the classification process
more efficient and accurate. The aforementioned works use features in only one domain
(time, frequency, or time-frequency); therefore, they are prone to experience difficulties
when dealing with disturbances that exhibit similar behaviors in the analyzed domain.
Hence, in [29], a multi-domain feature extraction for discerning between PQD with similar
behavior is proposed; then, using an autoencoder, a dimensionality reduction is performed
to facilitate the classification process. The problem with the multi-domain feature extraction
is that the number of features to be considered highly increases. In this sense, using an
optimization technique for feature selection may be helpful for reducing the effort required
in the dimensionality reduction process. In terms of wind turbines, these methodologies
have been used for the detection of failures in the components of the mechanism. For
instance, in [30], PCA is used along with Hoteling’s T2 method to assess the condition
of the electric generator in a wind turbine. On the other hand, in [31], different variables
such as active power, wind speed, rotor velocity, and blade angle are measured in a
wind power installation. A generalized regression neural network ensemble for single
imputation is used for feature extraction in all the measured variables and then, a feature
reduction is performed using PCA. Finally, the wavelet-based probability density function
is implemented, with the aim of identifying blade failures. Although these works deal
with the identification of undesired conditions in wind turbines, they only consider the
condition of the machine, and the PQ is left aside. It is important to pay more attention in
the detection of PQD, since considering them is helpful for the general design of the wind
generation system.

Thereby, the main contribution of this work relies in the proposal of a strategy for
optimal feature selection that allows for modeling electric signals through statistical fea-
tures in different domains that are used to better characterize the behavior of a PQD. The
proposed methodology considers as a first step the implementation of a multi-domain
feature extraction. Since the resultant number of features is high, a GA–PCA optimization is
carried out to eliminate those features that provide redundant information. Then, a feature
learning stage is implemented. In this step, self-organizing maps (SOM) are used to obtain
a model of the PQD in the time, frequency and time-frequency domains. Finally, the SOM
models obtained in every domain are used as inputs of a softmax layer ANN that works
as the classifier. In the present work, both stationary and non-stationary disturbances are
considered. Among the wide variety of PQD, only the following are considered: harmonics
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and voltage fluctuations for the stationary disturbances; and voltage sag, voltage swell,
and transients (impulsive and oscillatory) for the non-stationary disturbances. These dis-
turbances are selected because their appearance is common in grids that include renewable
resources such as wind generation. The training and validation of the proposed strategy are
performed using a set of synthetic signals that are modeled to be a reliable representation
of electrical signals containing PQD. Then, the methodology is tested using two different
groups of real signals. The first set is provided by the IEEE 1159.3 working group, whereas
the second one corresponds to a series of measurements taken in a real wind farm located
in northern Spain. As previously mentioned, the existence of PQD can produce a malfunc-
tion of the components of the machine; therefore, this methodology aims to be a tool for
detecting PQD and improving the reliability of the wind turbine by preventing its failure.
In this way, the designers and manufacturers of wind turbines can consider the existence of
PQD during the entire production process in order to improve the quality, not only of the
power supply, but of the entire generation system.

2. Theoretical Background
2.1. Self-Organizing Maps

The self-organizing map (SOM) is a novel unsupervised machine learning technique,
whose main purpose consists of performing a non-liner projection of a high-dimensional
input data set into a low-dimensional space. SOM is based in a neural network that
requires a pre-defined number of neurons to resemble and map the data distribution
of the input space. The use of SOM presents an interesting advantage against other
methodologies for PQ monitoring, and due to its capability for automatically adjusting
to different data topologies, the SOM may be used as a learning algorithm for mapping
an input feature space and model that can be considered the normal behavior, and then
identifying patterns that differ from this normality and classifying them according to the
topological characteristics of the data input [32].

An SOM model is composed of two main layers of neurons as it is presented in Figure 1;
the input layer is composed of N neurons, where each one represents an input variable of
the input feature space; through the input layer, the received information is transmitted to
the output layer. The output layer comprises predefined M neurons and, in this layer, aims
to automatically adapt the input feature space in order to obtain a characteristic pattern map.
Each neuron of the grid in the output layer represents a matching unit (MU). Normally, the
neurons in the output layer are arranged in the form of a two-dimensional map, which is
also known as the resulting SOM neuron grid. As Figure 1 shows, the connections between
the two layers of the SOM network are always forward; that is, the information of the input
feature space is propagated from the input layer to the output layer. Thus, each input
neuron i is connected to each of the output neurons j by a weight ωji; in this way, the output
neurons are associated with a vector of weights Wj that is called the reference vector or
codebook, since it constitutes the prototype or average vector of the category represented
by the output neuron j. Thus, the SOM model defines a projection from a high-dimensional
data space into a two-dimensional neuron grid map of neurons [32–34].

The SOM learning process can be described by two main steps as follows: step (i) A
vector x is randomly selected from the input feature space and its distance or similarity to the
vectors mj, in the codebook, is calculated, using, for example, the Euclidean distance (1):

‖ x−mj ‖= minj
{

x−mj
}

(1)

Once the closest vector or BMU (best matching unit) has been found, the rest of the
vectors in the codebook are updated. Step (ii) the BMU and its neighbors, in the topological
sense, move close to the vector x in the input feature space. The magnitude of this attraction
is described by the learning rate, which is also known as the topological error (Et). As
the learning process proceeds and new vectors are assigned to the neuron grip map, the
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learning rate gradually decreases towards zero; consequently, the neighborhood radius
also decreases. The update or learning rule for the given reference vector i is defined by (2):

mj(t + 1) =
{

mj(t) + α(t)
[
x(t)−mj(t)

]
mj(t)

j ∈ Nc(t)
j /∈ Nc(t)

