Combining the Broadband Coverage and Speed to Improve Fiscal System Efficiency in the Eastern European Union Countries
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Datasets and Variables’ Selection
3.2. Research Design
- REV is the amount of total receipts from taxes and social contributions;
- BC30 is the broadband coverage with a speed faster than 30 Mbps;
- BC100 is the broadband coverage with a speed faster than 100 Mbps;
- FBC is the fixed broadband coverage;
- NGA denote the next-generation access technologies;
- LTE is the long-term evolution;
- β1..6 denote the associated coefficients of the variables;
- t is the time period;
- ε is the standard error of regression.
- r is the residual function given by ri(β) = ri = yi − Xi′ β;
- k is the coefficient vector;
- h0() is a function with the tuning constant c > 0.
4. Results and Discussion
4.1. Evolution of Technology Infrastructure in Terms of Speed and Coverage
4.2. Contribution of Broadband Technologies to Tax Collection
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Telecommunication Union. How Broadband, Digitization and ICT Regulation Impact the Global Economy. 2020. Available online: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-EF.BDR-2020-PDF-E.pdf (accessed on 2 September 2022).
- Jiao, S.; Sun, Q. Digital Economic Development and Its Impact on Economic Growth in China: Research Based on the Perspective of Sustainability. Sustainability 2021, 13, 10245. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B. The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int. J. Prod. Res. 2019, 57, 829–846. [Google Scholar] [CrossRef]
- European Economic and Social Committee. Impact of Digitalization and the on-Demand Economy on Labour Markets and the Consequences for Employment and Industrial Relations. Available online: https://www.eesc.europa.eu/sites/default/files/resources/docs/qe-02-17-763-en-n.pdf (accessed on 2 September 2022).
- Tsindeliani, I.; Matyanova, E.; Razgildeev, A.; Vasilyeva, E.; Dudnik, D.; Mikhailova, A. Tax optimization in the modern tax system under the influence of digitalization: Russian case study. Eur. J. Comp. Law Gov. 2021, 8, 429–452. [Google Scholar] [CrossRef]
- OECD. Tax and Digitalization. 2018. Available online: https://www.oecd.org/tax/beps/tax-and-digitalisation-policy-note.pdf (accessed on 2 September 2022).
- Strauss, H.; Schutte, D.; Fawcett, T. An evaluation of the legislative and policy response of tax authorities to the digitalisation of the economy. S. Afr. J. Account. Res. 2021, 35, 239–262. [Google Scholar] [CrossRef]
- OECD. Tax Administrations Continue to Accelerate their Digital Transformation. Available online: https://www.oecd.org/tax/administration/tax-administrations-continue-to-accelerate-their-digital-transformation.htm (accessed on 3 September 2022).
- European Commission. Broadband Coverage in Europe. 2021. Available online: https://digital-strategy.ec.europa.eu/en/library/broadband-coverage-europe-2021 (accessed on 4 September 2022).
- European Commission. Connectivity for a European Gigabit Society—Brochure. Available online: https://digital-strategy.ec.europa.eu/en/library/connectivity-european-gigabit-society-brochure (accessed on 4 September 2022).
- Rohman, I.K.; Bohlin, E. Does Broadband Speed Really Matter for Driving Economic Growth? Investigating OECD Countries. 2012. Available online: https://www.econstor.eu/obitstream/10419/60385/1/72027561X.pdf (accessed on 7 September 2022).
- Hasbi, M.; Bohlin, E. Impact of broadband quality on median income and unemployment: Evidence from Sweden. Telemat. Inform. 2022, 66, 101732. [Google Scholar] [CrossRef]
- Minges, M. Exploring the Relationship Between Broadband and Economic Growth. 2016. Available online: https://documents1.worldbank.org/curated/en/178701467988875888/pdf/102955-WP-Box394845B-PUBLIC-WDR16-BP-Exploring-the-Relationship-between-Broadband-and-Economic-Growth-Minges.pdf (accessed on 8 September 2022).
- Koniagina, M.N. Forecast of Budget Revenues From Taxes in The Context of Economy Digitalization; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 940, p. 012040. [Google Scholar]
- Gupta, S.; Keen, M.; Shah, A.; Verdier, G. Public Finance Goes Digital: Technology is reshaping how governments raise and spend money. Financ. Dev. 2018, 55, 1. [Google Scholar]
- Vuković, M. Towards the Digitization of Tax Administration. 2018. Available online: https://www.cef-see.org/files/Digitization_Tax_Administration.pdf (accessed on 8 September 2022).
