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Abstract: Unmanned Aerial Vehicles (UAVs) play crucial roles in numerous applications, such as
healthcare services. For example, UAVs can help in disaster relief and rescue missions, such as by
delivering blood samples and medical supplies. In this work, we studied a problem related to the
routing of UAVs in a healthcare approach known as the UAV-based Capacitated Vehicle Routing
Problem (UCVRP). This is classified as an NP-hard problem. The problem deals with utilizing UAVs
to deliver blood to patients in emergency situations while minimizing the number of UAVs and
the total routing distance. The UCVRP is a variant of the well-known capacitated vehicle routing
problem, with additional constraints that fit the shipment type and the characteristics of the UAV. To
solve this problem, we developed a heuristic known as the Greedy Battery—Distance Optimizing
Heuristic (GBDOH). The idea was to assign patients to a UAV in such a way as to minimize the
battery consumption and the number of UAVs. Then, we rearranged the patients of each UAV in
order to minimize the total routing distance. We performed extensive experiments on the proposed
GBDOH using instances tested by other methods in the literature. The results reveal that GBDOH
demonstrates a more efficient performance with lower computational complexity and provides a
better objective value by approximately 27% compared to the best methods used in the literature.

Keywords: UAV-based Capacitated Vehicle Routing Problem; routing and scheduling; heuristics;
healthcare; transporting blood

1. Introduction

Natural disasters—such as earthquakes, volcanoes, avalanches, tornadoes, forest fires,
and floods—rank among the greatest threats to humanity and the environment. They have a
tragic impact on lives, where they leave behind critical injuries and change and affect the ter-
rain. Patients in emergency or post-disaster situations often encounter difficulties obtaining
medical help and supplies (especially blood) in a timely manner. Sending blood supplies to
injured patients in inaccessible locations can prove indispensable in saving human lives.
The greatest challenge in sending blood to patients is the difficulty or impossibility (in
most cases) of using land transportation due to post-disaster environmental conditions and
transportation infrastructures (e.g., roads might become obstructed, and bridges might be
cracked [1]). Moreover, the blood temperature may change during transportation.

To transcend these challenges, it is crucial to design and implement an efficient al-
gorithm to assist patients in emergency or post-disaster situations using transport that
is not hampered by transportation infrastructure and is not much more expensive than
land transportation. This aim can be accomplished by utilizing Unmanned Aerial Vehicles
(UAVs). UAVs have proven suitable in various applications when used in harsh conditions,
such as agriculture, transport, aerial photography, and data collection [2]. In addition,
UAVs have been utilized in healthcare applications (Figure 1). For example, UAVs were
used to deliver medicines and temperature-sensitive COVID-19 vaccines in Malawi [3],
Zipline UAVs were used to transport vaccines and blood [4], UAVs were used to track
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malaria outbreaks in Africa [5], and Shenzhen Smart UAVs were used to spray chemical
substances to reduce the prevalence of COVID-19 in China [6].
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However, healthcare applications require distinct considerations related to their cir-
cumstances and how to maximize their services. For example, blood should be delivered
to patients quickly while guaranteeing the blood’s viability [8]. In such instances, the
compliance of healthcare applications with these considerations proves critical [8,9].

In light of the above points, this study investigates problems in emergency situations
that healthcare workers may face—namely, the delivery of viable blood to patients using
the smallest number of UAVs and the shortest routing distance [10]. In the literature, this
problem is known as the UAV-based Capacitated Vehicle Routing Problem (UCVRP) [10],
which is concerned with finding the optimal or a near-optimal solution for the UAV-
based Capacitated Vehicle Routing Problem for delivering blood to patients in emergency
situations. The UCVRP is a variant of the well-known Capacitated Vehicle Routing Problem
(CVRP). The CVRP is a typical NP-hard combinatorial optimization problem [11]. Typically,
NP-hard problems are solved by heuristic or metaheuristic algorithms [12–14], which can
obtain optimal or near-optimal solutions in a fast time with a low computational cost
compared to exact methods. In addition, large problem sizes cannot be solved to optimality
using exact methods. Thus, since the problem size of the UCVRP is large and the optimal
solution is not known, the most common approach in the literature is to use approximate
methods (i.e., heuristics and metaheuristics) and compare the new obtained solutions with
the best known solutions [11].

This paper contributes a novel heuristic that solves the UCVRP, referred to as the
Greedy Battery—Distance Optimizing Heuristic (GBDOH). The innovative aspects of
the GBDOH are as follows: (1) dealing with the problem as a single-objective problem
to simplify the solution approach, (2) considering the lowest battery consumption as a
factor in assigning patients to UAVs in order to minimize the number of UAVs used, and
(3) reordering the patients of each UAV (considering the amount of water needed to keep
the blood viable) in order to minimize the total routing distance.

Being an approximate method, the GBDOH does not guarantee the optimal solution,
but it strives to provide a tradeoff between the quality of the current best solution and
the computational time. When compared with the MOEA/D-N-UVRP (multi-objective
evolutionary algorithm based on decomposition using a local search with random nearest
neighbors to solve unmanned vehicle routing problems) method used in [10] to deliver
valid blood samples to patients from a single depot, the GBDOH could solve the UCVRP
with fewer UAVs within a short travel distance. In fact, when comparing greedy heuristics
with iterative algorithms, complexity is typically lower for the former [11].

In summary, the principal idea of the GBDOH is to first assign patients to UAVs based
on the lowest battery consumption while considering the UAV’s capacity constraint, in
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order to serve as many patients as possible with a single UAV. This approach, in turn,
minimizes the number of UAVs used. After that, we can rearrange the patients of each
UAV to minimize the fleet’s total routing distance.

The rest of this paper is organized as follows: Section 2 reviews related works on
the UCVRP, Section 3 defines the problem formulation, Section 4 presents the proposed
heuristic, Section 5 presents the computational experimentation and discusses the results,
and Section 6 concludes with potential future research directions.

2. Literature Review

In this section, we investigate and discuss the literature that has attempted to solve
the capacitated vehicle routing problem using UAVs. Few papers have worked on the
CVRP and its variants using UAVs [14]. In reality, the CVRP using UAVs has crucial
applications—especially for healthcare, in post-disaster scenarios, or when attempting to
reach difficult-to-reach regions. However, many factors require consideration, including the
UAV’s capacity, battery life, flying range, and other variables [15]. Minimizing the number
of UAVs used and the total routing distance reduces operational costs and enhances the
use of resources. Moreover, the short routing distance from the healthcare provider (depot)
to patients proves crucial in responding swiftly to medical emergencies. In this section, we
review recent studies that have attempted to solve problems related to the CVRP using
UAVs and their variants in the delivery domain.