(2)

where, t is the discrete-time index for the variables, α(t) ∈ [0, 1] is a scalar that defines the
relative size of the learning step, and Nc(t) specifies the neighborhood around the winner
in the map array.
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Then, steps i and ii are repeated until the training process ends. The number of training
steps must be pre-defined a priori to calculate the convergence rate of the neighborhood
function and the learning rate. Once the training is finished, the resulting neuron grip map
is ordered in a topological sense: n topologically close vectors are applied in n adjacent
neurons or even in the same neuron. Moreover, to determine whether the resulting SOM
neuron grid has been properly adapted to the input feature space during the training pro-
cess, as measures of quality of the maps, the precision of the projection and the preservation
of the topology are considered. The projection precision measure describes how neurons
adapt or respond to input feature space. Usually, the number of data points is greater than
the number of neurons, and the precision error is always different from 0. To calculate
the precision of the projection, the mean quantization error (Eq) over the complete input
feature space is estimated as (3):

Eq =
1
N ∑N

i=1 ‖ xi −mc ‖ (3)

Also, as aforementioned, the topology preservation measure describes how the SOM
neuron grid preserves the topology of the input feature space. This measurement considers
the structure of the neuron grid map, i.e., on an oddly twisted map, and the topographic
error is large even if the precision error is small. Thus, the topological error, Et, can be
calculated by following (4):

Et =
1
N ∑N

i=1 u(xk) (4)

where, u(xk) is equal to 1 if the first and second BMUs of xk are not close to each other,
otherwise, u(xk) is equal to 0.
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An additional advantage of using SOM to model an input feature space is that SOM
performance is qualitatively measured in terms of the Eq, that also provides information
regarding the detection of unknown events that do not match with the topology of input
feature space used to create a SOM neuron grid model. In Figure 2a–c, general and visual
descriptions that depict the learning procedure performed to model a SOM neuron grid
are shown.
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2.2. Power Quality Definitions

The term power quality is used for defining a wide variety of electromagnetic phenom-
ena that occur at a certain time and location on the power system. These phenomena result
in the parameters that describe an electrical signal, like frequency and amplitude, deviating
from the ideal values, causing waveform distortions. According to the IEEE standard
1159–2019 [35], voltage sag and voltage swell are RMS variations. The former occurs when
RMS voltage decreases to a value between 0.1 pu and 0.9 pu; the latter is represented
by an increment of the RMS voltage to values above 1.1 pu. The same standard defines
a transient event as a disturbance that is undesirable but momentary in nature. These
events are classified into two categories: impulsive and oscillatory. A sudden nonpower
frequency change from the nominal condition that is unidirectional in polarity is known
as impulsive transient; in contrast, when an electrical signal presents a sudden nonpower
frequency change in the steady-state condition that includes both positive and negative
polarity values, then it is said that an oscillatory transient has occurred. Additionally,
voltage fluctuations are defined as systematic variations of the signal envelope causing
the peak value of the voltage signal to oscillate between 0.95 pu and the 1.05 pu. Finally,
harmonics are sinusoidal components that are integer multiples of the fundamental fre-
quency (usually 50 Hz or 60 Hz). When harmonics are combined with the fundamental
component, they produce a waveform distortion that is evaluated using a quantity called
the total harmonic distortion (THD). The IEEE standard 519–2014 [36] establishes that the
THD level must remain under the 8% in grids that handle voltages lower than 1.0 kV. All
the aforementioned disturbances can be mathematically modeled, and Table 1 shows the
equations that describe them.

The parameters in Table 1 are described in detail as follow: A is the amplitude of
the fundamental component; f f c is the frecuency of the fundamental component; k is the
discrete number of sample; φ is the phase angle in radians; α represents an amplitude
deviation; k1 is the sample where the disturbance begins; k2 is the sample where the
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disturbance ends; ψ corresponds to the amplitude of the transients, f f l is the frequency of
the voltage fluctuations; M is te total number of harmonics; and Ah is the amplitude of
every single harmonic.

Table 1. Mathematical models used in the generation of the synthetic signals for the 6 different conditions.

Condition Mathematical Model Parameter Description

Healthy xhlt(k) = A sin
(

2π f f ck + φ
)
+ η(k, σ) 1 − π

12 ≤ φ ≤ π
12

Voltage sag xsag(k) = −αA[u(k− k1)− u(k− k2)] sin
(

2π f f ck + φ
)
+ η(k, σ) 2

0.1 ≤ α ≤ 0.9
k1 < k2

− π
12 ≤ φ ≤ π

12

Voltage swell xswell(k) = αA[u(k− k1)− u(k− k2)] sin
(

2π f f ck + φ
)
+ η(k, σ)

0.1 ≤ α ≤ 0.3
k1 < k2

− π
12 ≤ φ ≤ π

12

Transients xtr(k) = A
[
sin
(

2π f f ck + φ
)

−ψ
(

e−750(k−k1) − e−344(k−k1)
)
(u(k− k1)− u(k− k2))

]
+η(k, σ)

0.222 ≤ ψ ≤ 1.11
kb = ka + 8
− π

12 ≤ φ ≤ π
12

Voltage fluctuation x f l(k) = αA sin
(

2π f f lk + φ
)

sin
(

2π f f ck + φ
)
+ η(k, σ)

1 ≤ f f l ≤ 30
0 < α ≤ 0.1
− π

12 ≤ φ ≤ π
12

Harmonics xhar(k) = A sin
(

2π f f ck + φ
)
+ ∑M

hn=2 Ah sin
(

2πhn f f ck + φ
)
+ η(k, σ)

5 ≤ M ≤ 50
0.012 ≤ Ah ≤ 0.1
− π

12 ≤ φ ≤ π
12

1 The term η(k, σ) represents additive Gaussian noise with zero mean and standard deviation 0.05 ≤ σ ≤ 0.1.
2 u( ) is the step function.

