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Abstract: Crowdsourced software testing (CST) uses a crowd of testers to conduct software testing.
Currently, the microtasking model is used in CST; in it, a testing task is sent to individual testers
who work separately from each other. Several studies mentioned that the quality of test reports
produced by individuals was a drawback because a large number of invalid defects were submitted.
Additionally, individual workers tended to catch the simple defects, not those with high complexity.
This research explored the effect of having pairs of collaborating testers working together to produce
one final test report. We conducted an experiment with 75 workers to measure the effect of this
approach in terms of (1) the total number of unique valid defects detected, (2) the total number of
invalid defects reported, and (3) the possibility of detecting more difficult defects. The findings show
that testers who worked in collaborating pairs can be as effective in detecting defects as an individual
worker; the differences between them are marginal. However, CST significantly affects the quality of
test reports submitted in two dimensions: it helps reduce the number of invalid defects and also helps
detect more difficult defects. The findings are promising and suggest that CST platforms can benefit
from new mechanisms that allow for the formation of teams of two individuals who can participate
in doing testing jobs.

Keywords: crowdsourcing; software testing; crowdsourced software testing; collaboration; collaborative
software engineering; tester performance

1. Introduction

Crowdsourced software testing (CST) is an emerging area in the domain of software
engineering. It is a process in which software testing activities are carried out by a crowd,
which is commonly a large and undefined group of heterogeneous individuals [1]. CST
supports the production of high-quality software by engaging thousands of people in the
testing of software under thousands of conditions. This approach can support traditional
software testing, which normally involves only a few testers working inside a software
development organization [2].

CST has been successful in several types of testing, such as usability testing, functional
testing, and performance testing. It can be conducted using workflows such as those
provided by uTest and Figure Eight. These platforms receive requests from clients (e.g.,
companies that need software testing services) and distribute these requests to the crowd
registered with the platform, which is waiting to perform testing tasks.

The current practice in CST is to use the microtasking model, that is, a model in which
software testing tasks are sent to individual testers who work separately from each other [3].
In microtasking, all testers have the same aim of finding defects in the software given to
them. This can result in maximizing the total number of defects found.

However, several studies mentioned that the quality of the test reports produced
by individuals is a drawback because a large number of invalid defects is submitted.
Additionally, individual workers tend to catch the simple defects, not those with high
complexity [4–6].

This research explores the effect of having pairs of collaborating workers performing
testing on the Internet and producing one final test report. In particular, we studied whether
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collaborating pairs outperformed isolated individuals in terms of (1) the total number of
unique valid defects detected, (2) the total number of invalid defects reported by workers,
and (3) the possibility of detecting more difficult defects rather than concentrating only on
detecting simple defects. The result could be supportive or could negate the concept of
using collaborating pairs for CST.

The study was carried out using an experiment involving 75 testers who were divided
into groups of one or two workers and asked to do exploratory functional testing.

The remainder of this paper is divided as follows: Section 2 provides a literature
review about the research topic, and Section 3 describes the approach used in this study in
detail. Section 4 presents the findings of the study, while Section 5 discusses these findings.
Finally, Section 6 concludes the paper and suggests possible future research directions.

2. Literature Review

CST is the process of using a crowd of testers to conduct software testing [7]. It has
been used in many types of testing, such as performance testing [8], functional testing [9],
usability testing [10], and compatibility testing [11]. The crowd can be a group recruited by
intermediary platforms, a group of internal employees, or even a group of customers.

The current practice in CST is to let members of the crowd work individually on the
same testing job [3]. As Linus Law states, “given enough eyeballs, all bugs are shallow” [12];
hence, the idea behind adding multiple testers is to increase the likelihood of detecting
more defects.

Researchers found several reasons why software testing could be seen as an additive
task [13] (i.e., why adding more workers would improve the final output). A main reason
was the limited attention of individuals [14]. Fry and Weimer [15] found that human testers
were able to observe certain types of defects more than others. For instance, human testers
were five times as accurate at identifying extra statements as missing statements. Another
factor was the differences in expertise and capability among testers; for instance, three
beginner testers might find the same number of usability issues as one expert tester [16].

