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Abstract: Human mobility prediction is a key task in smart cities to help improve urban management
effectiveness. However, it remains challenging due to widespread intractable noises in large-scale
mobility data. Based on previous research and our statistical analysis of real large-scale data, we
observe that there is heterogeneity in the quality of users’ trajectories, that is, the regularity and
periodicity of one user’s trajectories can be quite different from another. Inspired by this, we propose
a trajectory quality calibration framework for quantifying the quality of each trajectory and promoting
high-quality training instances to calibrate the final prediction process. The main module of our
approach is a calibration network that evaluates the quality of each user’s trajectories by learning
their similarity between them. It is designed to be model-independent and can be trained in an
unsupervised manner. Finally, the mobility prediction model is trained with the instance-weighting
strategy, which integrates quantified quality scores into the parameter updating process of the model.
Experiments conducted on two citywide mobility datasets demonstrate the effectiveness of our
approach when dealing with massive noisy trajectories in the real world.

Keywords: human mobility; spatio-temporal prediction; noisy trajectories; neural network

1. Introduction

Predicting human mobility on a citywide level is vital to studies and applications in
city-related areas, such as urban planning, traffic engineering, and epidemic prevention
and control. Though human movements have a high degree of freedom and variation,
several remarkable works [1–3] have proven that regularity and periodicity dominate
the main pattern of human movements and play a critical role in mobility prediction.
Therefore, extracting mobility patterns from people’s historical trajectories and predicting
their next location has attracted much attention.

Traditional mobility prediction methods are mostly pattern-based. They employ machine
learning methods such as matrix factorization to discover movement patterns from successive
trajectories and predict the next location based on these formalized pattern representations.
In addition, a large number of studies apply variants of Markov models due to their advan-
tage in modeling sequential transitions, including hidden-Markov [4], weighted-Markov [5],
attentional-Markov [6], Bayesian nets [7] and some other hybrid models.

In recent years, with the rapid development of deep learning, neural network models
have shown promising performance in spatio-temporal sequence modeling such as Re-
current Neural Networks (RNN) [8] and Transformer [9]. Liu et al. [10] propose Spatial
Temporal Recurrent Neural Networks (ST-RNN) to model the temporal and spatial context.
Based on RNN, DeepMove [11] employs an attention mechanism to extract multi-level
periodicity from long historical trajectories. Dang et al. [12] proposed a dual-attentive
network to capture the long-range sequential dependency within a trajectory and the
correlation between different trajectories. Given trajectory data, existing works usually
train a learnable module to predict the next Point of Interest (POI) or corresponding region,
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aiming to consider the more complex context of spatio-temporal sequences and other
related factors (such as social network structure [3] and location semantics [13]) to improve
prediction accuracy.

However, the above methods require a large amount of mobility data to train the
model to learn the regularity and periodicity of mobility patterns. Unfortunately, most
mobility data with large scale and long duration contain noisy data which could reduce the
prediction accuracy. Noise trajectories are often generated due to technical deviations from
positioning devices and methods. Taking cellular mobility datasets [14] as an example,
usually, a user connects to the cell tower closest to them, so the location of the cell tower
to which the user is connected is used as an estimate of the user’s location. When there
is a load balancing or signal strength change in cell towers [15], even if the user is not
moving, the recorded locations switch between two or more cell towers, which is called
oscillation [16–18]. Two real examples of such oscillations in our dataset are depicted in
Figure 1. With the help of various vehicles, many trips represented by oscillations are
theoretically possible [19]. What is more, researchers often lack ground-truth information
for validation to identify and clean these noisy trajectories [20].
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Figure 1. Two real examples of oscillations. (a) Cells jump to a far away tower then return back;
(b) cells swift between two nearby towers.

We use heuristic-based approaches [19] to remove significant device noise from the
data used in our experiments and roughly consider the average frequency decrease in
recording after denoising for each user as the proportion of device noise in the user
trajectory. Figure 2 shows that device noise is prevalent in trajectory data. Most users’
trajectories have a small proportion of noise, ranging from 0 to 0.6, and a few users have a
large proportion of noise. This distribution indicates heterogeneity in the quality of user
trajectories. Therefore, it is crucial to quantify the importance and quality of each user’s
trajectory in massive noisy mobile data and to reflect this in the prediction process.
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Figure 2. (a) Average time interval of user recordings before and after denoising; (b) average
frequency decrease in user recording by denoising .
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There have been some works that successfully learn with noisy data in dialogue
systems for NLP. To evaluate the quality of training dialogues and generate more reasonable
conversations, several methods [21,22] concentrate on quantifying the relatedness between
queries and replies and train conversation models through an instance-weighting strategy.