3. Methodology

As mentioned, in the design of electric machines such as wind generators, it is impor-
tant to consider the identification of failures and situations that compromise the quality
of the power supply and, therefore, the integrity of the loads attached to the grid. In
this regard, Figure 3 presents the flowchart of the proposed strategy that focuses on the
identification and classification of PQD through an optimal multi-domain feature selec-
tion. The methodology has been designed to follow a step-by-step scheme to make its
comprehension and application easier. A total of five stages compounds the PQ monitoring
strategy: database, multi-domain feature estimation, optimized feature selection, feature
learning and classification, where this final stage delivers the PQ disturbance detection as
output. Every step is described in detail in the following subsections.
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3.1. Database

This work considers the use of synthetic and real signals. The former are used in the
training process whereas the latter are used for validating the results of the proposed strategy.

The synthetic signals are generated with the purpose of representing six different
conditions of electrical signals: a healthy signal (i.e., a signal without any disturbance), a
voltage sag, a voltage swell, transients (impulsive and oscillatory), voltage fluctuations, and
harmonic distortion. Considering the definitions stated by the IEEE standard 1159–2019, the
mathematical models presented in Table 1 are used for generating the set of synthetic signals.

Before continuing, it is important to address some facts. For instance, all the parameters
presented in the third column of Table 1 are randomly generated considering the range of
values established in the same table. Also, the term f f c, which represents the frequency of
the fundamental component, is considered as 50 Hz. Moreover, for the case of harmonics,
the number of harmonics and the amplitude of harmonicas is randomly selected, but in all
the cases, a THD value higher than 8% must be accomplished to consider those cases with
unacceptable harmonic distortion. Additionally, the model presented for the description
of transients corresponds to an impulsive transient. Although impulsive and oscillatory
transients are different and they can be described with different parameters, for the sake of
simplicity, in this work, it is considered that an oscillatory transient can be expressed as an
impulsive transient that appears more than one time with different values; therefore, the
classifier will detect both disturbances only as transients. Also, it is considered that all the
signals are generated using a sampling frequency of 8 kHz and with a duration of 300 ms.
Finally, 100 signals per condition are generated to obtain a total of 600 elements that will be
used in the following stages of the training process.

Regarding the real signals, these are taken from two different data sets. A first data set
is provided by the IEEE 1159.3 working group [37], and it consists of a series of voltage
and current signals, recorded from different real locations, with diverse PQD. The data
set is formed by over 300 signals, but to validate the correct performance of the proposed
strategy, only 3 cases are presented: transients, a voltage sag, and a voltage swell. In
these signals, it is considered that the fundamental frequency is 60 Hz, and the signals
are acquired at different sampling rates. For instance, the signal with the transients is
acquired at a sampling rate of 15,360 Hz, whereas the signals with voltage sag and voltage
swell are acquired considering a sampling frequency of 7680 Hz. The second set of real
signals is acquired from a 30-MW wind park located in northern Spain. A proprietary data
acquisition system (DAS) is used for collecting and storing electrical signals. This DAS
is based on field-programmable gate array (FPGA) technology and it is able to acquire
data from 7 channels simultaneously. The sampling rate of these signals is 8 kHz and the
fundamental frequency is 50 Hz. At this location, a total of 4 different cases are presented:
one for a healthy signal, another one for voltage sag, one more for transients, and, finally,
one for harmonic distortion. Both sets of real signals are used to assess the performance of
the proposed strategy under real conditions. However, the proposed methodology aims to
be a tool for wind turbine designers; therefore, the results obtained with the second set of
real signals come to be of great importance for validating the reliability of this strategy.

3.2. Multi-Domain Feature Estimation

It has been previously addressed that for PQD that present similar behaviors, a multi-
domain approach may be helpful for obtaining better classification. Thus, h the use of
three different domains is proposed here: time domain (TD), frequency domain (FD), and
time-frequency domain (TFD). However, before performing any feature estimation, it is
necessary to perform an amplitude normalization of the electrical signal; such normalization
is carried out considering the nominal RMS value of the voltage signal. Therefore, all the
amplitude values are dimensionless and expressed as per unit (pu). This consideration is
implemented because the data sets that are used in this work consider signals from different
grids and, therefore, have different nominal amplitudes. Nevertheless, by performing this
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normalization, the proposed methodology is able to properly work, even for signals with
different nominal amplitude values.

In the case of the TD feature estimation, the 15 statistical features summarized in
Table 2 are calculated for every signal. Therefore, the dimensionality of this space is set as
TD = 15 and a feature matrix composed by statistical time domain features is obtained,
TD ∈ RTD. In the case of the FD analysis, first, it is necessary to compute the fast Fourier
transform (FFT) of each normalized signal to obtain its representative spectrum. Then, the
14 statistical features presented in Table 3 are estimated over the signal spectrum. Hence,
the dimensionality of this new space is FD = 14 and a representative FD-dimensional
feature matrix, FD ∈ RFD, is obtained. At this point, it is important to address the fact
that the statistical features are estimated over the amplitude values of the signal spectrum.
Since the signals have been previously normalized, it is expected that the fundamental
component presents an amplitude of 1 pu in a healthy condition, and any variation from
this value will be related with the existence of a disturbance. Moreover, since only the
amplitude values of the spectrum are considered, the proposed methodology can be applied
in any signal, regardless the value of the fundamental frequency. This turns to be one of
the main advantages of the proposed approach, because it can be applied in 60 Hz grids
and also in 50 Hz grids without requiring any modification. Finally, to carry out the TFD
feature estimation, a preprocessing of the normalized signals is required prior to feature
estimation. This preprocessing task consists of performing a signal decomposition, and the
EMD technique is used for this purpose. The result of applying the EMD over the voltage
signals is a set of sub-signals that show the main oscillatory modes of the original signal
and that are called intrinsic mode functions (IMF). An important drawback of the EMD
technique lies in the fact that it is not possible to have a priori knowledge of the IMF that
can be obtained from a particular signal. Moreover, when the EMD is applied over two
different signals, it is possible that a different number of IMF is obtained from each signal.
To consider that a signal provides significant information in the TFD, only those signals
that deliver 3 or more IMFs after applying the EMD are considered; the rest are discarded.
Once the preprocessing task has been applied, the set of 15 statistical features presented in
Table 2 are individually estimated over the three first resulting IMFs. So, for this last space,
the dimensionality turns out to be TFD = 45, and, as in the previous cases, it is possible
to obtain a TFD-dimensional feature matrix, TFD ∈ RTFD. As in the previous cases, the
feature estimation is performed over the amplitude values of every IMF; therefore, the
methodology is insensitive to variations in the value of the fundamental frequency, and it
can be applied in both 60 Hz and 50 Hz grids.