In [14], the researchers assessed the value of having several individuals test a manual
system of the same function. They stated that an increase in the number of individuals
doing the testing increased the crowd’s ability to detect a defect. However, it also caused
a negative effect, because the relative share of invalid defect reports and duplicated test
reports increased. The above research studies focused on situations in which multiple
testers worked independently from each other and each person produced a test report.

CSTs tend to use the microtasking model to do testing tasks [17]. In this model, a
particular task is divided into small microtasks that can be completed by individuals.
It is most appropriate for simple jobs that require minimal effort, but it may not work
perfectly for complex tasks such as software testing [18]. Software systems are sophisticated
structures with highly interrelated parts, and they may not be easily broken down into
clearly articulated and self-contained testing tasks [3].

Another aspect of software testing is that it requires multiple activities, including
planning, execution, and evaluation [19]. Test planning involves planning the testing
coverage, selecting the test cases, and determining the testing steps. Test execution is
the running of the test cases selected during test planning. Finally, in test evaluation, the
test results are analyzed, the identified defects are evaluated, and an assessment is made
regarding whether further testing is required [20]. This process is complex, especially with
exploratory functional testing.

In spite of the fact that the current form of CST does not consider collaboration be-
tween testers, the idea of having teams in software testing is not new. Many of the software
development organizations have their own testing teams, who divide the work between
themselves and cooperatively help each other to discover defects [21]. It is widely recom-
mended that testing be done in pairs and that others be engaged to obtain critiques and
advice [22]. Nevertheless, to the best of our knowledge, there is no research on the compari-
son of testing teams with isolated testers, neither in laboratory settings nor CST contexts.
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If we consider the generic domain of crowdsourcing, we notice that it has an overall
aim similar to that of CST. It strives to produce higher-quality results and reduce wrong
or low-quality results, especially in complex tasks. There have been increasing research
studies focusing on task assignments to teams. These studies aimed to find the best group
of workers to complete a task. For example, task assignment algorithms were developed to
combine different human factors, such as workers’ skills and worker-to-worker affinity [23].
Skills are used to remove unqualified workers, while worker-to-worker affinity attempts to
find the “comfort level” of workers who are part of a team solving a collaborative task [24].
Although these studies supported the argument that complex tasks require more than one
person to be done, we could not find any research comparing individual effectiveness with
pair or team effectiveness.

Working in teams can boost motivation [25] and promote the use of each member’s
strengths [26] (e.g., some CST clients complain that test reports are poorly written [27];
therefore, having one person on each team with good writing skills could improve the reports).

CST has challenges related to the high number of duplicated test reports [28,29] and
the high false-positive rate for identifying defects [10,18,30]. If a crowd is organized into
teams, it is possible to mitigate these challenges because a smaller number of reports is
produced (i.e., there are fewer duplicated test reports) and because more eyes review and
evaluate the claimed defects (i.e., there is a lower false-positive rate).

However, the anticipated advantages of team-based CST do not mean that it comes
without challenges. In fact, teamwork requires extra effort because of the need to coordinate
tasks among team members [31]. If time is limited for software testing, this may reduce the
effectiveness of the testing. Additionally, teamwork requires a certain homogeneity among
team members to facilitate communication and enhance harmony [32].

3. Approach
3.1. Research Aim and Questions

The main aim of this research was to study the impact of a coordinated crowd on
the effectiveness and efficiency of exploratory functional testing. We asked two research
questions in this study:

(1) What is the effect of using collaborative CST, in which pairs of collaborating workers
identify defects, as compared with conventional CST, which uses non-collaborating
crowd workers?

(2) Is there any difference with respect to the level of difficulty of the defects detected
between these two approaches of CST?

The first question was concerned with the impact of using collaborating pairs in terms
of the total number of defects found for a particular software application and the total
number of invalid defects submitted. The invalid defects are the false defects reported by
workers in addition to the defects that are identified more than once, which we will call
duplicate defects. Each collaborating pair does not include duplicate defects in their reports,
but non-collaborating individuals do because they are merging the results of different test
reports. This situation is the reality in the domain of CST. Reports must be checked to see
whether the same defects are appearing multiple times.