- Hanrahan, D. Digitalization as a Determinant of Tax Revenues in OECD Countries: A Static and Dynamic Panel Data Analysis. Athens J. Bus. Econ. 2021, 7, 321–348. [Google Scholar] [CrossRef]
- Zhu, C.X. Analysis on Tax Collection and Management of Digital Economy; E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 253, p. 03046. [Google Scholar]
- Vatavu, S.; Lobont, O.-R.; Stefea, P.; Brindescu-Olariu, D. How Taxes Relate to Potential Welfare Gain and Appreciable Economic Growth. Sustainability 2019, 11, 4094. [Google Scholar] [CrossRef] [Green Version]
- Ubago Martínez, Y.; Pascual Arzoz, P.; Zabaleta Arregui, I. Tax collection efficiency in OECD countries improves via decentralization, simplification, digitalization and education. J. Policy Model. 2022, 44, 298–318. [Google Scholar] [CrossRef]
- Rohman, I.K.; Bohlin, E. Impact of broadband speed on household income: Comparing OECD and BIC. In Proceedings of the 24th European Regional Conference of the International Telecommunications Society (ITS): Technology, Investment and Uncertainty, Florence, Italy, 20–23 October 2013. [Google Scholar]
- Dima, B.; Lobonţ, O.; Moldovan, N. Does the Quality of Public Policies and Institutions Matter for Entrepreneurial Activity? Evidences from the European Union’s Member States. Panoeconomicus 2016, 63, 425–439. [Google Scholar] [CrossRef]
- Cristea, M.S.; Pirtea, M.G.; Suciu, M.C.; Noja, G.G. Workforce Participation, Ageing, and Economic Welfare: New Empirical Evidence on Complex Patterns across the European Union. Complexity 2022, 2022, 7313452. [Google Scholar] [CrossRef]
- Dima, B.; Dima, S.; Moldovan, N.C.; Pirtea, M.G. National legislative systems and foreign standards and regulations: The case of International Financial Reporting Standards adoption. Econ. Res. Ekon. Istraživanja 2013, 26, 3. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chang, H.-L.; Lobont, O.-R.; Su, C.-W. Modeling heterogeneous inflation expectations: Empirical evidence from demographic data? Econ. Model. 2016, 57, 153–163. [Google Scholar] [CrossRef]
- Croux, C.; Dhaene, G.; Hoorelbeke, D. Robust Standard Errors for Robust Estimators; Discussion Papers Series 03.16; Katolieke Universiteit Leuven: Leuven, Belgium, 2003. [Google Scholar]
- Fung, W.-K. Unmasking Outliers and Leverage Points: A Confirmation. J. Am. Stat. Assoc. 1993, 88, 515–519. [Google Scholar] [CrossRef]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least squares. Commun. Stat. Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Huber, P.J. Robust Regression: Asymptotics, Conjectures and Monte Carlo. Ann. Stat. 1973, 1, 799–821. [Google Scholar] [CrossRef]
- Huber, P.J. Robust Statistics; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Hubert, M.; Debruyne, M. Breakdown Value. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 296–302. [Google Scholar] [CrossRef]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Renaud, O.; Victoria-Feser, M.-P. A Robust Coefficient of Determination for Regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef] [Green Version]
- Ronchetti, E. Robust Model Selection in Regression. Stat. Probab. Lett. 1985, 3, 21–23. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Rousseeuw, P.J.; van Zomeren, B.C. A Comparison of Some Quick Algorithms for Robust Regression. Comput. Stat. Data Anal. 1992, 14, 107–116. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Yohai, V.J. Robust regression by means of S-estimators. In Robust and Nonlinear Time Series; Franke, J., Härdle, W., Martin, D., Eds.; Lecture Notes in Statistics No. 26; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Saliban-Barrera, M.; Yohai, V.J. A Fast Algorithm for S-Regression Estimates. J. Comput. Graph. Stat. 2006, 15, 414–427. [Google Scholar] [CrossRef]
- Susanti, Y.; Pratiwi, H.; Sulistijowati, H.; Liana, T. M Estimation, S estimation, and MM estimation in robust regression. Int. J. Pure Appl. Math. 2014, 91, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Birkes, D.; Dodge, Y. Alternative Methods of Regression; John Wiley Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Yu, C.; Chen, K.; Yao, W. Outlier Detection and Robust Mixture Modeling Using Nonconvex Penalized Likelihood. J. Stat. Plan. Inference 2015, 164, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, R.R. A review of some recent developments in robust regression. Br. J. Math. Stat. Psychol. 1996, 49, 253–274. [Google Scholar] [CrossRef]
- Yohai, V.J. High Breakdown-point and High Efficiency Robust Estimates for Regression. Ann. Stat. 1987, 15, 642–656. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F.; Chu, C. Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Bădîrcea, R.M.; Manta, A.G.; Doran, N.M.; Manta, F.L. Linking the government expenditures to the achievement of the Europe 2020 strategy indicators. Evidence from Central and Eastern European Countries. Technol. Econ. Dev. Econ. 2022, 28, 694–715. [Google Scholar] [CrossRef]
- Lopez, L.; Weber, S. Testing for Granger Causality in Panel Data; IRENE Working Paper, No. 17-03; University of Neuchâtel, Institute of Economic Research (IRENE): Neuchâtel, Switzerland, 2017; Available online: https://www.econstor.eu/handle/10419/191498 (accessed on 10 October 2022).