The UAV-based Capacitated Vehicle Routing Problem (UCVRP) was introduced by
Wen et al. [10] and is the problem that we study in this paper. In this work, the authors
addressed the Capacitated Vehicle Routing Problem of delivering blood to patients using
UAVs. They implemented a multi-objective evolutionary algorithm based on decomposi-
tion using a local search with a random nearest neighbor to solve the unmanned vehicle
routing problem (MOEA/D-N-UVRP). The aim was to minimize the routing distance
between the depot and patients, as well as the number of UAVs used. The authors applied
a multi-objective evolutionary algorithm with a local search method on a CVRP public
benchmark dataset. What distinguishes this paper is that the authors studied blood tem-
perature and considered appending heating or cooling objects to keep the blood suitable
for use. However, dealing with the problem as a multi-objective optimization problem can
cause difficulties as compared to splitting the objectives and dealing with each separately.
In addition, evolutionary algorithms and local search need time to provide viable results,
which does not prove suitable for emergency situations in healthcare, where the response
time to patients constitutes a critical factor.

Wikarek et al. [16] used a binary integer linear programming model for solving the
CVRP using drones. The model tries to minimize the distance between customers and
the depot, which is a truck that moves. Kitjacharoenchaia et al. [17] solved the CVRP
using trucks and drones with mixed integer programming. This approach sought to
minimize the total traveling time. Both [16,17] used exact methods that limit the size of the
instances tackled.

Other works addressed problems related to the CVRP using UAVs with different
objectives, or did not rely on UAVs alone, i.e., they used a combination of trucks and
drones. In [18], Ozkan studied the transfer of blood products from distribution centers (i.e.,
multiple depots) to hospitals in cities using UAVs. The problem involved two objectives:
minimizing the number of UAVs, and minimizing the total traveling distances under
the UAVs’ constraints. Ozkan attempted to solve this problem by implementing a Multi-
Objective Integer Programming (MOIP) model and three multi-objective metaheuristics: the
first relied on simulated annealing, the second relied on local search, and the last depended
on genetic algorithms. The metaheuristic methods obtained better results than MOIP
because of the nature of the dataset. In [8], the study dealt with optimal path planning for
emergency medical deliveries using UAVs and vehicles with a single depot, using four
distinct metaheuristic algorithms. However, in both [8,18], the metaheuristic methods
required a long time to obtain suitable results since they tested numerous neighborhood
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moves, increasing the response time and proving inappropriate for emergency situations.
Dorling et al. [19] investigated vehicle routing problems using UAVs; they considered the
UAVs’ limited capacity and the effect of the weight of the drone on battery consumption.
They found that if two UAVs with different weights travel the same distance, the heavier
drone consumes more battery than the lighter one. Jiang et al. [20] studied vehicle routing
problems with time windows for UAV task assignment considering a limited payload. They
compared the proposed method (i.e., an improved particle swarm optimization algorithm)
with a genetic algorithm and found that the proposed method proved suitable to solve
the UAV task assignment problem. Chase and Ritwik [21] designed a new model for the
multiple flying sidekicks traveling salesman problem, which was intended to minimize
the time needed to deliver all parcels by drone and return to the depot. In [22], Wusheng
Liu et al. proposed a delivery method to minimize the total delivery distance in mountain
cities using a truck with UAVs. In [23], Mustapha Ouiss et al. attempted to solve the
routing problem using drones to deliver medicine from multiple depots. The goal was
to find optimal drone routes using genetic algorithms. Minh Nguyen et al. [24] invented
a new optimization problem known as the min-cost Parallel Drone Scheduling Vehicle
Routing Problem (PDSVRP) that attempted to minimize the package transporting costs
using multiple trucks and drones, i.e., total traveling costs. Xinwei Chen et al. [25] built a
deep Q-learning model to deliver packages to customers using drones and trucks. They
assigned a customer to a truck and a drone to an order, aiming to maximize the number of
served customers. Khin Thida San et al. [26] attempted to solve a drone routing problem
in which the drones had different specifications and the flight served one location; the
objective was to minimize the total time required.

UAV routing has become a burgeoning field of study. However, the healthcare
domain—in comparison to other applications, such as parcel delivery—has received in-
sufficient attention. Thus, the literature features few studies of using UAVs in healthcare,
despite their importance in preserving human lives and easing the strain on healthcare
facilities and individual patients. With the ongoing COVID-19 pandemic, the scarcity of
studies in this field has become even more apparent, because UAV applications have made
it simpler to supply services to remote and difficult-to-reach places while also being cheaper,
safer, and faster than traditional methods of transportation. Another key finding of this
review is that exact approaches lack suitability for solving huge datasets of the UCVRP
and its variants. Since the UCVRP is an NP-hard problem [10,11], exact methods require
extensive processing time to generate solutions. Therefore, existing research tends to use
heuristics and metaheuristics to find near-optimal solutions (in terms of quality) with a
reasonable processing time for real-world and healthcare emergency applications with
enormous datasets.

3. Problem Formulation

The UCVRP is a problem for delivering blood to patients using UAVs from a single
depot. It is a variant of the famous CVRP using UAVs rather than vehicles, with additional
constraints related to the properties of the UAV and the blood shipment. The problem
deals with serving patients’ demand for blood within a suitable temperature range using
UAVs with limited, fixed, and identical capacities. The objective is to minimize the total
distance traveled and the number of UAVs used. The blood is carried to the patients with
an appendage to keep it from expiration. The appendage consists of water, which could be
ice-cold or hot, depending on the destination environment [10]. The two crucial factors that
decide the required weight of water to keep the blood viable for use are the demand for
blood and the distance to the destination. These additional descriptions require thorough
computation, making the UCVRP more complex than the classical CVRP.

This work seeks to implement a solution to enhance the results described by Wen et al. [10]
to facilitate the delivery of blood to patients in emergency situations. The UCVRP is con-
cerned with the optimal or near-optimal assignment of patients to UAVs while minimizing
the number of UAVs used and the total routing distance.
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Figure 2 provides an example of the locations of the central depot and the patients in
need of service. Table 1 shows the UCVRP’s formulation in detail.
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Table 1. Formulation of the UCVRP.

Sets

V: Set of vertices where V = {v0, v1, . . . , vn}
E: Set of edges (e ∈ E)
U: Set of UAVs (u ∈ U)
Rk : Set of vertices visited by UAV uk

Parameters

v0: A central depot of starting and ending routes for each UAV
vi : Location of patient i
eij: The flight distance between vi and vj, i 6= j
q: Amount of capacity of each UAV
di : Weight of blood needed by vi
wi : Weight of the required water to deliver blood to patient i
m: Total number of UAVs used in the solution (m≤ |U|)
n: Total number of patients (n = |V|)
bij: Battery consumed on one trip between vi and vj
µt: The UAV mass tare without battery and load, i.e., UAV mass
µb: The UAV battery mass
θs: Lift-to-drag ratio
η: The efficiency of the power transfer

Decision variables
xijk =

{
1, if uk flies from vi to vj
0, otherwise

(1)

yik =

{
1, if uk serves vi
0, otherwise

(2)

Objective function
Minimize Z =

n
∑

i=0

n
∑

j=0

m
∑

k=1
eij·xijk

(3)

Minimize m (4)

Constraints

∑n
i=1(di + wi)·yik ≤ q, ∀k (5)

∑m
k=1 x0jk ≤ m, ∀j (6)

∑m
k=1 yik = 1, ∀i, i 6= 0 (7)

∑n
i=0 xijk = yjk , ∀j, j 6= 0, i 6= j, ∀k (8)

Rk1 ∩ Rk2 = {v0}, ∀k1, ∀k2 (9)
∪
k

Rk = {v0, v1, . . . , vn} (10)

Assumptions

Following the model in [27], the following is assumed:

1. All UAVs are of the same type.
2. We do not consider the impact of environmental factors, e.g., weather and

terrain topology conditions.
3. bij, i.e., the battery needed by patient j, is given by Equation (12) [28].
4. µt, µb, θs, and η are fixed for all UAVs, so we treat them as constants.