The second question was concerned with the effects of having two workers communi-
cate with each other on the possibility of detecting more difficult defects. The motivation
for this question was that microtasking (i.e., using a set of individual workers) had been
criticized for its inferior results in detecting complex defects [33–35]. We wanted to see
whether this was true and, if so, whether working in pairs could mitigate this potential
challenge in the domain of software testing.

3.2. Subjects and Experimental Setup

This research was conducted by final-year students in a Bachelor of Science program
who had a good background in software testing. They were in a Software Engineering
course in the Information Systems Department, King Saud University, Saudi Arabia. A
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total of 75 students were involved in the experiment. They were divided on the basis of
their performance into 25 “groups” of one person and 25 groups of two persons.

It is not uncommon to use student subjects in software engineering research [36].
Bitchy [37] required that they be trained sufficiently well to perform the experiment. In this
research, students had been taught testing techniques and methods in a previous course,
and this was the second course that included software testing. Additionally, they had been
given a short introduction on the software to be tested and informed about the experiment’s
instructions (e.g., shown the test report form, told how much time would be needed for
the research). The software application being tested was a simple text editor developed
in C# purposely for this research. The main screen is shown in Figure 1. A text editor
was used for this research for the sake of simplicity. It included basic functionalities that
are commonly found in several applications the students use, such as file list functions,
including New, Open, Save, and Exit; edit list functions, including Undo, Redo, Copy, Cut,
Paste, and Select All; and customizing and search functions, along with the standard text
editing functions shown in Figure 1 (e.g., changing the font size and type, text alignment).
The application was seeded with a total of 44 defects. The full description of the defects,
the test reports submitted by the workers, and the software being tested can be found with
this link (https://github.com/salyahya99/Collaborative-CST, accessed on 1 September
2022). In this research, we focused mainly on the functional testing type, so all the defects
were functional. We also injected defects with various difficulty levels to test whether the
effectiveness of detection changed according to the difficulty level.
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The experiment was a course assignment for the students, and thus, it was expected
that they do their best when performing the testing. Individual groups and collaborative
groups were asked to conduct the experiment for a fixed-length testing session of 2 h.
They were asked to record the testing session. The collaborative groups were asked to
utilize the testing session for both conducting the tests and reporting the results. They
were encouraged to share their thoughts with each other and mutually evaluate their work.
In order to simulate the CST environment, they communicated with each other via the
Internet. Most of them used Zoom software to do so.

Before starting the testing, the application was introduced to the students with a brief
description of its main functionalities, and the testing form was explained in detail. The
testing form was a standard form that testers commonly use in software testing. The main
components of the form included brief descriptions of the defect, inputs (illustrating the
input procedure/data that caused the defect to happen), expected results (illustrating the
ideal output of the tester after the test was performed), and actual results (illustrating the
actual output after the test was performed).

https://github.com/salyahya99/Collaborative-CST
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3.3. Data Analysis

Each group was asked to submit one test report. The two workers in each collaborative
group performed the testing together but produced one test report. After the test reports
had been completed, they were evaluated by the researcher and an external senior tester
who had 12 years of experience in the software industry in general and 5 years in software
testing. A total of 687 submitted defects were reviewed. Each submitted defect was
evaluated as to whether it was true or false and mapped to one of the designated defects
identified before starting the experiment. There were only a few differences between
the two evaluations (nine reported defects), and they were due to vague information on
some of the reported defects. For example, some defects were described correctly in the
defect description field but the inputs used did not lead to the reported actual results. The
validators initially marked them and later worked together to come up with a final decision
about them. The mapping was documented in the same test reports in a new column titled
Designated Defect ID. For each true defect reported, we determined the defect number to
which it corresponded in our list.

This research focused on comparing the performance between two non-collaborating
workers (NCW) and two collaborating workers (CW). The performance of the NCWs was
calculated by considering the unique valid defects identified in addition to the false and
duplicate defects identified in the combinations of any two single workers. Since we had
25 single workers in the NCW approach, we developed a small program in Python to
calculate the defect data of 300 combinations, which would address all the possible cases of
forming pairs (i.e., [1,2], [1,3], . . . , [2,3], [2,4], . . . , [24,25]).