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Lobonţ, O.-R.; Vătavu, S.; Jicărean, L.; Moldovan, N.-C. A Cross-Cultural Study on the Digitalisation of Public Services; Grima, S., Özen, E., Boz, H., Eds.; The New Digital Era: Digitalisation, Emerging Risks and Opportunities (Contemporary Studies in Economic and Financial Analysis, Vol. 109A); Emerald Publishing Limited: Bingley, UK, 2022; pp. 69–88. [Google Scholar] [CrossRef]
- Trif, S.M.; Noja, G.G.; Cristea, M.; Enache, C.; Didraga, O. Modelers of students’ entrepreneurial intention during the COVID-19 pandemic and post-pandemic times: The role of entrepreneurial university environment. Front. Psychol. 2022, 13, 976675. [Google Scholar] [CrossRef]
- Bădîrcea, R.M.; Manta, A.G.; Florea, N.M.; Popescu, J.; Manta, F.L.; Puiu, S. E-Commerce and the Factors Affecting Its Development in the Age of Digital Technology: Empirical Evidence at EU–27 Level. Sustainability 2022, 14, 101. [Google Scholar] [CrossRef]
- United Nations, CIAT. Design and Assessment of tax Incentives in Developing Countries. 2018. Available online: https://www.un.org/esa/ffd/wp-content/uploads/2018/02/tax-incentives_eng.pdf (accessed on 11 October 2022).
- Seltzer, D. Using Tax Credits to Encourage Infrastructure Investment. Available online: https://www.cornellpolicyreview.com/tax-credits-infrastructure-investment/?pdf=4920 (accessed on 11 October 2022).
- Thurnherr, S. Corruption and Innovation Capability: A Correlation Analysis in 140 Countries and its Implications in International Business. Available online: https://globalriskprofile.com/wp-content/uploads/2020/10/CorruptionInnovation_LongVersion.pdf (accessed on 10 October 2022).
REV | BC30 | BC100 | FBC | NGA | LTE | |
---|---|---|---|---|---|---|
Unit of measure | Million Euro | % of total households | % of total households | % of total households | % of total households | % of total households |
Period | 2013–2021 | 2013–2021 | 2013–2021 | 2013–2021 | 2013–2021 | 2013–2021 |
Mean | 59,520.89 | 0.698490 | 0.518653 | 0.914776 | 0.737531 | 0.823898 |
Median | 45,503.70 | 0.724000 | 0.559000 | 0.944000 | 0.741000 | 0.963000 |
Maximum | 187,334.8 | 0.969000 | 0.864000 | 0.998000 | 0.919000 | 1.000000 |
Minimum | 11,831.30 | 0.345000 | 0.020000 | 0.791000 | 0.471000 | 0.000000 |
Std. Dev. | 47,302.91 | 0.142306 | 0.224065 | 0.058329 | 0.112102 | 0.267127 |
Skewness | 1.479370 | −0.332334 | −0.417942 | −0.602276 | −0.397687 | −1.598545 |
Kurtosis | 4.185545 | 2.428024 | 2.163486 | 2.243384 | 2.702390 | 4.441862 |
Jarque-Bera | 20.74263 | 1.569920 | 2.855184 | 4.131130 | 1.472430 | 25.11322 |
Probability | 0.000031 | 0.456138 | 0.239886 | 0.126747 | 0.478923 | 0.000004 |
Sum | 2916524 | 34.22600 | 25.41400 | 44.82400 | 36.13900 | 40.37100 |
Sum Sq. Dev. | 1.07 × 1011 | 0.972048 | 2.409855 | 0.163309 | 0.603204 | 3.425136 |
Country | Romania | Bulgaria | Czechia | Hungary | Poland | Slovakia |
---|---|---|---|---|---|---|