Table 2. Proposed set of statistical features for the characterization of the available signals during
the processing in the time-domain analysis, where, x(i) is a sample for i = 1, 2, . . . , N, and N is the
number of points for each acquired signal.

Statistical Time-Domain Feature Mathematical Equation

Mean T1 = 1
N ·∑

N
i=1|xi|

Maximum value T2 = max(x)

Root mean square T3 =
√

1
N ·∑

N
i=1(xi)

2

Square root mean T4 =
(

1
N ·∑

N
i=1
√
|xi|
)2

Standard deviation T5 =
√

1
N ·∑

N
i=1(xi − T1)

2

Variance T6 = 1
N ·∑

n
i=1(xi − T1)

2

RMS shape factor T7 = T3
1
N ·∑

N
i=1|xi |

SRM shape factor T8 = T4
1
N ·∑

N
i=1|xi |
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Table 2. Cont.

Statistical Time-Domain Feature Mathematical Equation

Crest factor T9 = T2
T3

Latitude factor T10 = T2
T4

Impulse factor T11 = T2
1
N ·∑

N
i=1|xi |

Skewness T12 =
∑[(xi−T1)

3]
T3

5

Kurtosis T13 =
∑[(xi−T1)

4]
T4

5

Fifth moment T14 =
∑[(xi−T1)

5]
T5

5

Sixth moment T15 =
∑[(xi−T1)

6]
T6

5

Table 3. Proposed set of statistical features for the characterization of frequency spectra estimated
from each available signal during its processing in the frequency-domain analysis, where s(k) is a
spectrum for j = 1, 2, . . . , M, and M is the number of lines with fj as the frequency value of the jth
spectrum line.

Statistical Feature Mathematical Equation

Mean F1 = 1
M ·∑

M
j=1 s(j)

Variance F2 = 1
M−1 ·∑

M
j=1(s(j)− F1)

2

Third moment F3 = 1
M(
√

F2)
3 ·∑M

j=1(s(j)− F1)
3

Fourth moment F4 = 1
M(
√

F2)
2 ·∑M

j=1(s(j)− F1)
4

Grand mean F5 =
∑M

j=1 f j s(j)

∑M
j=1 s(j)

Standard deviation 1 F6 =

√
∑M

j=1( f j−F5)
2

s(j)
M

C factor F7 =

√
∑M

j=1 f j
2 s(j)

∑M
j=1 s(j)

D factor F8 =

√
∑M

j=1 f j
4 s(j)

∑M
j=1 f j

2 s(j)

E factor F9 =
∑M

j=1 f j
2 s(j)√

∑M
j=1 s(j) ∑M

j=1 f j
4 s(j)

G factor F10 = F6
F5

Third moment 1 F11 =
∑M

j=1( f j−F5)
3

s(j)
M F3

6

Fourth moment 1 F12 =
∑M

j=1( f j−F5)
4

s(j)
M F4

6

H factor F13 =
∑M

j=1( f j−F5)
1/2

s(j)
M
√

F6

J factor F14 = (F7+F8)
F1
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At this point, it is important to mention that, in the case of the training process, every
synthetic signal is generated with a duration of 300 ms, and the feature estimation is performed
over the complete signal. In the case of the real signals, they present different durations: if the
length of the real signal is less or equal to 300 ms, the feature extraction is carried out over
the complete signal; if the length of the signal is more than 300 ms, the signal is divided in
windows of 300 ms and the statistical features are extracted for every window. Moreover, this
proposed approach is intended to be applied offline, even with the real signals.

3.3. Optimized Feature Selection

Considering the three proposed domains (TD, FD and TFD), a total of 74 statistical
features are estimated. This is a considerable number of features, and there is no guarantee
that all of them provide valuable information regarding the PQD behavior. This is why it
is necessary to perform an optimization in the feature selection process. For this purpose,
the fusion of two different techniques, GA and PCA, is proposed. GA is a heuristic search
algorithm based in Darwin’s natural selection. This technique has been widely used for
solving optimization problems because of its ability for minimizing estimation errors. GA
requires an objective function that will be the one in charge of defining the goodness of fit
(GOF) in the optimization task. In this work, the objective function for the GA is directly
stated by the PCA, a mathematical procedure that allows performing a reduction in the
dimensionality of a problem, preserving the variability of the data. To assess the variability
that has been preserved by the PCA, the data variance is used, and it is precisely this
value of the parameter that will be used for the GA to perform the optimization task.
The complete optimized feature selection is carried out following the procedure proposed
in [38] and illustrated in Figure 4 as described below:
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Stage 1: Definition of the initial population. It is considered that the population that
will be held by the GA is composed of a logical vector that counts with a total of 74 chromo-
somes, where every chromosome represents each one of the statistical features previously
estimated. A chromosome takes a value of zero if the statistical feature that represents is
not considered in the evaluation process, and it takes a value of one if the statistical feature
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is being considered in the analysis. Thus, the initial population is randomly generated
by considering that at least one of the elements contained in the logical vector has to be
selected to be evaluated; also, more than one element can be evaluated. Once this task has
been fulfilled, the procedure goes to stage 2.