The effect of the CWs was measured by identifying the mean difference between
the CWs and the NCWs. In software engineering research, it is recommended that the
unstandardized effect such as the mean difference for assessing practical importance be
reported [38]. Additionally, Wilkinson [39] advised that if the units of measurement were
meaningful on a practical level (e.g., number of defects in this research), then it was usually
preferred to use an unstandardized measure. For all of the results, we also reported the
confidence interval (CI) and measured the degree of certainty using a confidence level
of 95%.

We computed the invalid defects resulting from false-positive defects only and the
invalid defects resulting from the total sum of the false-positive defects plus the duplicate
defects. The reason for this differentiation was that we expect researchers to start helping
with detecting duplicate defects through using some artificial intelligence techniques in
the near future. Although there had not been much improvement in this area (only one
study [29] identified by an SLR paper published recently [7]), and we were unaware of any
CST platform that incorporated these techniques, we believed it was worth making the
results more detailed by reporting both sources of invalid defects, the false-positive defects
and the duplicate defects.

3.4. Measures

This research focused on comparing the performances of the NCW and CW approaches
with regard to the number of valid defects found, the number of invalid defects reported,
and the difficulty of the defects detected. For each of these areas, we used measures that
are commonly adopted in the software engineering community [14].

For the valid defects, we computed the average number of unique valid defects
identified by each two NCWs and each two CWs. We then used this information to
compute the detection effectiveness. The detection effectiveness is defined as the ratio
of the average number of unique valid defects identified to the total defects available for
detection (44 defects in this research). It is represented mathematically as follows:

E =
vd
td
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where E is the detection effectiveness, vd is the average number of unique valid defects
identified, and td is the total defects available for detection.

With regard to the invalid defects, we computed the average number of invalid defects
reported by the NCW and CW groups and then computed the validity. The validity is defined
as the ratio of the number of valid defects detected to the total number of valid defects plus
invalid defects detected. The mathematical representation of validity is as follows:

V =
vd

vd + id

where V is the validity, vd is the average number of unique valid defects identified, and id
is the average number of invalid defects reported.

Finally, we computed the average level of difficulty of defect detection per pair for
both the NCWs and CWs. The defects were classified based on the difficulty of detection
using the measure applied by Itkonen et al. [40]. The measure was derived from the
definition of the failure-triggering fault interaction (FTFI) number [41], which is the number
of conditions required to trigger a failure. It is determined by studying how many different
inputs or actions are required to make the failure occur. Four levels of difficulty of defect
detection were used, mode-0 to mode-3. A mode-0 defect was a defect that was immediately
apparent to the tester (e.g., a redundant function), and a mode-3 defect required three
inputs/conditions or more to be detected.

4. Findings

This section presents the findings of this research regarding valid defects, invalid
defects, and defect detection difficulty.

4.1. Valid Defects

Table 1 illustrates the average number of unique valid defects identified by two NCWs
and two CWs. As is clear from the table, the approaches of the NCWs and CWs achieved
almost the same accuracy of detection; there is a slight difference in favor of the NCW
approach. The NCWs detected 14.81 defects, with a CI of 14.4 to 15.2, and the CWs detected
14.48 defects, with a CI of 12.5 to 16.5. There was an average of 0.33 more defects (2.22%)
detected by the NCWs.

Table 1. The average number of unique valid defects and the effectiveness of detection for NCWs
and CWs.

Approach Average Number of Unique Valid Defects Detection Effectiveness

NCW 14.81 33.66%

CW 14.48 32.91%

We also computed the detection effectiveness (see Section 3.4 for definition). The
results show that the NCWs were slightly more effective (33.66%) than the CWs (32.91%).

4.2. Invalid Defects

Table 2 presents the average number of invalid defects reported by the NCW and
CW groups. As defined in Section 3.1, invalid defects detected by CWs are always false
defects. However, invalid defects detected by NCWs are false defects plus duplicate defects.
Table 2 gives details of the invalid defect data by presenting the false defects and duplicate
defects separately.
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Table 2. Invalid defect findings.