BC30 | 93.7% | 93.3% | 98.1% | 94.9% | 77.0% | 82.3% |
BC100 | 88.6% | 91.9% | 89.2% | 88.7% | 69.2% | 75.4% |
Country | Romania | Bulgaria | Czechia | Hungary | Poland | Slovakia |
---|---|---|---|---|---|---|
FBC | 94.1% | 97.3% | 99.9% | 98.4% | 89.7% | 97.4% |
NGA | 93.3% | 93.3% | 92.6% | 96.7% | 78.2% | 84.3% |
LTE | 99.9% | 99.9% | 99.8% | 99.7% | 99.9% | 98.4% |
REV | BC30 | BC100 | FBC | NGA | LTE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
level | Δ | level | Δ | level | Δ | level | Δ | level | Δ | level | Δ | |
t-stat | −0.835 | −4.267 | 0.842 | 1.026 | 4.554 | −8.170 | 5.497 | −0.836 | 5.987 | 1.283 | −35.001 | −78.192 |
p-value | 0.201 | 0.000 | 0.800 | 0.047 | 1.000 | 0.000 | 1.000 | 0.020 | 1.000 | 0.040 | 0.000 | 0.000 |
REV | BC30 | BC100 | FBC | NGA | LTE | |
---|---|---|---|---|---|---|
REV | 1 | |||||
----- | ||||||
BC30 | −0.25382 | 1 | ||||
0.0784 | ----- | |||||
BC100 | −0.1014 | 0.757283 | 1 | |||
0.4881 | 0 | ----- | ||||
FBC | −0.56681 | 0.675601 | 0.384968 | 1 | ||
0 | 0 | 0.0063 | ----- | |||
NGA | −0.14224 | 0.919367 | 0.73267 | 0.675108 | 1 | |
0.3296 | 0 | 0 | 0 | ----- | ||
LTE | 0.344341 | 0.516814 | 0.526869 | 0.018028 | 0.506985 | 1 |
0.0154 | 0.0001 | 0.0001 | 0.9022 | 0.0002 | ----- |
Variable | Coefficient | Std. Error | z-Statistic | Prob. |
---|---|---|---|---|
BC30 | −83,862.42 | 16,644.44 | −5.038464 | 0.0000 |
BC100 | 68,263.99 | 6571.827 | 10.38737 | 0.0000 |
FBC | −8813.001 | 9996.640 | −0.881596 | 0.3780 |
NGA | 102,054.5 | 21,841.95 | 4.672409 | 0.0000 |
LTE | 11,596.51 | 4107.112 | 2.823520 | 0.0047 |
Robust Statistics | ||||
R-squared | 0.524693 | Adjusted R-squared | 0.481483 | |
Scale | 13,570.56 | Deviance | 1.84 × 108 | |
Rn-squared statistic | 1710.806 | Prob (Rn-squared stat.) | 0.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doran, M.D.; Puiu, S.; Berceanu, D.; Țăran, A.M.; Para, I.; Popescu, J. Combining the Broadband Coverage and Speed to Improve Fiscal System Efficiency in the Eastern European Union Countries. Electronics 2022, 11, 3321. https://doi.org/10.3390/electronics11203321
Doran MD, Puiu S, Berceanu D, Țăran AM, Para I, Popescu J. Combining the Broadband Coverage and Speed to Improve Fiscal System Efficiency in the Eastern European Union Countries. Electronics. 2022; 11(20):3321. https://doi.org/10.3390/electronics11203321
Chicago/Turabian StyleDoran, Marius Dalian, Silvia Puiu, Dorel Berceanu, Alexandra Mădălina Țăran, Iulia Para, and Jenica Popescu. 2022. "Combining the Broadband Coverage and Speed to Improve Fiscal System Efficiency in the Eastern European Union Countries" Electronics 11, no. 20: 3321. https://doi.org/10.3390/electronics11203321
APA StyleDoran, M. D., Puiu, S., Berceanu, D., Țăran, A. M., Para, I., & Popescu, J. (2022). Combining the Broadband Coverage and Speed to Improve Fiscal System Efficiency in the Eastern European Union Countries. Electronics, 11(20), 3321. https://doi.org/10.3390/electronics11203321