Formally, the UCVRP is an NP-hard combinatorial optimization problem. The solu-
tions in combinatorial optimization problems are encoded with discrete variables. The
UCVRP was formulated by Wen et al. [10] as a graph G = (V, E, where V = {v1 , v2,
. . . , vn} is a set of vertices; v0 represents the depot (i.e., blood warehouse), which is a
starting and ending point for each UAV; v1, v2, . . . , vn are the locations of patients; and E is
a set of edges between vertices (eij is the traveling distance between vi and vj). Each patient
i has a blood demand di. U is a set of UAVs. Each UAV has a restricted load capacity q.
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UAVs with a limited capacity are responsible for transporting blood to patients. The blood
temperature must remain in the range of 2–10 ◦C during transportation (i.e., according to
the weather and environment, hot water or ice must be stored with the blood bags to keep
the blood temperature within the prescribed range). The total demand weight of patient i,
ti, is the total weight of the required blood with the amount of water needed to keep the
blood viable, as calculated by Equation (11):

ti = di + wi (11)

There are two decision variables of the Boolean type: xijk (1) and yik (2). The objectives
are to minimize the total traveling distance of UAVs Z (3), and the number of UAVs used
m (4). Constraint (5) ensures that in each individual route, the total patient demands must
be less than or equal to the UAV’s capacity q. Constraint (6) guarantees that the total
number of UAVs used should not exceed m. Constraint (7) ensures that each patient is
served by only one UAV. Constraint (8) ensures that each patient must be served only
once. Constraint (9) ensures that there is only a single depot for all UAVs. Constraint (10)
guarantees that all patients should be served. Together, Constraints (7)–(10), guarantee that
each UAV launches from and returns to the depot, i.e., each route forms a loop.

Equation (12) calculates bij, i.e., the battery needed by patient j [28], where a UAV
travels to vj with a load tj:

bij =
µt + µb + tj

θs η
× eij (12)

4. Solution Method

This paper proposes a novel heuristic known as the GBDOH to solve the UCVRP.
The objective of the UCVRP is to minimize the total routes (i.e., the number of UAVs) and
the total distance. The GBDOH satisfies all of the constraints in Table 1. At the outset,
the idea of the heuristic contains two main processes described in Algorithms 1 and 2.
Algorithm 1 (i.e., find the initial solution) is used for selecting suitable patient demand
weights (blood and water) that do not exceed the UAV’s capacity, while minimizing the
number of operated UAVs. Algorithm 2 (i.e., improve the initial solution) enhances (i.e.,
minimizes) the total distance of the initial solution. Figure 3 shows a high-level flowchart
of the GBDOH followed by an explanation for each algorithm.

4.1. Find Initial Solution

The idea is to build routes (i.e., assign patients to UAVs) according to the lowest battery
consumption to operate as few UAVs as possible, i.e., if i is a current patient, we choose the
next patient j with the lowest battery consumption (bij) from i.

First, the input is an instance file containing the number of patients, UAV capacity,
depot and patient locations, and blood demand weight of each patient. Then, operate a new
UAV u and sort unserved patients p ∈ P, where P ⊂ V, in ascending order according to the
battery power needed to reach each of them from the depot by u, i.e., bv0 p, p ∈ P, as shown
in Equation (12), where the distance and the demand (blood and water) are variables. From
the list of unserved patients, select patient pm with the minimum bv0 pm , assign it to u and
mark it as served, then make it as current patient pc. Then, sort unserved patients p ∈ P
in ascending order according to bpc p, considering the mass of water needed to keep the
blood usable according to the cumulative distance starting from the depot, i.e., from the
depot to patient p ∈ P via all the assigned patients to this UAV and preceding p. After that,
choose patient pm from the available and unserved patients with the lowest bpc pm . Then,
we check the available capacity of u to see if it is possible to combine the blood demand of
pm with the water needed for preservation before assigning pm to the current UAV (u) and
marking them as current patient pc; otherwise, mark pm as unavailable to add to this UAV,
and perform the process again to choose another pm as mentioned above; this process is
repeated until finishing all available patients. If all patients are served or the current UAV u
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is not available to add more patients, operate a new UAV u and repeat the processes above.
Otherwise, the process ends.
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Algorithm 1. Find initial solution

1 P← List of all potential patients ⊂ V
2 U← Set of the available UAVs
3 Total_distance← 0
4 Initial_solution← { }
5 dist← List of distances from depot to each patient p, dist ⊂ E
6 Calculate bv0 p =

(
dp + wdist[p]

)
∗ dist[p] ∀ p ∈ P \\The battery consumed from depot for all patients

7 \\Build the solution: the routes (trips for the needed UAVs) and the total distance
8 p← 0
9 Repeat
10 Select (new u ∈ U)

11
pm←Min(available P)\\according to minimum bv0 p ∀ p ∈ P (the minimum battery consumed

from depot)
12 rd←dist[pm] \\rd is the route distance of the current UAV u
13 Assign_to_UAV (u, pm)
14 MarkAsServed(pm, P)
15 Increment p
16 pc ← pm \\current patient
17 \\Add other patients to the route (UAV)
18 end_route = False
19 While (end_route = = False)
20 cumulative_dist←List of distances from pc to p +rd ∀ p ∈ available P
21 \\The battery consumed from pc to all available patients
22 Calculate bpc p = (dp + wcumulative_dist[p]) ∗ cumulative_dist [p] ∀ p ∈ availableP
23 found = False
24 pm←−1
25 \\Find next candidate patient
26 While (found = = False AND p < size of P)
27 pm←Min(bpc p) \\p ∈ available P
28 IF pm 6= −1 Then \\route does not end
29 IF capacity of the UAV u is available to add pm Then
30 Assign_ to_UAV(u, pm)
31 MarkAsServed(pm, P)
32 rd← cumulative_dist [pm]
33 pc← pm \\ current patient
34 Increment p
35 Found← True
36 Else
37 MarkAsUnavailable(pm, u)
38 Else
39 end_route← True
40 break
41 IF p = = size of P Then \\ if all patients are sarved
42 end_route← True
43 Total_distance← Total_distance + rd
44 Initial_solution← Initial_solution ∪ u
45 Until U times OR all patients in P are served
46 Output: Initial_solution, Total_distance

4.2. Improve the Initial Solution

The idea here is to rearrange each route (the patients assigned to UAVs, i.e., the output
of Algorithm 1) of the initial solution according to the shortest distance from the depot in
order to minimize the total consumed distance.