Inspired by these, we propose the trajectory quality calibration framework, which
automatically estimates the quality of each training trajectory through a pre-trained calibra-
tion network and promotes high-quality training instances to calibrate the final prediction
process. Several recurrent neural sub-networks with shared weights are used in the pro-
posed calibration network to capture and quantify the consistency of the user’s mobility
transitions each day. Additionally, the quality score of that user’s trajectory is evaluated by
measuring the correlation between daily features. Then, in the unsupervised pre-training
process of the calibration network through a negative sampling strategy, the quality score
will be gradually updated by comparing the relatedness between the original trajectory
and the corresponding trajectory injected with random noise. The impact of each training
instance on the parameters of the final prediction model can be quantified as a weight
value by a normalization process on their quality scores. Finally, the prediction model
takes advantage of these normalized weight values to calibrate the training process by
an instance-weighting method, which multiplies the weight values to loss functions and
gradient descents when updating corresponding parameters. In summary, the main contri-
butions of this work are:

• We propose a calibration framework for mobility prediction based on the instance-
weighting strategy to automatically evaluate the quality of training trajectories and
differentiate their impact on the training process of the mobility prediction model.
To the best of our knowledge, we are the first to explore mobility prediction problems
on massive noisy data through an instance-weighting method.

• We employ an unsupervised method to estimate the parameters of the proposed
calibration network, which liberates human energy on label tagging and makes it
possible to apply the network to massive citywide mobility data. Additionally, the
proposed approach is model-independent and can be combined with any massive
data-driven neural prediction network.

• We conducted our experiments on citywide cellular network datasets collected from
two metropolises that covered more than two million people, respectively. The experi-
mental results show that evaluating the quality of user trajectories and calibrating the
training process can effectively improve the performance of neural prediction models.

The rest of this paper is organized as follows. Section 2 reviews the related works
of mobility prediction and instance weighting in NLP. Section 3 introduces the proposed
calibration framework for mobility prediction in detail and gives an overview of our dataset
and methods for data pre-processing and selection. Section 4 illustrates the experimental
results. Finally, we analyze the experimental results and present the limitations of our work
in Section 5.

2. Related Work
2.1. Mobility Prediction

Former studies on human mobility prediction can be generally classified into two
categories: pattern-based methods and model-based methods.

The pattern-based methods [23–26] focus on discovering intrinsic mobility patterns
from sequential trajectories and predicting next locations based on these formalized pattern
representations. Most works are based on matrix factorization and are often assisted
by feature engineering. In addition, embedding techniques can also be regarded as the
pattern-mining method, such as POI2Vec [27] and Personalized Ranking Metric Embedding
(PRME) [28].

The model-based methods [4,29–31] predict the user’s next visit by modeling the
statistical relationship of contexts in the trajectories. The Markov model and its variations
are common methods in earlier research. They model the probability of a transition matrix
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between relevant positions based on different data assumptions. The Hidden Semi-Markov
Model (HSMM) [32] is designed to remove the constant or geometric distributions of the
state durations assumed in the Hidden Markov Model (HMM). Yan et al. [5] propose a
weighted Markov model for different user classifications. However, the association between
Markov process and mobility dynamics has been questioned [33] in recent years because
human mobility may exhibit scale-invariant long-term dependency, which contrasts with
the initial Markov assumption [34].

Recently, deep learning techniques have been widely applied to model human mobility.
Many works use RNNs to capture long-term dependencies in trajectories. Spatial–Temporal
Recurrent Neural Networks (ST-RNN) [10] model temporal and spatial contexts at each
time interval. DeepMove [11] employs an attention mechanism to capture periodic features
in historical trajectories. The Bidirectional Long Short-Term Memory–Convolutional Neural
Network (BiLSTM-CNN) [35] passes the output of RNN to CNN to capture the overall
spatial and temporal patterns. Transformer [9] entirely relies on the attention mechanism
to model the global dependencies of the sequence and breaks through the limitation
that RNN cannot be parallelized. Deep Wide Spatio-Temporal Transformer Network
(DWSTTN) [36] uses two attention mechanisms to extract relevant information in time and
space, respectively. Graph Convolutional Dual-Attentive Networks (GCDAN) [12] design
a dual-attention mechanism within and between trajectories and use graph convolution
to extract spatial features in the embedding layer. With the help of sufficient training
data sources, neural-based models can parameterize different kinds of mobility transitions
instead of fixed hypothetical representations, making it possible to capture more complex
regularities and model sequential trajectories more accurately.

However, these proposed models treat every training trajectory equally importantly,
regardless of the uneven data quality distribution, which significantly influences mobility
prediction accuracy [37].