Stage 2: Population assessment. At this point, the fitness function of the GA must be
selected to assess the performance of each individual. In this particular case, the fitness
function is defined in terms of the accumulation of the data variance. This cumulative
variance is calculated using the PCA, and the fitness function comprises the cumulative
variance of the two and three first principal components. In this sense, the optimization
problem that must be solved by the GA consists of searching for the specific statistical
features that maximize the cumulative data variance delivered by the PCA. Once the whole
population is evaluated, the condition of best features obtained is analyzed; therefore, the
next stage is 4.

Stage 3: Generation of a new population. The GA has two operations that allow to
generate a new population preserving the values that positively contribute to reach the
optimization goal. These operations are the crossover and the mutation. Here, the common
single-point crossover operator and the roulette wheel selection are in charge of generating
this new population. In this way, it is possible to take the chromosomes of the previous
population that present the highest fitting values (higher data variance), and keep them for
the new population. Also, to prevent stagnation and to provide the new population with
fitness variability, the mutation operation is applied using a Gaussian distribution. Next,
the new population has to be evaluated; thus, the algorithm continues in stage 2.

Stage 4: Stop criteria. There are two different constrains that determine if the GA must
finish its execution. The first one occurs when the optimization problem is solved and the
GA finds the features that reach the highest maximization of the data variance; the second
one consists on reaching a maximum number of generations (iterations). When one of
the stop criteria is reached, the GA delivers the optimized set of features and the iterative
process finishes; otherwise, the process is iteratively repeated until one of the stop criteria
is reached. If the stop criteria are not met, then the algorithm continues in stage 3.

The described procedure is applied to each domain separately; therefore, three opti-
mized feature sets are obtained: one for the TD, other for the FD and a third one for the
TFD. Then, the feature learning step only receives the sets of features that reached the
maximum cumulative variance. Therefore, as a result of the optimized feature selection,
the dimensionality of each one of the domains has been reduced. This situation is helpful
for the next steps in order to obtain a better characterization of each disturbance.

3.4. Feature Learning

The feature learning stage is performed by means of using the SOM unsupervised
algorithm, and the objective of this stage lies in modeling those selected sets of features that
better characterize each of the evaluated conditions for the three domains of analysis, TD,
FD and TFD. In this regard, different SOM neuron grids are generated, as many feature ma-
trices are available, where there exist three available feature matrices that characterize each
one of the evaluated conditions. Therefore, several SOM neuron grids are generated with a
pre-defined number of neurons, i.e., defined with 100 neurons over a 10 × 10 grid, and then
each one of the available feature matrices is subjected to the feature learning. Thereby, the
resulting SOM neuron grids may represent each one of the different evaluated conditions
(healthy or normal, sag or swell voltages, transients like impulsive and oscillatory, voltage
fluctuations and harmonic distortion) and the original d-dimensional space of the input
feature spaces are then represented into a 2-dimensional neuron grid. Once the feature
learning is carried out, for each SOM neuron grid model, the pre-defined neurons known
as matching unit (MU) are adapted to the input feature spaces or characteristic feature
matrices preserving the topological properties that represent a high-performance feature
characterization of the assessed conditions.
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3.5. Classification

The idea of performing an optimized feature selection and then the modeling of the
disturbances under evaluation is to carry out the classification process as simply as possible.
In sense, the use of a simple softmax layer neural network to perform the multicategory
classification is proposed. Therefore, the input layer of the neural network receives the three
SOM neuron grid models for each one of the studied conditions and the output layer of
the softmax network is composed of six neurons representing six different categories that
correspond to each one of the conditions under test; that is; healthy or normal, sag or swell
voltages, transients, voltage fluctuations and harmonic distortion. This approach is based
on a probability function and the category with the highest probability is delivered as result.
These probabilities are calculated using the mathematical expression shown in (5).

P(x ∈ Cm) =
eWm A

∑N
l=1 eWl A

(5)

where x is the input matrix with the SOM neuron grid models, Cm is the m-th category,
Wm is the weight for the m-th neuron, A is the activation of the m-th neuron, and N is the
number of categories.

The purpose of this block is to determine if an electrical signal presents a PQD;
therefore, the output of the classifier is the PQ disturbance detection between the healthy
or normal, sag or swell voltages, transients, voltage fluctuations and harmonic distortion
conditions and it allows for determining whether or not a signal is contaminated. When a
specific signal is introduced as input of the proposed methodology, it follows the complete
described scheme, and the signal is classified in one of the 6 categories: healthy, sag, swell,
transients, fluctuations or harmonics. It is important to mention that the IEEE standard
1159–2019 states that a transient is an event that is undesirable but momentary in nature
and it classifies a transient event into two categories: impulsive and oscillatory. Since it
has been mentioned that, in this work, both the impulsive transient and the oscillatory
transient are treated as only one type of PQD, when one of these disturbances is detected,
the classifier delivers transients as output, indicating that it can be impulsive or oscillatory.

In the design of a specific electric machine, such as wind generators, it is expected
that the delivered electric signals can be classified as healthy; otherwise, it is an indicator
of some problem that must be corrected in the design or the operation of the machine.
Hence, the PQ disturbance detection allows for taking actions to improve the design of the
complete system and increase the reliability of the same.

4. Results and Discussions
4.1. Database and Multi-Domain Feature Estimation

The proposed PQ monitoring strategy, which allows for the identification of six dif-
ferent electrical conditions of electrical signals (healthy or normal, sag or swell voltages,
transients, voltage fluctuations and harmonic distortion), is developed under Matlab 2020a
software by means of using and programming the pre-loaded functions, and also, by means
of using the SOM Toolbox for Matlab [39]. Thus, the proposed PQ monitoring strategy is
designed and trained by taking into account only synthetic signals and then evaluated by
analyzing two different datasets of real signals where the first dataset belongs to the IEEE
1159.3 working group [37] and the second one belongs to real signals are acquired from a
30-MW wind park located in northern Spain.