First, traverse the UAVs (routes) of the initial_solution one by one until completion,
and carry out the subsequent steps for each round. Then, create a new temporary UAV,
tempUAV, to keep the patients of the current UAV after sorting them based on distance.
After that, sort the assigned patients of the current UAV, u, in ascending order according
to the distance, dist, from the depot. Then, select patient c with the lowest flight distance
ev0c, add them to tempUAV as the first patient, and mark them as an arranged patient and
pc. If the unarranged list of patients in the current UAV, u, is not empty, select patient c
with the smallest distance from the last arranged patient pc, i.e., epc . c. Then, check the
availability of the tempUAV capacity; if it is available to add the blood demand of c along
with the mass of water required to keep the blood usable, according to the cumulative
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distance starting from the depot to the patient c, then add c to tempUAV, mark them as an
arranged patient and as pc, and select another patient c; otherwise, remove c from u, add
them to the unserved list (uncoverd), save u’s ID, and select another patient c. If the total
distance of tempUAV is less than the total distance of the current UAV, u, add tempUAV
to the improvedSolution; otherwise, discard tempUAV and add the current UAV, u, to the
improvedSolution (i.e., keep the current route as it was in the initial solution).

Algorithm 2. Improve the initial solution

1 Input: Initial_solution, Total_distance
2 improvedSolution← { }
3 changed_routes_IDs← { }
4 Total_distance← 0
5 For each UAV u in Initial_solution Do
6 tempUAV← new UAV
7 uncovered_1← { } \\To keep uncovered patients of the current route (UAV level)
8 uncovered_2← { } \\To keep uncovered patients by the improved solution (solution level)
9 All_covered← True
10 Route_distance← 0
11 \\First patient
12 FindClosest (v0, c) \\Find the closest patient C to the depot from UAV u
13 Assign_to_UAV(tempUAV, c)
14 Route_distance← Route_distance + ev0 c
15 MarkAsUnavailable(c, tempUAV)
16 current_patient← c
17 \\Rearrange other patients of the UAV u according to the shortest closest neighbor
18 i← 1
19 While(i < number of patients of u)
20 FindClosest(pc, c)
21 IF capacity of tempUAV is available to add C Then
22 Assign_to_UAV(tempUAV, c)
23 Route_distance← Route_distance + epc C
24 pc ← c
25 MarkAsServed(c)
26 Else
27 All_covered← False
28 uncovered_1 = uncovered_1 ∪ c
29 MarkAsUnavailable(c, tempUAV)
30 Increment i
31 IF tempUAV < urouteDistance Then \\The route distance is improved
32 improvedSolution = improvedSolution ∪ tempUAV
33 IF size(uncovered_1) > 0 Then
34 uncovered_2 = uncovered_2 ∪ uncovered_1
35 Else
36 improvedSolution = improvedSolution ∪ u\\Keep UAV as in initial solution
37 Total_distance← Total_Distance + route_distance
38 \\add uncovered patients
39 IF size(uncovered_2) > 0 Then
40 For each uncovered patient pu in uncovered_2 Do
41 originalUAV← UAV from initial_solution that pu was assigned to
42 fitUAV←−1

43
fitUAV← UAV d from improvedSolution of available capacity to add pu with minimum

route distance
44 changed_routes_IDs← changed_routes_IDs ∪ original_UAV
45 IF fitUAV 6= −1 Then

46
IF the total distance of improvedSolution after adding pu to fitUAV <the total distance

of Initial_solution Then
47 Total_distance←the total distance of improvedSolution after adding pu to fitUAV
48 changed_routes_IDs← changed_routes_IDs ∪ Fit_UAV
49 Else
50 improvedSolution[original_UAV]← initial_solution[original_drone]
51 Else
52 For each chr in changed_routes_IDs Do
53 improvedSolution[chr]← initial_solution[chr]
54 Clear other patients from uncovered_2 who are assigned to original UAV in the initial solution
55 Output: improvedSolution
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Go to the next UAV from the initial_solution and repeat the above processes again
until all UAVs are traversed.

Traverse the unserved patients pu ε uncovered one by one until completion and do
the following. Find a UAV f itUAV from the improvedSolution whose capacity is avail-
able to add the current unserved patient pu ε uncovered, and the total route distance of
f itUAV (after adding pu) will be the shortest compared with the other available UAVs of
the improvedSolution. If there is no UAV available to add pu, or if the total distance
of the improvedSolution after adding pu to f itUAV will be greater than the total dis-
tance of the initial_solution, then change the route in the improvedSolution of the UAV,
original_UAV (to which the patient was assigned in the initial_solution), to be as it was in
the initial_solution, and clear all unserved patients in uncovered that came from the same
UAV. Additionally, retrieve all other routes that took patients from original_UAV as they
were in the initial_solution. Otherwise, assign up to f itUAV.

5. Experimental Results

This section describes the dataset used to test the proposed GBDOH, and then presents
a detailed numerical analysis of the results.

The GBDOH was implemented using Python software. The experiments were con-
ducted using a computer with an Intel Core i7 processor running at 3.1 GHz using 16 GB
2133 MHz LPDDR3 of RAM running Macintosh HD.

5.1. Dataset

For the sake of comparison, we tested the GBDOH on instances of the CVRP public
dataset (Christofides and Eilon, Set E) benchmark [29] used in the related work [10]. Each
instance is described by a notation that contains the characteristics of that instance: E-nx-ky,
where the symbol ‘E’ stands for Eilon et al., who were the creators of the dataset, ‘nx’ is the
number of the demands of the instance (i.e., patients), and ‘ky’ is the minimum number of
trucks of the exact solution (UAVs). The tested instances were E-n23-k3, E-n30-k3, E-n22-k4,
E-n30-k4, E-n33-k4, E-n51-k5, E-n76-k7, E-n76-k8, E-n76-k10, E-n76-k14, E-n101-k8, and
E-n101-k14. To measure the average performance for different sizes of the problem, we
divided the instances into three categories according to the number of patients n (depending
on the range of patients that we observed in the dataset, which was 20–101)—small (n < 50),
medium (50 ≤ n < 100), and large (100 < n)—and calculated the average of the objective
function for each category.