2.2. Instance Weighting

Instance weighting is a training strategy that assigns different weight values to training
instances when reflecting their influence on the updating process of model parameters.
Some recent works have adopted this method for domain adaptation tasks in NLP, espe-
cially for dialogue systems. Jiang et al. [38] analyze and characterize the domain adaptation
problem from a distributional view and propose a general instance-weighting framework
for domain adaptation.

In common domain adaptation tasks, noisy data are identified and easy to distinguish
when involving the uneven distribution of data quality. However, the noisy data in training
a conversation model for the dialogue system are not that easy to identify, due to their high
diversity based on characteristics of human language. Wang et al. [39] adopt the instance-
weighting strategy to address the noisy label issue during data processing. Tao et al. [22],
Lison et al. [21], and Shang et al. [40] propose relatedness-based evaluation metrics and
matching networks to quantify and measure the relationship between queries and replies
in conversations. The above problems are similar to the regularity and periodicity between
daily mobility transitions in our task. Then, the data quality evaluation results assist the
conversation model in focusing on meaningful training dialogues and generating more
intelligent answers.

In the proposed trajectory quality calibration framework, we build a calibration net-
work to estimate the quality of each trajectory and integrate the quality scores into parame-
ters updating in the mobility prediction model. Therefore, this work mainly investigates
how the performance of existing prediction models can be improved when applying them
to massive, noisy trajectories that widely exist in the real world.
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3. Materials & Methods
3.1. Preliminaries

The problem of mobility prediction is usually defined as follows: given the current
trajectory and the corresponding trajectory history of a user, train a model to predict the next spatio-
temporal point in the trajectory [11,41,42]. In our experiments, the time interval between the
spatio-temporal records is quantified into a fixed value, along with a spatial granularity of
street blocks segmented by road networks. Thus, the mobility prediction of a mobile user
is simplified to predict the next street block ID in the next time interval.

The spatio-temporal record r in a trajectory can be denoted as a tuple r = (l, t), where
l is the location identification number (street block ID in our experiments) and t is the
time stamp. Tu denotes trajectories generated by user u, represented as a spatio-temporal
sequence Tu = r1r2 . . . rn. We define a general training data set T with a corresponding
user set U of size N, then T = {Tu|u ∈ U}. To model daily movements, we denote
Tu = T1

u T2
u . . . Tm

u , representing the user trajectories within the duration of m days. In
some scenarios, to capture the periodic trends in a typical week, Tu can also represent
the trajectories on a specific day of the week. For example, TMon

u then denotes the whole
trajectories generated by user u on all Mondays in the duration of training data T. As a
result, a prediction model is trained to predict the next rn+1 and maximize the probability
P(Tu|rn+1) for each training instance Tu.

Instead of considering each training instance equally, our goal is to train a calibration
network that learns a scoring function S(Tu) to represent the quality of each training
instance Tu. Then, the weight value fw(S(Tu)), normalized based on other instances
in the same training batch, will be utilized for the weighted updates of parameters in
the prediction model. An overview of the proposed calibration framework for mobility
prediction is depicted in Figure 3.

Training
Trajectories

Prediction
Model

Calibration
Network

fw( )

S(Tu)

Weight

Loss Function

Backward

(Pre-trained)

Target

Tu

Tu

rn+1

Figure 3. An overview of the trajectory quality calibration framework with a pre-trained calibration
network to evaluate the data quality of training trajectories and integrate it into the parameter
updating process of the main prediction model.

3.2. Calibration Network

The calibration network is an RNN-based model, the input of which is Tu = T1
u T2

u . . . Tm
u ,

and the output is a numerical score S(Tu) to represent data quality and regularity. The de-
tailed architecture of this neural network is depicted in Figure 4.

Spatio-temporal embedding. The input sequences of r = (l, t) are first fed into a
spatio-temporal embedding layer. Some former works such as ST-RNN and STF-RNN [43]
apply complex methods to utilize the spatio-temporal factors of human trajectories, such as
considering geographical distances between locations in the representations of their RNN hid-
den states. However, mobility transitions can be complex and high-order [3,44], making it hard
to quantify by artificially defined formulas. Instead, the neural network can automatically
learn the numerical representations of spatio-temporal contexts without prior knowledge
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or predefined features [11,42,45]. To achieve such representation, as introduced in the Pre-
liminaries, all the available trajectory features can be numbered in our experiments, such as
location ID and timestamp ID. Then, the numbered spatio-temporal features are translated
into one-hot vectors and fed into the spatio-temporal embedding layer after a concatena-
tion operation, which outputs their low-dimensional representations [46]. Additionally,
we consider the user ID of a trajectory as unnecessary information, since the calibration
network and the prediction model mainly focus on the mobility patterns and historical
preferences regardless of user identity (without a user ID embedding layer in practice).