Approach
Average

Unique Valid
Defects

Average
False

Defects

Average
Duplicate

Defects

Total Invalid
Defects

Average
Submitted

Defects

Validity (False
Defects Only)

Validity (Total
Invalid Defects)

NCW 14.81 2.88 5.91 8.79 23.6 83.72% 62.75%

CW 14.48 1.20 - 1.20 15.68 92.35% 92.35%

The results show that the CWs significantly outperformed the NCWs. The NCWs
detected an average of 8.79 invalid defects (CI 8.48 to 9.1), whereas the CWs detected an
average of 1.20 invalid defects (CI 0.681 to 1.72). This means that there was an 86.35%
reduction in invalid defects reported by workers using the CW approach. This was a
significant improvement in the inaccurate detection of many invalid defects in CST.

When ignoring the duplicate defects and focusing on measuring the difference in false
defects only, we still noticed that the CWs reported fewer false defects (1.20 defects, as
mentioned earlier) than the NCWs (2.88 defects), with a CI of 2.67 to 3.09. This was a 58.33%
reduction in reported false defects.

We also computed the validity of both approaches (see Section 3.4 for definition). The
results show that the validity of the CW detections (92.35%) was significantly higher than
that of the NCW detections (62.75%). If we subtract the duplicate defects from the total
detections of the NCWs, the groups’ validity improves to 83.71%; it is still evident, however,
that the CWs had considerable improvement in validity.

4.3. Defect Detection Difficulty

Table 3 shows the average level of difficulty of defect detection per pair for NCWs
and CWs. As illustrated in Section 3.2, we classified the detection difficulty as having
four levels (0 to 3). The results showed that the CWs succeeded in detecting more difficult
defects (both level-2 and level-3 defects). Each collaborating pair detected an average of
3.2 level-2 defects (CI 2.55 to 3.85) and 1.16 level-3 defects (CI 0.621 to 1.7), while each
non-collaborating pair discovered an average of 2.68 level-2 defects (CI 2.56 to 2.8) and 0.92
level-3 defects (CI 0.811 to 1.03).

Table 3. Findings on defect detection difficulty.

Type of Workers Level 0 (Easiest) Level 1 Level 2 Level 3 (Hardest)

NCW 1.8 9.41 2.68 0.92

CW 1.96 8.16 3.2 1.16

Improvement
8.89% −13.28% 19.40% 26.09%

−9.72% 21.22%

The average percentage of improvement of the CWs over the NCWs for level-2 defects
was 19.40% and for level-3 defects was 26.09%. If we compute the overall improvement for
defect levels 2 and 3, we can conclude that there was a 21.22% improvement in detecting
difficult defects.

The detection of level-0 defects had similar results; the NCW approach detected
1.8 defects, with a CI of 1.74 to 1.86, and the CW approach detected 1.96 defects, with a CI
of 1.49 to 2.43. The detection of level-1 defects by the NCWs was 9.41, with a CI of 9.18 to
9.64, which exceeded the detection by the CWs, at 8.16, with a CI of 7.21 to 9.11.

There was only a slight improvement in the detection of level-0 defects by the CWs
over the NCWs (8.89%) and a slightly negative effect for level-1 defects (−13.28%). The
overall result for the detection of the simple defects (defect level-0 and level-1) favored
the conventional approach (NCWs). The CWs reduced the overall percentage of detected
simple defects by 9.72%. A detailed view of the improvement results is shown in Figure 2.
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5. Discussion

The findings show that the non-collaborative testers had a slightly better ability to
detect more valid defects than the collaborative testers. It was expected that individual
workers would detect more defects because they would not need to spend some of their
time communicating with each other as collaborative CST workers would. However, a
main reason that a larger gap did not occur between the two approaches was because many
of the defects detected by the NCW pairs were identified by both individuals, leading
to a smaller number of unique defects detected and resulting in a waste of effort. On
the contrary, although collaboration by pairs added some “overhead” due to the need
for coordination in a joint activity, this did not significantly impact the effectiveness of
defect detection. However, we believe that increasing the number of CWs on one team (i.e.,
having three workers or more) would influence the effectiveness of the team remarkably
since more time would be needed for coordination among the workers.

Regarding the invalid defects, we noticed that there was a major improvement in
detection when the collaborative approach was applied. The improvement originated
from two sources. First, the collaborating pairs did not report duplicated defects because
they worked together to produce one test report. The average percentage of duplicated
defects was approximately 25% of the overall number of defects submitted by each non-
collaborating pair. Second, the experiment showed that working as collaborating pairs
reduced the average number of submitted false defects by almost 60%.