To extract the ratio that determines the amount of water needed from Table 2, we
mapped the required weight of blood and the distance to the patient to the range [0, 20]
according to Equations (13) and (14), as adjusted by [10]. For example, according to Table 2,
when the flight distance to a patient is 3 units and the demanded weight of blood is 12 units,
the ratio is 0.03; thus, the weight of water needed is 12 × 0.03.

bloodCoord = 20× bloodWeight−minBlood
maxBlood−minBlood

(13)

distanceCoord = 20× distance−minDistance
maxDistance−minDistance

(14)

Table 2. The ratio between blood and water [10].

Distance to Patient
Blood Weight

[0, 2] [2, 3] [3, 5] [6, 10] [10, 15] [15, 20]

[0, 5] 1 0.5 0.2 0.06 0.03 0.02
[5, 10] 1.2 0.8 0.4 0.10 0.06 0.04

[10, 15] 1.9 1.2 0.6 0.18 0.12 0.08
[15, 20] 2.4 1.5 0.8 0.28 0.18 0.15
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In Equation (13), bloodCoord is the value of the demanded weight of blood after
mapping to 20, while minBlood is the minimum possible demanded weight of blood in a
dataset instance, which equals 0. Additionally, maxBlood is the maximum one demanded
weight. To avoid exceeding the carrying capacity of the UAV, we set maxBlood, as shown
in Equation (15):

maxBlood =
the maximum demand weight of blood from dataset

(1 + 0.2)
(15)

In Equation (14), distanceCoord is the value of the distance after mapping to 20. The
minDistance is the minimum flight distance that can be set directly for any data instance;
here, we set it once to 50 and another time to 100 for each instance to compare the results
with those reported in [10]. We set maxDistance as the maximum distance from the distance
matrix of an instance dataset.

Unlike the approach of [10], which is a population-based method and deals with the
problem as a multi-objective one, our approach is a single-solution-based method and
deals with the problem as a single-objective problem. To extract the objective value, we
proceeded as follows:

1. Run the heuristic on each instance.
2. Normalize both the (i) number of routes (UAVs) and (ii) distance to a [0, 1] interval for each.
3. Give weights for the normalized number of routes (UAVs) and distance, which

indicate the importance of each term.
4. Merge them into a single value that represents the objective value (i.e., single objective).

The following are the equations and parameters used to extract the objective value.
The min–max normalization equation is as follows [30]:

x−min(x)
max(x)−min(x)

× (new max− new min) + new min (16)

For the number of UAVs, we use Equation (16) as follows: Suppose that x is the
number of routes (UAVs) before normalization; min(x) is the baseline number of UAVs,
which is the number of trucks taken from the instance file; and max(x) is adjusted based
on historical data observed in our work and the related work [10]. The max(x) is adjusted
to 7, 26, and 30 for small, medium, and large size instances, respectively.

For the distance, we use Equation (16) as follows: Suppose that x is the distance before
normalization. min(x) is the baseline distance, which is adjusted based on historical data
observed in our work, the related work [10], and the instance file. The min(x) is adjusted
to 370, 520, and 810 for small, medium, and large instance sizes, respectively. max(x) is
adjusted based on historical data observed in our work, the related work [10], and the
instance file. The max(x) is adjusted to 1320, 1610, and 2020 for small, medium, and large
distances, respectively.

The new max and new min are 1 and 0, respectively, since we intend to normalize to
[0, 1] intervals.

For the objective values, we give weights of 0.5 for the normalized number of UAVs
and 0.5 for the normalized distance, add them, and divide the sum by 2, as shown in
Equation (17):

Objective Value =
(0.5× the normalized no. of UAVs) + (0.5× the normalized distance)

2
(17)

In [10], the authors generated a Pareto optimal set with a tradeoff between the two
objectives. To compare our results with the previous work [10], we applied the above
steps to their results to convert the objective values to a single-objective function. We then
compared our work with theirs. The next section provides a detailed explanation of the
results and comparison.
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5.2. Numerical Analysis

This study features a new heuristic (GBDOH) to solve the UCVRP [10]. We compared
the results of the GBDOH with those of the MOEA/D-N-UVRP [10] to obtain the smallest
number of UAVs within the shortest possible distance.

In terms of the number of UAVs used and the distance, the algorithm that accom-
plished the best results in [10] was the MOEA/D-N-UVRP. Section 2 explains that the
MOEA/D-N-UVRP involves evolutionary algorithms and local search. In the evolution-
ary algorithm, random solutions are initialized before operations such as crossover and
mutation are iteratively applied to them to generate new solutions. In the local search, the
MOEA/D-N-UVRP applies the random nearest neighbor search to enhance the solution
obtained by the evolutionary algorithm. However, the local search does not always enhance
the solution. Moreover, each run gives a different solution, so we cannot guarantee the best
solution provided by the algorithm.

In summary, the main difference between the GBDOH and the work in [10] is that the
GBDOH progresses from a single solution method, while the work in [10] uses a population-
based solution method (i.e., an evolutionary algorithm). In addition, the GBDOH uses
two phases to solve the problem: The first phase works to obtain a solution that has the
smallest possible number of routes (UAVs), by adding patients to each UAV who require
the least battery for blood delivery compared with other patients. The second phase works
to rearrange the order of patients in each route to minimize the distance while satisfying the
problem constraints. On the other hand, the work in [10] used a multi-objective approach
to solve the UCVRP and did not consider the battery consumption to minimize the number
of routes.

5.2.1. Comparisons of the Results of the GBDOH and MOEA/D-N-UVRP

Table 3 shows the results of the GBDOH and MOEA/D-N-UVRP on 20 cases of nine
different instances stated in [10] and in Section 5.1. In Table 3, the instances are grouped by
the size of the instance, which depends on the number of patients (small, medium, or large).
The table shows the baseline values of UAVs and the distances reported in the solutions
of the benchmark instances. For each use of the MOEA/D-N-UVRP and GBDOH, Table 3
shows the number of UAVs (routes) and the distances before and after normalization, along
with the objective value for each instance. It also shows the average of these items based on
the instance size. In addition, Table 3 reports the average run time of each instance tested
by the GBDOH. The bold typeface signifies better values.

Figure 4 compares the average results of each group size of instances tested by the
GBDOH and MOEA/D-N-UVRP in terms of objective value, route % (i.e., percent deviation
from the value of the baseline routes), and distance % (i.e., percent deviation from the value
of the baseline distance).

According to Table 3 and Figure 4, the GBDOH has a better objective value than
MOEA/D-N-UVRP with respect to the average instance size (i.e., improvement in small
instances by 8.5%, medium instances by 44.3%, and large instances by 29%), as well as
improving the total average of all instances by approximately 27%. However, the MOEA/D-
N-UVRP has better distances (minimum distances) than the GBDOH in most cases. The
reason behind the preponderance of objective values of the GBDOH is the limited number
of routes (UAVs) used, which is a benefit of using the battery consumed as a factor when
assigning patients to a UAV.

Figure 5 shows the best objective values obtained by the GBDOH and MOEA/D-N-
UVRP using the nine instances from the Christofides and Eilon, Set E benchmark [29]. The
GBDOH has better (minimum) objective values than the MOEA/D-N-UVRP in seven out
of nine tested instances in which minDistance = 50.
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Table 3. Comparison between the MOEA/D-N-UVRP and GBDOH, the bold font indicates best values for each instance.