��
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  Records � = (�, �)

    Spatiotemporal
Embedding  Layer

     Recurrent Layer
(LSTM or GRU cells)

...             Sub-network
with  shared weights

...
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   last  hidden states    

��
�

�(��)

ℎ�

ℎ�

ℎ1

...
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Figure 4. Detailed architecture of the calibration network, taking Tu = T1
u T2

u . . . Tm
u as input and

returning a score S(Tu) to represent its data quality.

Neural architecture. The calibration network is composed of m recurrent sub-networks
with shared weights to model daily mobility. In each sub-network, the spatio-temporal
embeddings are jointly fed into an RNN layer with LSTM or GRU cells to capture the
regularity of daily transitions. Considering the acceptable amount of records r in a daily
trajectory Ti

u, we did not adopt complicated methods such as the attention mechanism,
which mainly focuses on handling vanishing gradient problems in RNN and capturing long-
term dependency with higher consumption of computation. Such a recurrent sub-network
can be seen as a form of daily trajectory embedding with Equation (1),

h1 = RNN(T1
u),

. . .
hm = RNN(Tm

u ),
(1)

where RNN(.) denotes the final hidden state of the recurrent sub-network. We take these
final hidden states S1 . . . Sm as embedding representations of daily movements T1

u . . . Tm
u .

Then, a scoring function is trained to quantify the regularity and periodicity between them,
which is given as Equation (2),

S(Tu) = sigmoid(MLP([h1; h2 . . . ; hm])), (2)

where MLP(.) is a Multi-Layer Perceptron (MLP) with tanh activation function, and [; ]
denotes a concatenation operation. An additional sigmoid function is added at the last layer
of MLP to guarantee the final score falls in the range of [0,1], representing the quality of Tu.

Average sampling. It should be noticed that the number of recurrent sub-networks
m depends on the time duration of T. For the mobility dataset lasting within a week, m
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can be the number of days in the duration of T. However, when T is collected during an
extended period, such as a whole month, directly employing m = 30 would lead to high
computation complexity and poor performance. Here, we apply a similar method proposed
in [11] to adopt an average sampling strategy depicted in Figure 5. The trajectory vectors
are reorganized into a two-dimensional matrix: a fixed-length temporal dimension and a
spatial dimension. In the temporal dimension, we align all the time stamps of trajectories
into one week (m = 7, Tu = TMon

u . . . TSun
u ) to simulate the periodical nature of human

mobility. In the spatial dimension for each user, all the visited locations appearing in the
same period are collected in a location set for every time slot. We add all the location
embedding vectors and compute the mean values as representations. Then, the reorganized
sequences of average spatio-temporal embeddings are fed into the recurrent layer.
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 �3, � 

… …

Average Sampling

Recurrent Layer

Figure 5. The average sampling strategy, designed to deal with long-time-period mobility datasets.

3.3. Parameter Estimation

A common strategy to train the calibration network is to provide the neural model with
positive examples of high-quality trajectories and negative examples randomly sampled
from T. The most accurate and direct way to provide such positive examples is to have
human raters manually select training instances of high quality. However, training a
calibration network to estimate data quality of T with N > 2,000,000 needs a massive
amount of positive examples, which makes manually labeling the dataset almost impossible.
Therefore, it is crucial to design the parameter updating process in an unsupervised manner.

Here, we employ an unsupervised training strategy through negative sampling to
train our calibration network. Specifically, for a training instance Tu = T1

u T2
u . . . Tm

u , we
randomly sample another user v from U with Tv = T1

v T2
v . . . Tm

v . Then, we replace a random
Ti

u, i ∈ {1 . . . m} with the corresponding Ti
v to break its original feature. The mixed new

trajectory is denoted as T−u = T1
u . . . Ti

v . . . Tm
u . Such a replacement will affect the consistency

and relatedness between daily trajectory embeddings. Thus, the training objective is that
S(Tu) should be greater than S(T−u ) with at least θ threshold. Through continuous iteration
and updating, the calibration network will be able to correct S(Tu) gradually. Then, the
loss function is given as Equation (3).

Lw = max(θ + S(T−u )− S(Tu), 0) (3)

3.4. Instance Weighting

Once the parameter of the calibration network is estimated, we apply it to the whole
dataset T to obtain S(Tu) for each u ∈ U. Then, we utilize these scores in the neural
prediction model. Usually, the mobility prediction task with a size-limited target location
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list can be considered a multi-classification problem and take the cross-entropy loss L as
the loss function. Then, the overall loss function is given by Equation (4).