The question is what could have contributed to this significant cut in false defects? We
believe that a main reason for this was that the pairs analyzed the claimed defects better
when working together. They shared their thoughts with each other and received critiques
and evaluations during an open and continuous discussion in the testing session. This
likely helped to produce better-quality test reports than those of the non-collaborating
individuals, who were working in isolation. The power of teamwork was a possible reason
for the boost in the validity of collaborating pairs; it could enhance the workers’ motivation
and make the testing task more enjoyable and less stressful. Advancements in the science
of psychology support the argument that even though some people may think the effect
of teamwork is minor or even unfavorable, teamwork can actually make the work of its
members more effective than the work of individual workers [42].

The collaborating pairs were also able to outperform the non-collaborating pairs in
detecting the difficult defects, with a roughly 21% improvement. It is assumed here that
spending time in conversation and mutual evaluation helped workers reach a deep level of
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analysis of the functions of the system being tested, and this in turn resulted in detecting
defects that did not appear on the surface. Since there was a fixed time to complete the
testing session, we think that this improvement came at the expense of the number of
simple defects found, although the number was only slightly lower, at almost −10%.

The findings showed that working as collaborating pairs can be as effective in detecting
defects as working individually; any differences were marginal. However, collaborative
software testing significantly affects the quality of test reports submitted in two ways: it
helps reduce the invalid defects and also helps detect the more difficult defects. These two
are considered main problems in CST activities [4–7]. From a practical view, the findings
suggest that CST platforms can benefit from developing new mechanisms that allow the
formation of teams of two individuals who can participate in testing jobs. Depending
on the importance of the system under testing, it would be useful to at least nominate a
combination of individual workers and CWs.

It is important to mention that this research did not consider the process of forming
tester pairs. The pairs were students who knew each other, and most of them had studied
together in the last 3 years. This homogeneity was less likely to cause an issue in the
experiment’s setting. If the use of collaborating pairs were to be applied in CST, it would be
necessary to think about how to build homogeneous teams to facilitate communication and
enhance harmony [32]. Crowdsourcing by nature consists of heterogeneous individuals
who live in different time zones, belong to various cultures, and have diverse levels of
skills. Although we did not find research in the literature about forming teams in CST,
many models have been suggested to improve homogeneity in the generic domain of
crowdsourcing, such as measuring the willingness to collaborate [43], the worker-to-worker
affinity [24], the social context recommendation [44], and the worker-to-worker rating [45].
Additionally, the author’s previous experience with some crowdsourcing platforms such as
Upwork showed that it would be useful to let individuals look for other persons themselves
and then start working on testing tasks together. This approach can promote the possibility
of finding suitable pairs.

Furthermore, the study was concerned about exploratory functional testing only.
We do not know if it is possible to generalize the findings to other types of testing (i.e.,
nonfunctional testing such as usability testing or performance testing). Our findings
suggested that when a testing task requires critical thinking and deep analysis, then it is
likely to benefit from collaborative testing. On the contrary, the microtasking model can
work well for testing jobs that are divisible, which are normally of low complexity. As
an example of a case that does not seem appropriate for collaborative testing, we offer
the following: many software houses use a crowd to make sure the performance of their
built system is acceptable when used by different devices or in different locations around
the world. They require merely a crowd who uses specific types of hardware or lives in
certain countries to run the system. In these situations, collaborative testing would not add
tangible value.

6. Conclusions

This research examined the effect of using pairs of CWs in CST and how it would differ
from the conventional approach that uses NCWs. The findings are promising since they
show that collaborative teams can produce reports of significantly better quality; they report
fewer invalid defects and identify more serious valid defects. The improvement in quality
did not affect the quantity of the valid defects detected; there was only a marginal effect.

There are several possible directions in which this research could proceed. First, it
would be interesting to think of ways to form pairs in CST. The formation models and
approaches mentioned in Section 5 could be a starting point for proposing appropriate
mechanisms built especially for CST activities. Moreover, the collaborative approach
used in this research could be evaluated not only with other types of software testing but
also with other software engineering activities. There is an increasing interest in using
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crowdsourcing for requirements engineering and software design. However, the current
research studies and practices in these activities still focus on conventional microtasking.
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