Hence, regarding the proposed method, a set of synthetic signals is generated as above
described in order to produce different electrical signals that fulfill to the corresponding
standard definitions; thereby, the generated synthetic signals belong to a normal condi-
tion or healthy condition, and five different disturbances such as sag, swell, fluctuation,
harmonic and impulsive. In this regard, each synthetic signal was generated during 100 s
by considering a sampling frequency of 8 kHz and 50 Hz as the fundamental frequency.
In Figure 5a–f, are shown different electrical signals that are synthetically generated and
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that belong to evaluated conditions: healthy or normal, sag or swell voltages, transients,
voltage fluctuations and harmonic distortion, respectively.

Subsequently, each one of the synthetic signals is characterized by means of applying
a multi-domain feature estimation that leads to the signal characterization in three different
domains, that is, TD, FD and TFD. Hence, aiming to achieve the multi-domain feature
estimation and to obtain a consecutive set of samples, each synthetic signal was segmented
into 333 equal parts of approximately 0.3 s that comprises around 15 cycles. In this sense,
the multi-domain feature estimation is individually applied to each available signal and for
the TD is estimated a set of 15 statistical time-domain features from each segmented part;
as a result, a characteristic TD feature matrix that is composed of 15 statistical features with
333 consecutive samples is obtained. For the FD, the fast Fourier transform is computed
from each segmented part and then a set of 14 statistical features is calculated from each
resulting frequency spectra; as a result, a characteristic FD feature matrix that comprises
14 statistical features with 333 consecutive samples is generated. For the TFD, each segmented
part is analyzed through the empirical mode decomposition technique in order to perform the
signal decomposition. Then, the first three resulting intrinsic mode functions are separately
characterized by a set of 15 statistical time-domain features; as a result, a characteristic
TFD feature matrix that is formed by 45 statistical features with 333 samples is obtained.
Consequently, each evaluated condition is characterized by three different feature matrices
that contain significant information represented in three different domains, TD, FD and TFD.
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4.2. Optimized Feature Selection

Afterward, the optimized feature selection stage is carried out and applied to each eval-
uated condition. Specifically, such optimized feature selection is individually performed
to each characteristic feature matrix, aiming to select and retain those features that are
more significant and that better represent each of the analyzed domains, TD, FD and TFD.
In this regard, the feature selection searching structure is designed based on a GA–PCA
approach that evaluates the combination of different features and estimates the cumulative
data variance in the first two PCs by means of the PCA. The combination of features is
performed by the GA and the feature selection stops by two criteria: (i) maximization of the
fitness function (achieve the maximum data variance) and (ii) reach the maximum number
of generations. For this application, all combinations of selected features reached maximum
data variance higher than 95%; thus, since the optimize feature stage is individually applied
to each evaluated condition for each analyzed domain, in Table 4 the results obtained by
the GA–PCA searching structure are summarized. As shown in Table 4, for each evaluated
condition, a specific subset of features is selected. From these selected subsets of features, it
must be highlighted that each evaluated condition is represented by a meaningful subset of
features; i.e., for the TD, the voltage sag is characterized by the features number 3 and 11
that correspond with the RMS and the impulse factor, the voltage fluctuation is characterized
by the features number 5 and 15 which correspond with the standard deviation and the fifth
moment; whereas the harmonic distortion is well-characterized by the features number 2, 3,
5 and 14 that are the maximum value, the RMS, the standard deviation and the sixth moment;
additionally, it should be mentioned that the statistical features lead to a high-performance
characterization of studied electrical disturbances because of the capability of modeling
trends and changes in signals. Although the feature selection is individually applied to
each assessed condition, the final subsets of selected features are composed by including
all the selected features for each analyzed domain. That is, for the TD, the optimal selected
features are the subset consisting of 9 features which numbers are 2, 3, 4, 5, 7, 11, 12, 14
and 15. Accordingly, the optimal subsets of features are composed by 9 features for the
TD, 8 features for the FD and 16 features for the TFD, precisely, from the original set of
74 features are selected 33 of them.

Table 4. Resulting feature selection achieved by the GA–PCA selection structure applied to each eval-
uated condition for each analyzed domain with TD = 15, FD = 14 and TFD = 45, where, TD ∈ RTD,
FD ∈ RFD and TFD ∈ RTFD.

Condition
Domain of Analysis

TD FD TFD

Normal 2, 12 3, 10 18, 19, 20, 21, 33, 34,
35, 36, 39

Sag 3, 11 3, 6 4, 15, 24
Swell 4, 5 12, 14 8, 32

Fluctuation 5, 15 4, 6 15, 31
Harmonic 2, 3, 5, 14 4, 5 21, 26
Transients 4, 7 2, 12 21, 35

Selected features 2, 3, 4, 5, 7, 11, 12, 14, 15 2, 3, 4, 5, 6, 10, 12, 14
4, 8, 15, 18, 19, 20, 21,
24, 26, 31, 32, 33, 34,

35, 36, 39

To validate the optimal feature selection procedure, the characteristic features matrices
for all considered conditions in the FD are analyzed through the PCA technique. That is,
the original 14 statistical features from FD are subjected to a linear transformation and
are projected into a 2-d feature space to visualize the data distribution; thus, in Figure 6a,
different clusters that represent all the considered conditions are projected. On the other
hand, the PCA technique is also used to analyze the data distribution for all considered
conditions by taking into account only the subset of selected features for the FD (features
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number 2, 3, 4, 5, 6, 10, 12, 14); thereby, in Figure 6b, different clusters are projected for all
considered conditions and as it is appreciated an improved class separation is achieved by
analyzing those selected features for the FD.
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Figure 6. 2-d visual representation of the data distribution for all the assessed conditions achieved by
the PCA technique during the analysis of each characteristic feature matrices for: (a) the estimated
features for FD and (b) the subset of selected features for FD.