Lp = ∑
u∈U

L(Tu, rn+1). (4)

Differently from conventional prediction models, which treat each training instance
equally, we take the quality scores from the pre-trained calibration network into account
when calculating the loss function in the mobility prediction model as Equation (5),

L = ∑
u∈U

fw(S(Tu))L(Tu, rn+1), (5)

where fw(.) is a normalized function that transforms S(Tu) into a normalized weight,
defined as Equation (6),

fw(S(Tu)) =
S(Tu)

1
b ∑v∈Ub

S(Tv)
, (6)

where b is the batch size and Ub is the user set of the mini-batch to which u belongs. In our
method, the impact of Tu on the final loss function is determined by not only its score S(Tu)
but also other instances in the same training batch. Then, through our instance-weighting
strategy, the parameters of the prediction model are finally updated by Equation (7),

Wt+1 = Wt +
lr
b ∑

u∈Ut

fw(S(Tu))5Lp(Tu, rn+1), (7)

where lr is the learning rate of the prediction model, and Wt and Ut represent all variable
parameters of the prediction model and the corresponding user set at the t-th mini-batch,
respectively. The training instance associated with a greater score or weight value has
a larger influence on the gradient update steps in Backward Propagation Through Time
(BPTT). Compared with another calculation method L = ∑u∈U S(Tu)L(Tu, rn+1) which
directly multiplies S(Tu) to the raw loss function, the weight normalization in Equation (6)
successfully controls the extent of impact that S(Tu) have on the gradient updates. Specif-
ically, after the transformation, half of the weight values fw(S(Tu)) will be larger than 1
and another half smaller. Note that we have ∑u∈Ub

fw(S(Tu)) = b; such transformation
guarantees the same learning strength compared with the original prediction model.

3.5. Dataset

We used the cellular network datasets, which were collected by collaborating with a
major cellular network operator in China from two metropolises, Shanghai and Beijing,
with a one-week duration. To fully protect user privacy, we only use the data authorized
by the user, and all data are stored on the cloud platform. We are allowed to run the model
and view the statistics and analysis results but have no right to view the specific content of
the data. The cellular network data record the spatio-temporal information of mobile users
when they access the cellular network for communication. Each record is characterized by
an anonymous user ID for privacy protection, time stamp, ID type of user event (including
call, text, or heartbeat event), and the location of the connected cellular tower.

Calls and texts of user events are user-active communication behaviors, while heartbeat
events are automatic location updates from cell towers. More specifically, if a mobile
subscriber leaves no communication traces for about half an hour, the operator backend
automatically records the current location based on the base stations that the user connects
to. Figure 6 shows some other statistics of our dataset. It shows that heartbeat events make
up most of the dataset and can significantly affect the distribution of time intervals. In fact,
for each user, the interval between two consecutive heartbeat records does not strictly
accord with a fixed half-hour gap but takes 30 min as an upper limit.
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The spatial granularity of our datasets is the cellular base station, which is usually
considered to cover a region formed by Thiessen Polygon [47] with a radius ranging from
a few hundred meters to a few kilometers. However, urban regions segmented by road
networks (street blocks) are the basic geographic units of residents’ daily lives [48], which
are more appropriate as the basic units for the study of mobility prediction. Here, we
crawl the road network data from the online map service and analyze each urban region.
Then, we project the locations of cellular base stations into these street blocks. Finally, the
main urban areas of Shanghai and Beijing are divided into hundreds of non-overlapping
regions, as shown in Figure 7. After primary data cleaning and oscillation resolution [15],
both datasets contain over two million mobile users and thousands of base stations.
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Figure 6. Spatio-temporal features of two mobility datasets, with Cumulative Distribution Function
of (a) different locations that users visit and (b) time intervals between consecutive records.

(a) (b)

Figure 7. Visualization of road network segmentations in (a) Shanghai and (b) Beijing. The red dots
represent locations of cellular base stations.

Different from the sparse social media check-in data [49], which are collected when
users check in on mobile applications, the time interval between two consecutive records of
one user is usually around 30 min in cellular network data. In practice, many users always
stay in a street block for several hours during the day. Without deleting the duplication
in raw trajectories, the prediction model can achieve excellent but meaningless results by
repeating the current location. Thus, we take 30 min as the essential temporal granularity
to obtain meaningful trajectories from cellular network records and split one day into 48
pieces. Then, we aggregate the records in the same time slot and remove the duplication
of locations with keeping the first and last records during this location-stable period. For
other detailed information on our datasets refer to Table 1.
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Table 1. Detailed information of cellular network datasets.