MOEA/D-N-UVRP GBDOH

Si
ze Instance Baseline

Routes
Baseline
Distance

Minimum
Distance

Routes
(UAVs) Distance

Normalized
Number of

Routes

Normalized
Distance

Objective
Value

Routes
(UAVs) Distance

Normalized
Number of

Routes

Normalized
Distance

Objective
Value

Run Time
(Seconds)

Sm
al

l

E-n23-k3
3 569 50 5 716.03 0.50 0.36 0.43 5 836.00 0.50 0.49 0.50 0.0011
3 569 100 5 720.35 0.50 0.37 0.43 5 862.00 0.50 0.52 0.51 0.0013

E-n30-k3
3 534 50 7 774.98 1.00 0.43 0.71 5 784.00 0.50 0.44 0.47 0.0012
3 534 100 7 766.82 1.00 0.42 0.71 5 879.00 0.50 0.54 0.52 0.0020

E-n22-k4
4 375 50 7 562.32 1.00 0.20 0.60 5 548.00 0.50 0.19 0.34 0.0008
4 375 100 7 552.64 1.00 0.19 0.60 5 583.00 0.50 0.22 0.36 0.0010

E-n30-k4
4 503 50 7 555.97 1.00 0.20 0.60 5 784.00 0.50 0.44 0.47 0.0024
4 503 100 7 555.81 1.00 0.20 0.60 5 879.00 0.50 0.54 0.52 0.0014

E-n33-k4
4 835 50 7 563.07 1.00 0.20 0.60 6 1291.00 0.75 0.97 0.86 0.0020
4 835 100 7 553.94 1.00 0.19 0.60 6 1253.00 0.75 0.93 0.84 0.0016

Average 6.6 632.19 0.90 0.28 0.59 5.2 869.90 0.55 0.53 0.54 0.0015

M
ed

iu
m

E-n51-k5
5 521 50 14 929.48 0.43 0.38 0.40 6 781.00 0.05 0.24 0.14 0.0046
5 521 100 13 931.32 0.38 0.38 0.38 7 878.00 0.10 0.33 0.21 0.0049

E-n76-k7

7 683 50 19 1594.25 0.67 0.99 0.83 8 1011.00 0.14 0.45 0.30 0.0081
7 683 20 1326.82 0.71 0.74 0.73 8 1011.00 0.14 0.45 0.30 0.0081
7 683 100 19 1359.27 0.67 0.77 0.72 8 1216.00 0.14 0.64 0.39 0.0103
7 683 20 1347.64 0.71 0.76 0.74 8 1216.00 0.14 0.64 0.39 0.0103

E-n76-k14
14 1032 50 26 1599.41 1.00 0.99 1.00 16 1445.00 0.52 0.85 0.69 0.0106
14 1032 100 26 1593.08 1.00 0.98 0.99 18 1587.00 0.62 0.98 0.80 0.0128

Average 19.625 1335.16 0.70 0.75 0.72 9.875 1143.13 0.23 0.57 0.40 0.0086

La
rg

e E-n101-
k14

14 1077 50 30 1942.28 1.00 0.81 0.91 16 1681.00 0.36 0.72 0.54 0.0130
14 1077 100 30 1929.00 1.00 0.81 0.90 19 2000.00 0.50 0.98 0.74 0.0146

Average 30 1935.64 1.00 0.81 0.90 17.5 1840.50 0.43 0.85 0.64 0.0138

Total Average 14.15 1043.72 0.83 0.52 0.67 8.3 1076.25 0.41 0.58 0.49 0.0052
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Figure 4. Comparison between the average results of the GBDOH and MOEA/D-N-UVRP on each
group size of instances in terms of objective value, percent deviation from the value of the baseline
routes, and percent deviation from the value of the baseline distance.
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Figure 5. Comparison between the objective values of the GBDOH and MOEA/D-N-UVRP on nine
instances from the (Christofides and Eilon, Set E) benchmark.

To guarantee that the analysis relied on a solid statistical basis, we compared the
objective values obtained by the GBDOH and MOEA/D-N-UVRP by applying the Wilcoxon
signed-rank test as follows: The null hypothesis was that the population distributions of the
GBDOH and MOEA/D-N-UVRP would be identical with respect to the objective values.
The results showed that there were 16 negative and 4 positive ranks. Accordingly, most pairs
were negative, meaning that the GBDOH outperformed the MOEA/D-N-UVRP in terms of



Electronics 2022, 11, 3399 15 of 26

objective values. Moreover, the p-value = 0.00318, where 0.00318 < 0.05; consequently, the
null hypothesis was rejected. Thus, we can conclude that the GBDOH is better than the
MOEA/D-N-UVRP with respect to objective values.

The GBDOH endeavors to outperform the MOEA/D-N-UVRP by focusing on elements
that minimize the number of UAVs used and the total distance simultaneously, using fewer
and more efficient processes in a greedy deterministic manner. To this end, in the initial
solution of the GBDOH, a patient j with a minimal amount of required UAV battery bij is
assigned to the UAV. This approach works by reducing the amount of battery consumed
by the UAV to serve patients, allowing the UAV to serve a large number of patients and
minimizing the number of operated UAVs. In addition, this approach may also reduce
the travel distance, since the amount bij is based on two principal factors: weight and
distance. Furthermore, the GBDOH aims to improve the initial solution by rearranging
the order of patients based on a greedy closest-distance patient process without operating
new UAVs, as explained in Section 4. This helps to accomplish the objective of minimizing
the total distance. Thus, these features are the reason that the GBDOH outperforms the
MOEA/D-N-UVRP.

Moreover, with respect to the computational time, our algorithm was fast, with an
average runtime of 0.0052 s, as shown in Table 3. The reason for this could be that it focuses
on a single solution and uses greedy deterministic methods. In contrast, the authors of [10]
tried to solve the UCVRP using a method that combines an evolutionary algorithm with a
local search method. The evolutionary algorithm primarily relies on blind operators (i.e.,
crossover and mutation); subsequently, the search process may return prematurely after
converging to a locally optimal solution. Additionally, the evolutionary algorithm is one
of the population-based metaheuristics, which are known in the literature for their slow
processing time—especially given that the authors of [10] used a population size = 100
and a number of iterations = 15,000,000. We provide more details on the comparison of
computational complexity between the GBDOH and MOEA/D-N-UVRP in Section 5.2.2.

Finally, Figures 6 and 7 display the initial and improved solutions, respectively, when
testing the GBDOH on instance E-n101-k14. The colors are used to distinguish the routes.
The numbers are patients. Table 4 shows the details of the routes and distances. The left-
hand side of the table shows the number of nodes of each route, the distance of each route,
and the total distance of the initial solution. The right-hand side shows the same details but
for the improved solution. The bold font indicates values that offer improvements from the
initial solution to the improved solution.