4.3. Feature Learning

Subsequently, the feature learning stage is performed by generating as many SOM as
many feature matrices are available, where, the N = 100 number of predefined neurons, in a
10 × 10 grid, are randomly initialized and then automatically adapts to the corresponding
input feature space under evaluation. As a result, for each one of the studied conditions,
three SOM neuron grid models containing its topology are obtained. The advantage of
using SOM neuron grids is that a self-adaptation to data distribution of input feature
space is achieved. Also, such modeling allows for retaining the topology of the modeled
data for the evaluated conditions: healthy or normal, sag or swell voltages, transients,
voltage fluctuations and harmonic distortion. In this sense, during the feature learning
procedure, the quantization error (Eq) and the topological error (Et) are measured and, as
above mentioned, the Eq depicts the accuracy of the data representation, and this value
is achieved as the mean distance from each available measurement to its BMU; whereas,
the Et allows assessing the topology preservation of the data. For both values, Eq and
Et, achieving small values is desired. Table 5 summarizes the achieved errors, Eq and
Et, during the feature learning of the characteristic feature matrices for each considered
condition by taking into account the subsets of selected features for each corresponding
domain of analysis and, also under a fusion approach where three domains of analysis
are considered together for the learning process. As it can be seen in Table 5, for the TD,
the conditions of healthy, flicker and impulsive show Et values near to zero describing a
high preservation of the data topology; meanwhile, for the conditions of sag, swell and
harmonics the Et values are around 0.3± 0.15, approximately. Although for some evaluated
conditions are obtained Et values around or near to 0.5, the modeled SOM neuron grids
may show an excellent performance shows due to precision errors being small.
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Table 5. Achieved values of Eq and Et resulting from the feature learning procedure performed by
the proposed SOM neuron grid models.

Condition

Domain of Analysis Fusion Approach
(TD+TF+TFD)TD FD TFD

¯
Eq

¯
Et

¯
Eq

¯
Et

¯
Eq

¯
Et

¯
Eq

¯
Et

Healthy 1.2730 0.0259 0.7889 0.0144 1.7646 0.0202 3.4177 0.0115
Sag 9.8701 0.2075 9.9301 0.3862 81.85 0.3833 114.533 0.0951

Swell 3.1649 0.3084 4.0235 0.1095 34.135 0.3919 52.741 0.2421
Flicker 3.9299 0.0922 2.8075 0.2911 4.7213 0.1758 15.105 0.0403

Harmonics 1.0924 0.5043 0.6608 0.2824 31.6633 0.3343 37.2256 0.2911
Transients 1.3996 0.0720 1.1745 0.0403 485.131 0.6455 483.8992 0.6023

In order to interpret and to understand the results of the feature learning procedure, all
the SOM neuron grid models are projected into a 2-d space by means of the T-SNE technique.
In Figure 7a–c, are shown such 2-d representations that are carried out by considering all
evaluated conditions but they are performed separately for each analyzed domain, TD, FD
and TFD, respectively. As can be appreciated, most of the clusters that appear in Figure 7a,b
are almost well-separated among them; notwithstanding, it is observed in Figure 7a that the
sag, swell and fluctuations conditions appear very close to each other. This situation is more
or less expected, since the behavior in the TD of these three disturbances is very similar:
they present amplitude variations in the peak values of the voltage signal. Hence, if only the
TD analysis is used, it is prone to failure in the identification of these types of disturbances.
This situation is corrected when the FD is used and the sag, swell and healthy signals are
now clearly separated (see Figure 7b). However, in the FD, the harmonic and transients
conditions are overlapped. Again, this result can be explained by the fact that high harmonic
contamination causes a severe waveform distortion and introduces unexpected peaks that
may be considered as periodic transients. The worst cluster separation appears in the TFD
(see Figure 7c), where a severe cluster overlapping is observed. In this case, the overlap
among clusters can be associated with the use of the EMD, because this technique may
suffer mode mixing and the behavior of a disturbance can be observed in more than one
IMF. On the other hand, although the clusters of Figure 7c appear overlapped among them,
the consideration of all SOM neuron grid models from TF, FD and TFD may lead to clear
separation between all considered classes, remembering that each class represents a PQD.
This statement is considered in this proposed approach, thereby, a 2-d visual representation
is also performed by the T-SNE technique by analyzing the three domains of analysis,
TD, FD and TFD, for all considered conditions; thus, in Figure 8 different clusters that
appear clearly separated among them are shown. Then, even though some disturbances
may have similar behaviors in one domain, they are different in other domains, and by
using a multi-domain approach it is possible to differentiate every disturbance in a better
way. It should be mentioned regarding Figure 8 that the contribution of different SOM
neuron grids that are modeled through statistical features in different domains leads to a
high-performance characterization of data that represents the evaluated conditions.
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Figure 7. 2-d visual representation of the data distribution performed by the T-SNE technique over
the resulting SOM neuron grid models for all considered conditions when analyzing: (a) SOM neuron
grids models for TD, (b) SOM neuron grids models for FD and (c) SOM neuron grids models for TFD.
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Figure 8. 2-d visual representation of the data distribution performed by the T-SNE technique over
the resulting SOM neuron grid models for all considered conditions when analyzing all SOM neuron
grid models from the three analyzed domains, TD, FD and TFD.

4.4. Evaluation and Classification of Synthetic Signals

Lastly, to provide the automatic fault diagnosis and to detect the occurrence of PQ
disturbances, all the feature spaces mapped into different SOM neuron grid models are
concatenated under a feature fusion approach and then evaluated under a single softmax layer
that is proposed to achieve the PQ disturbance diagnosis. In Table 6, the global classification
rations achieved by the proposed softmax layer during the training and test are summarized;
as it is possible to appreciate, low-performance classification ratios are estimated when
each one of the analyzed domains is individually evaluated through the proposed softmax
layer. On the other side, when the three analyzed domains are considered under the fusion
approach, a high-performance classification ratio is accomplished, leading to proper detection
and identification of electrical disturbances that may suddenly appear; besides, the signal
characterization through different domains contribute to the estimation of meaningful and
discriminant patterns that specifically characterizes a specific electrical disturbance.
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Table 6. Resulting feature selection achieved by the GA–PCA selection structure applied to each
evaluated condition for each analyzed domain.