Dataset Metrics Numerical Value

Shanghai

Duration 14–20 January 2019
Amount of Mobile Users 2,1728,35

Amount of Records 1,463,855,232
Amount of Street Blocks 719

Amount of Cellular Towers 4126
Percentage of Heartbeat 84.25%
Percentage of Call Event 8.13%
Percentage of Text Event 7.62%

Beijing

Duration 5–11 March 2018
Amount of Mobile Users 2,8436,31

Amount of Records 1,992,757,036
Amount of Street Blocks 594

Amount of Cellular Towers 3844
Percentage of heartbeat 86.94%
Percentage of call event 6.69%
Percentage of text event 6.57%

3.6. Data Selection

A common strategy for training and testing the mobility prediction model is to select
each user’s first 80% sub-trajectories as the training set and the remaining 20% as testing
data [11,42]. Considering that citizens often present different traffic patterns in weekdays
and weekends [50], we perform a minor correction on the choice of train-test mode: we
denote the whole dataset as T = {Tu|u ∈ U} with user set U of size N, each user’s training
trajectories as Ttrain

u = TMon
u . . . TThu

u TSat
u , and take T1 = {Ttrain

u |u ∈ U} as the training set.
The remaining trajectories Ttest

u = TFri
u TSun

u are used as the preliminary testing set.
As depicted in Figure 1, there are some doubtful sub-trajectories in cellular network data

whose correctness is hard to judge. To guarantee the accuracy of location labels in testing data,
we filter out all these unidentified trajectories among Ttest

u , along with corresponding users
whose trajectories are too sparse to utilize after the selection: only 142,853 mobile users in
Shanghai and 163,277 users in Beijing remain. We assume that a strict filter is the only way to
guarantee the accuracy of testing data without ground-truth validation. We denote the set of
these selected users as U2 and take trajectory set T2 = {Ttest

u |u ∈ U2} as final testing data. It is
clear that U2 ∈ U and Ttrain

u ∩ Ttest
u = ∅, Tu = Ttrain

u ∪ Ttest
u .

To evaluate the effect of our selection strategy of testing data, we randomly extract
500 users from U and U2 and project their trajectories Ttest

u on the geographic map with the
help of an online map API. Five human judges are asked to rate the interpretability and
rationality of these Ttest

u on a 3-point scale: - 0 means trajectories of this user are disorganized
and can only be roughly identified for residential and place of work (totally abnormal
trajectories have already been washed in former pre-processing); 1 indicates that the user’s
mobility shows a regular pattern to some extent, though some sub-trajectories are still hard
to understand; and 2 is for almost reasonable trajectories. For each group of samples, we
calculate the ratio of each score (0, 1, 2) by combining all the human annotations and taking
their average score as the human evaluation result. The details of human evaluation are
presented in Table 2. Fleiss’ Kappa [51] is often used as a statistic measure for assessing
the reliability of agreement between human annotators. In our cases, the Flesiss’ Kappa
is computed all around 0.34, which demonstrates a fair agreement between human raters.
We can see that the trajectory samples of U2 show superior interpretability to those of the
original U, which we believe guarantees accurate location labels in testing data.

Table 2. Human evaluation of data quality of sampling test data.

Samples City 0-Ratio 1-Ratio 2-Ratio Avg-Score

T2 Shanghai 0.072 0.304 0.624 1.552
T1 Shanghai 0.220 0.612 0.168 0.948
T2 Beijing 0.038 0.336 0.626 1.588
T1 Beijing 0.196 0.580 0.224 1.028
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A natural doubt is that our selection strategy of testing data may wash the noisy and
normal trajectories altogether, leading to an uneven distribution of user types. In other
words, we do not know whether our data selection strategy will have an unfair preference
for specific user groups. The distribution of users’ traffic patterns in T2 may differ from
those in T1. It is essential to check the distribution of user groups when making data
selections because we cannot train trajectories from a group of office workers to predict
the mobility of another group of taxi drivers. This discrepancy will certainly disturb the
training process and affect the fairness of the final results of mobility prediction. Here, we
employ a method to detect popular temporal modes mentioned in [52]. More specifically,
we extract users’ traffic representations via time partition from their mobility records and
group them through unsupervised clustering. Then, the center representations of main
clusters can be seen as the popular temporal modes. We generally list five main temporal
modes in our analysis as their corresponding users jointly account for more than 80% of
total users in U and U2, from Shanghai and Beijing, respectively. The results shown in
Figure 8 prove that the decrease in users in U2 caused by our data selection method does
not change the composition of user groups, which protects the effectiveness and fairness of
the mobility prediction model. Finally, the trajectory quality calibration framework takes
T1 as training data and T2 as the testing set.
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Figure 8. Visualization of popular temporal modes. (a–d) correspond to 5 main modes in T1 and T2,
from Shanghai and Beijing, respectively. Each mode is composed of two annular representations, for
weekday patterns and weekend patterns. An annular representation contains 24 time slices, aiming
to describe users’ traffic patterns on a typical day. Time slices with the same colors mean that the user
tends to stay in the same location during these periods. (a) Five main popular temporal modes in
Shanghai (T1); (b) five main popular temporal modes in Shanghai (T2); (c) five main popular temporal
modes in Beijing (T1); (d) five main popular temporal modes in Beijing (T2).