In Table 4, we can observe the improvement of the distances of Route#1, Route#6, and
Route#11 without adding more UAVs. The total distance of the complete solution decreases
from 1700 to 1681 after applying the improved solution algorithm.

5.2.2. Comparison of the Computational Complexity of the GBDOH and
MOEA/D-N-UVRP

In the MOEA/D-N-UVRP [10], the key computational costs are as follows:

• Generate n random trail solutions, i.e., population, O(n).
• The number of generations g, i.e., iterations O(g) to carry out the following steps:

◦ Crossover is O(p), where p is the number of patients.
◦ Mutation is O(p).

◦ The random nearest neighbor search requires O
(

p2

m

)
operations, where m is

the number of UAVs used.

Thus, the time complexity of the MOEA/D-N-UVRP is O
(

ngp2

m

)
.

In contrast, in the GBDOH, the major computational costs are as follows:

• The algorithm to find the initial solution requires O(mp2), where m is the number of
UAVs used and p is the number of patients. O

(
mp2) is derived from the worst-case

performance of Algorithm 1, where it consists of a main loop (outer loop) along with
two nested (inner) loops. The outer loop spans from line 9 to line 45. The first inner
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loop spans from line 19 to line 42, while the second spans from line 26 to line 40. The
inner loop that takes the longest time (in the worst case) is on line 26, where it takes
O(p). Thus, the outer loop (Repeat-until) that is on lines 9–45 takes O

(
mp2).

• The algorithm to improve the initial solution requires O(mr2
p), where rp is the number

of patients in the route, i.e., rp < p. O(mr2
p) is derived from the worst-case performance

of Algorithm 2, where it consists of main loop (outer loop) from line 5 to line 37, along
with a nested (inner) loop from line 19 to line 30. The inner loop takes in the worst
case O(r2

p). Thus, the outer loop on lines 5–37 takes O
(

mr2
p

)
.

• Thus, the time complexity of the GBDOH is O(mp2).

Therefore, if the GBDOH and MOEA/D-N-UVRP have the same number of patients p
and UAVs used m, then the ratio between their computational complexities is as follows:

O
(
mp2)

O
(

ngp2

m

) =
O
(
m2)

O(ng)

The parameter values used in [10] were n = 100 and g = 15,000,000. Consequently, since
m2 is smaller than n× g = 1,500,000,000, the GBDOH has lower computational complexity
than the MOEA/D-N-UVRP.

Electronics 2022, 11, x FOR PEER REVIEW  17  of  27 
 

 

tion size = 100 and a number of iterations = 15,000,000. We provide more details on the 

comparison of computational complexity between the GBDOH and MOEA/D‐N‐UVRP 

in Section 5.2.2. 

Finally,  Figures  6  and  7 display  the  initial  and  improved  solutions,  respectively, 

when testing the GBDOH on instance E‐n101‐k14. The colors are used to distinguish the 

routes. The numbers are patients. Table 4 shows the details of the routes and distances. 

The left‐hand side of the table shows the number of nodes of each route, the distance of 

each route, and the total distance of the  initial solution. The right‐hand side shows the 

same details but for the improved solution. The bold font indicates values that offer im‐

provements from the initial solution to the improved solution. 

 

Figure 6. Initial solution of the GBDOH for instance E‐n101‐k14. Figure 6. Initial solution of the GBDOH for instance E-n101-k14.



Electronics 2022, 11, 3399 17 of 26Electronics 2022, 11, x FOR PEER REVIEW  18  of  27 
 

 

 

Figure 7. Improved solution of the GBDOH for instance E‐n101‐k14. 

Table 4. Initial and improved solutions of the GBDOH for instance E‐n101‐k14. 

Instance E‐n101‐k14 

Initial Solution  Improved Solution 

Routes 
Route   

Distance 
Routes 

Route   

Distance 

Route #1: {0, 91, 92, 37, 98, 99, 96, 6, 60, 83, 46, 

17, 84, 18, 0} 
131 

Route #1: {0, 6, 96, 99, 92, 37, 98, 91, 84, 17, 83, 

60, 18, 46, 0} 
125 

Route #2: {0, 53, 40, 2, 57, 42, 43, 15, 41, 74, 73, 

55, 0}   
123 

Route #2: {0, 53, 40, 2, 57, 42, 43, 15, 41, 74, 73, 

55, 0} 
123 

Route #3: {0, 27, 69, 1, 70, 90, 63, 11, 19, 7, 0}  88  Route #3: {0, 27, 69, 1, 70, 90, 63, 11, 19, 7, 0}  88 

Route #4: {0, 28, 76, 77, 3, 78, 34, 35, 71, 0}  93  Route #4: {0, 28, 76, 77, 3, 78, 34, 35, 71, 0}    93 

Route #5: {0, 52, 88, 62, 10, 20, 51, 33, 50, 0}  88  Route #5: {0, 52, 88, 62, 10, 20, 51, 33, 50, 0}  88 

Route #6: {0, 89, 97, 95, 94, 13, 56, 0}  88  Route #6: {0, 89, 94, 95, 97, 13, 56, 0}    84 

Route #7: {0, 58, 21, 72, 75, 22, 25, 24, 0}  100  Route #7: {0, 58, 21, 72, 75, 22, 25, 24, 0}  100 

Route #8: {0, 80, 68, 29, 79, 81, 0}    75  Route #8: {0, 80, 68, 29, 79, 81, 0}  75 

Route #9: {0, 26, 12, 54, 4, 39, 0}  79  Route #9: {0, 26, 12, 54, 4, 39, 0}  79 

Route #10: {0, 8, 45, 36, 47, 82, 61, 0}    120  Route #10: {0, 8, 45, 36, 47, 82, 61, 0}    120 

Route #11: {0, 100, 93, 59, 85, 0}    61  Route #11: {0, 59, 93, 85, 100, 0}  52 

Route #12: {0, 31, 30, 32, 64, 9, 0}    136  Route #12: {0, 31, 30, 32, 64, 9, 0}  136 

Route #13: {0, 87, 14, 44, 16, 38, 0}    103  Route #13: {0, 87, 14, 44, 16, 38, 0}  103 

Route #14: {0, 5, 86, 48, 0}  100  Route #14: {0, 5, 86, 48, 0}    100 

Figure 7. Improved solution of the GBDOH for instance E-n101-k14.

Table 4. Initial and improved solutions of the GBDOH for instance E-n101-k14.