Feature Domain
Global Classification Ratio

Training Test

TD 78.7% 79.3%
FD 82.8% 84.0%

TFD 55.8% 52.7%
Fusion approach (TD+TF+TFD) 100% 100%

Moreover, despite the fact that the proposed PQ detection approach manages as
many models as evaluated conditions, each model is focused on the characterization of a
particular pattern that describes each one of the assessed electrical conditions and leads to a
high capability of response for its detection. Such capability of response may be calculated
in terms of the computational burden, thereby, over an Intel Core i7-4770K @3.50GHz CPU,
the execution of the proposed algorithm in Matlab 2020a takes less than 350 ms for all
evaluated conditions.

4.5. Evaluation and Classification of Real Signals

Finally, in order to validate the effectiveness of the proposed PQ detection approach,
different real signals are analyzed through the proposed strategy in order to search and
identify the occurrence of disturbances. In this sense, as previously mentioned, two
different experimental datasets are analyzed, the first is the dataset provided by the IEEE
1159.3 working group and, the second one belongs to real signals that are acquired from a
30-MW wind park located in northern Spain. Different PQ disturbances were identified
after analyzing these datasets through the proposed method, thus, the first parameter to
take into account for the detection of events is the abrupt change in the Eq value of the SOM
neuron grid that represents the normal condition. In this sense, it is important to recall that
the SOM is a technique for novelty detection, i.e., it informs when something different from
the “normal” behavior occurs. In this particular case, the normality represents a healthy
signal; therefore, the SOM delivers an alert when a PQD is found in the electric signal. To
demonstrate this situation, the signal presented in Figure 9a is analyzed with the proposed
methodology. By making a zoom to the region squared in Figure 9a, it is possible to observe
that a voltage swell is present in the signal (see Figure 9b). In Figure 10, the achieved Eq
for the SOM of the six conditions (PQD) are presented when the signal with the voltage
swell is analyzed. Figure 10a represents the value of the SOM model for the healthy signal;
Figure 10b is the value of the SOM model for the sag condition; Figure 10c is the value
of the SOM model for the swell condition; Figure 10d is the value of the SOM model for
the fluctuation condition; Figure 10e is the value of the SOM model for the harmonics
condition and; Figure 10f is the value of the SOM model for the transients condition. All
the graphics shown in Figure 10 are the qualitative representations of the achieved Eq
during the analysis of a real signal. From Figure 10a,b,d–f it is possible to appreciate that
an abrupt increase appears for the sample number 100; a situation that indicates that the
normal condition has changed, i.e., a PQD has been detected. However, in this case, the
fact that the Eq presents a raising in its value implies that the detected disturbance do not
correspond with the one that has been modeled by this specific SOM. On the other hand,
in Figure 10c such Eq value presents a decrease since the evaluated sample has similar
topological properties with the SOM neuron grid that models the swell condition. This is
a correct performance and identification of the PQD because, as observed in Figure 9b, a
swell condition appears in the signal.
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5. Conclusions

Due to the recent issues associated with air pollution and the scarcity of fossil fuels,
renewable sources are an attractive alternative for energy generation. Therefore, it is
necessary to properly design the electric machines that are used in this type of generation
to ensure a robust and reliable power supply. One of the issues that must be considered
in the design of electric generators used in wind turbines is that the PQ remains within
acceptable levels; thus, the methodologies for detecting disturbances in electric signals are
of great interest in this area.

The results reported in this work show that when only one individual domain (time,
frequency or time-frequency) is used for PQ analysis, the classification of the disturbances
in the grid presents a low performance. This situation relies on the fact that there are many
disturbances that present similar behaviors in a given domain. Nevertheless, it has been
demonstrated that when the multi-domain approach is implemented, the classification
results are improved, because the similitudes that exist in one domain do not appear in
a different one. However, when a multidomain approach is used, the number of features
that describe a singular PQD considerably grows. Hence, the detection and classification
tasks become more complicated and require of a high computational effort. In this sense,
the proposed methodology proved that there are features that do not provide important
information and, therefore, they can be discarded to reduce the dimensionality of the
problem and to facilitate the classification task. Although that optimized feature selection
may seem trivial, it is important to perform a proper selection of the features and be
careful of not losing the features that provide relevant information. Thus, it is necessary
to count with an indicator of the goodness of the selection. Additionally, it is important
to carry out this task in an ordinated way to ensure the obtaining of a good result. In
this sense, GA provides this structured feature searching, whereas the PCA brings the
indicator of the goodness of the selection. Moreover, to make the classification task even
simpler, SOM proved to be effective in the modeling of PQD, since they provide a 2-
dimensional representation that is different for each disturbance. Finally, it is important
to recall that the methodology is trained using synthetic signals; however, the approach
is robust enough to also work with real signals. The proposed methodology allowed for
detecting a series of PQD that occurred in a wind farm, proving effective in the detection of
anomalies associated with wind generation. Then, by finding the existence of PQD that
can produce a malfunction of the components of the machine, the proposed methodology
aims to be a tool for detecting PQD and improving the reliability of the wind turbine by
preventing the failure of any of its components. Moreover, having a priori knowledge of
the disturbances related to wind generators, it is possible to take into consideration the
design stage to prevent the appearance of these issues. Finally, if the disturbance appears
when the machine is already working, with the proposed methodology, it is possible to
take actions for corrective maintenance in order to ensure the proper working of all the
grid elements.
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