4. Results

In this section, we conduct experiments on two citywide cellular network datasets to
compare the performance of our approach against several baselines. Our trajectory quality
calibration framework is designed to be model-independent, so we mainly compare the
performance of the state-of-art mobility prediction model with and without employing our
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calibration network and instance-weighting approach. In addition, some classical methods,
such as Markov models, are also tested to evaluate their performance on massive cellular
data, though they are not adaptive to the instance-weighting strategy.

4.1. Baselines and Metrics

• Markov Chain—A Markov Chain is used to predict human mobility for a long time.
It regards the visited locations as states and builds a transition matrix to capture the
first-order transition probabilities between them. A Markov Chain is unsuitable for
adopting the instance-weighting strategy as it owns a different process of parame-
ter updates.

• PMM—The Periodic Mobility Model (PMM) [3] assumes that mobility trajectories
follow a spatio-temporal mixture model and predict the next locations with periodicity
taken into consideration. Like the Markov Chain, PMM is essentially a two-state
mixture of Gaussians with a time-dependent state prior and is not adaptive for a
combination of the calibration model.

• RNN—ST-RNN is a popular recurrent model in location prediction, which focuses on
modeling the continuous spatio-temporal information within the framework of RNN.
Here, we adopt a variant ST-RNN (RNN in short) to our scene where only anonymous
location ID is known instead of detailed geographic information.

• DeepTransport—The deep learning module of DeepTransport [53] can be regarded as
a multi-layer LSTM network: two hidden layers share the same parameters to capture
the long-term temporal dependency of human mobility and transportation patterns,
along with one encoding layer for separated input sequence and one decoding layer
for separated output sequences. LSTM is kept for the basic recurrent module of
DeepTransport as the design in the original version.

• DeepMove—DeepMove is the first historical attention method for learning human
mobility from current and historical trajectories. It can be considered a complex
version of baseline RNN with a historical attention module.

To make fair comparisons, we use Top@k as the standard performance metrics of
evaluation. More specifically, we rank the candidate locations by the probabilities gener-
ated from each model and check whether the ground-truth location appears in the top-k
candidate locations. To prepare for the following experiments, for recurrent sub-networks
in our calibration model and other baselines, we test using both LSTM and GRU cells.
However, the results show no noticeable differences in accuracy. As GRU cells are faster to
train than LSTM cells, we utilize GRU as the default recurrent module of our models in the
following experiments. Additionally, considering the randomness of negative sampling in
the training process of the calibration model, for the RNN, DeepTransport, and DeepMove
with calibration, we repeat our experiments three times with different random seeds, with
average values shown in Table 3. The neural models are implemented on the Pytorch
platform and speeded up using a Tesla T4 GPU. Other experimental settings are shown
in Table 4.

Table 3. Comparison of overall prediction accuracy on datasets in Shanghai and Beijing. Methods
combined with our calibration approach are shown in bold.

Method
Shanghai Beijing

Top@1 Top@5 Top@10 Top@1 Top@5 Top@10

Markov 13.03% 22.50% 23.94% 14.74% 24.35% 26.08%
PMM 14.34% 23.52% 25.69% 13.67% 24.72% 26.79%
RNN 18.28% 29.37% 33.50% 19.14% 31.45% 34.83%
RNN with Calibration 21.73% 32.65% 35.33% 22.07% 33.18% 36.40%
DeepTransport 17.84% 28.79% 32.96% 18.66% 28.90% 32.34%
DeepTransport with Calibration 20.13% 31.08% 34.37% 21.95% 31.19% 35.23%
DeepMove 19.16% 33.05% 36.27% 20.57% 33.89% 36.03%
DeepMove with Calibration 22.81% 35.45% 38.90% 23.11% 35.70% 38.92%
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Table 4. Experimental settings of calibration network.

Training Setting Value Model Setting Value

learning rate (lr) 5 × 10−4 hidden size 300
threshold θ 0.3 embedding size (time) 16

dropout rate 0.5 embedding size (location) 256
L2 penalty 1 × 10−5 batch size 128

4.2. Experimental Results

Table 3 shows the overall performance comparison of our datasets from Shanghai and
Beijing. Deep neural network based methods present much higher prediction accuracy than
traditional feature-based models. Compared with Markov Chain and PMM, RNN-based
models can capture more users’ transitional regularities under massive noisy trajectories.
Adequate training data help perfect the parameter updates of the recurrent network and
spatio-temporal context embedding.

RNN, DeepTransport, and DeepMove use the recurrent network to capture long-term
mobility dependency. In our experiments, there is no significant difference between the
performance of these three methods. Compared with RNN and DeepTransport, the in-
crease in prediction accuracy of DeepMove is almost offset by its large time consumption
in training. This is probably because our datasets’ limited time duration constrains the
attention mechanism’s performance, as a common GRU or LSTM network can also work
well regardless of the gradient vanishing problem [9]. This situation may change when
dealing with longer-duration mobility data or denser daily tracks. Additionally, the de-
sign architecture of multi-layer recurrent networks in DeepTransport shows no apparent
superiority to a common RNN in our experiments.

With the help of the instance-weighting strategy, the variant RNN, DeepTransport,
or DeepMove combined with our calibration model outperforms the corresponding base-
lines, demonstrating our approach’s adaptiveness and effectiveness. We hypothesize that
the recurrent neural sub-network captures the consistency between daily spatio-temporal
transitions—mainly reflecting the regularity of human mobility, and the concatenation of tra-
jectory embeddings measures the correlation extent of trajectories on different dates—which
probably reflects the periodicity of human mobility. Trajectories with high-level noises then
obtain poor scores on these metrics. Thus, these scores successfully represent data quality
and affect the original prediction model. Our trajectory quality calibration framework
significantly outperforms the conventional methods without a quality-estimation module
when learning from massive and noisy mobility data.

5. Discussion

In our proposed framework, we elaborate a calibration model to estimate the quality
of user trajectories. The calibration model is designed to give a quality score in the range of
[0,1]. In this section, we analyze these numerical scores in detail. The distribution of the
scores S(Ttrain

u ), u ∈ U is visualized in Figure 9. The scores concentrate on [0.3, 0.6], with an
average of 0.489 in Shanghai and 0.501 in Beijing, which accords with the threshold settings
in Table 4. Additionally, the slight increase in the estimated qualities in the Beijing dataset
may explain the corresponding increase in prediction accuracy compared with the Shanghai
dataset. In addition, around 15.3% of users’ trajectories obtain a score lower than 0.3, which
indicates that almost 15% of training cases are estimated as low-quality data. There are also
more than 16.2% of the training cases with scores larger than 0.7, generally evaluated as
high-quality trajectories. Therefore, it is essential to adopt our instance-weighting approach
to control the effect of the low-quality data on the final prediction model.
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(a) (b)

Figure 9. Score distribution of trajectories in T1, with (a) Shanghai and (b) Beijing.

To further investigate the performance of our calibration model, we adopt a human
evaluation method similar to that in Data Selection, where five human judges are asked to
rate the interpretability of trajectories of each user on a 3-points scale from incomprehensible
to reasonable. We randomly sample 100 mobile users from high-quality (S(Ttrain

u ) > 0.7)
and low-quality (S(Ttrain

u ) < 0.3) instances, respectively. The statistics of human evaluation
are presented in Table 5. The Fleiss’ kappas of human annotations on these four sample sets
are all around 0.38, which demonstrates the fairness of inter-human agreements. As we
can see, though human raters usually prefer to give a score of 1 due to cautiousness and
conservativeness, the quality scores estimated from our calibration model accord with
human evaluation in general, proving the effectiveness of our quality estimation module.

Table 5. Human evaluation on data quality of sampling data tagged by calibration network.

Samples City 0-Ratio 1-Ratio 2-Ratio Avg-Score

High-quality Shanghai 0.016 0.414 0.570 1.554
Low-quality Shanghai 0.328 0.626 0.046 0.718
High-quality Beijing 0.022 0.386 0.592 1.570
Low-quality Beijing 0.446 0.526 0.028 0.582

In conclusion, we investigate the problem of predicting citywide human mobility from
noisy mobility trajectories. The proposed trajectory quality calibration framework aims
to protect the mobility prediction model from noises of oscillation. A neural calibration
network automatically estimates the data quality, while the prediction model utilizes the
quality scores for the weighted update of its parameters. Extensive experiments on real-life
cellular mobility datasets prove the effectiveness of our instance-weighting approach.

Our work also has limitations, so our future work will focus on several directions.
First, our method is suitable for massive noisy data, while sparse or short-duration trajectory
data may not complete the correlation calculation between daily mobility in the calibration
module. Second, the limits on our dataset constrain the performance and validation
of several related methods, such as the average sampling strategy and the relatedness
calculation among daily mobility. In the future, we plan to validate and improve our
approach to other data sources with longer duration. Finally, this work concentrates on
the problem of data quality. When dealing with mobility data from different cities, we
currently train their prediction model, which leads to high computation consumption.
From the view of domain adaptation, we plan to investigate the problem of transferring
our trajectory quality calibration framework between different cities in the future, which
will undoubtedly benefit the application of mobility prediction.
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