Instance E-n101-k14

Initial Solution Improved Solution

Routes Route
Distance Routes Route

Distance

Route #1: {0, 91, 92, 37, 98, 99, 96, 6, 60, 83, 46, 17, 84, 18, 0} 131 Route #1: {0, 6, 96, 99, 92, 37, 98, 91, 84, 17, 83, 60, 18, 46, 0} 125
Route #2: {0, 53, 40, 2, 57, 42, 43, 15, 41, 74, 73, 55, 0} 123 Route #2: {0, 53, 40, 2, 57, 42, 43, 15, 41, 74, 73, 55, 0} 123
Route #3: {0, 27, 69, 1, 70, 90, 63, 11, 19, 7, 0} 88 Route #3: {0, 27, 69, 1, 70, 90, 63, 11, 19, 7, 0} 88
Route #4: {0, 28, 76, 77, 3, 78, 34, 35, 71, 0} 93 Route #4: {0, 28, 76, 77, 3, 78, 34, 35, 71, 0} 93
Route #5: {0, 52, 88, 62, 10, 20, 51, 33, 50, 0} 88 Route #5: {0, 52, 88, 62, 10, 20, 51, 33, 50, 0} 88
Route #6: {0, 89, 97, 95, 94, 13, 56, 0} 88 Route #6: {0, 89, 94, 95, 97, 13, 56, 0} 84
Route #7: {0, 58, 21, 72, 75, 22, 25, 24, 0} 100 Route #7: {0, 58, 21, 72, 75, 22, 25, 24, 0} 100
Route #8: {0, 80, 68, 29, 79, 81, 0} 75 Route #8: {0, 80, 68, 29, 79, 81, 0} 75
Route #9: {0, 26, 12, 54, 4, 39, 0} 79 Route #9: {0, 26, 12, 54, 4, 39, 0} 79
Route #10: {0, 8, 45, 36, 47, 82, 61, 0} 120 Route #10: {0, 8, 45, 36, 47, 82, 61, 0} 120
Route #11: {0, 100, 93, 59, 85, 0} 61 Route #11: {0, 59, 93, 85, 100, 0} 52
Route #12: {0, 31, 30, 32, 64, 9, 0} 136 Route #12: {0, 31, 30, 32, 64, 9, 0} 136
Route #13: {0, 87, 14, 44, 16, 38, 0} 103 Route #13: {0, 87, 14, 44, 16, 38, 0} 103
Route #14: {0, 5, 86, 48, 0} 100 Route #14: {0, 5, 86, 48, 0} 100
Route #15: {0, 66, 65, 49, 67, 0} 243 Route #15: {0, 66, 65, 49, 67, 0} 243
Route #16: {0, 23, 0} 72 Route #16: {0, 23, 0} 72

Total Distance 1700 Total Distance 1681
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5.2.3. Experiments on the XML100 Benchmark Dataset

To validate the benefit of the algorithm in improving the initial solution, and to further
test the efficiency of our heuristic, we conducted experiments on 2844 instances of a new
benchmark dataset of the CVRP named XML100, released in 2021 [29]. The tested instances
comprise 108 groups based on their categories. The categories are as follows: depot
positioning (centered), customer positioning (random, clustered, and random-clustered),
demand distribution (small values with large CV, small values with small CV, large values
with large CV, large values with small CV, values depending on quadrant, and numerous
small values with few large values, where CV denotes the capacity of the vehicle), and
average route size (very short, short, medium, long, very long, and ultra-long). Each
instance comprises 100 customers. The tables in Appendix A show the details of the
initial solution, the improved solution, the time of the whole process when applying the
GBDOH on the XML100 dataset, and the improvement shown as a percentage. The bold
font indicates values that offer improvements from the initial solution distance to the final
solution distance.

Table A1 groups instance categories by centered depot positioning and random cus-
tomer positioning in 36 groups, each with 27 instances (totaling 972). According to this
table, the average total distance in the improved solution decreases by 2.6%, with a total
average time of 0.0109 s and a p-value < 0.00001.

Table A2 groups instance categories by centered depot positioning and clustered
customer positioning in 36 groups, each with 26 instances (totaling 936). This table shows
that the average total route distance in the improved solution decreases by 2.4%, with a
total average time of 0.0107 s and a p-value < 0.00001.

Table A3 groups instance categories by centered depot positioning and random-
clustered customer positioning in 36 groups, each with 26 instances (totaling 936). Accord-
ing to this table, the average total route distance in the improved solution decreases by
2.6%, with a total average time of 0.0117 s and a p-value < 0.00001.

Thus, from Tables A1–A3, we can conclude that in all of these cases the improved
solution proves better than the initial solution with respect to the total route distance,
helping to achieve better objective values.

The average route distances of the initial solutions of all categories amount to 19,906.78,
whereas the total average of the improved solutions amounts to 19,403.88, indicating an
improvement of approximately 2.5%. This development shows the improved algorithm’s
effectiveness when applied to the initial solution, where the travel distance is decreased
to achieve the second objective of minimizing the distance. Moreover, according to the
Wilcoxon signed-rank test, the p-value is <0.00001, which makes the improved solution
significantly better than the initial solution with respect to the total route distance, and
also improves the objective value. Since the UCVRP is a real and NP-hard computational
problem—especially in healthcare emergency situations—any small improvement in results
will reflect huge cost savings in real settings.

In addition, the short processing time represents another advantage of the GBDOH that
requires consideration, since the GBDOH will be used in healthcare emergency situations
in which the response time constitutes a significant and critical factor.

Finally, it is worth noting that the results in Tables A1–A3 provide new benchmark
baseline results for other researchers working on the UCVRP to test their approaches and
compare their results, in addition to the few instances tested in [10].

6. Conclusions

Healthcare services can be improved by utilizing UAVs to deliver blood to patients
in emergency scenarios. This study sought to provide high-quality solutions for the UAV-
based Capacitated Vehicle Routing Problem (UCVRP) in a reasonable time. The UCVRP is
more complex than the traditional CVRP, as it requires additional constraints related to the
UAV and blood viability conditions. The objective is to minimize the number of UAVs used
and the total distance traveled by the UAVs. The best state-of-the-art approach to solve
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this problem is the MOEA/D-N-UVRP described in [10]. This multi-objective evolutionary
algorithm offers a local search method. However, using multiple objectives and the nature
of evolutionary algorithms and local search often requires numerous computations to find
a solution. Moreover, the solution varies in each run due to the stochastic nature of the
algorithm, meaning that it is not certain to obtain the best solution for each run. Since the
problem focuses on helping patients in emergency situations, ensuring a quality solution
within a reasonable time proves critical in quickly responding to emergency situations.

In this paper, we propose a new deterministic heuristic known as the Greedy Battery—
Distance Optimizing Heuristic (GBDOH) to solve the UCVRP. The GBDOH is distinguished
by the following lightweight characteristics: (i) build routes (i.e., assign patients to UAVs)
according to the lowest battery consumption in order to operate the fewest UAVs and
utilize the UAV capacity effectively, and (ii) rearrange each route (i.e., the patients assigned
to the UAVs) according to the shortest distance from the depot in order to decrease the total
route distance.

We compared the GBDOH with the state-of-the-art method (MOEA/D-N-UVRP),
considering the quality of the solution and time efficiency. For statistical comparison, we
utilized the Wilcoxon signed-rank test. The results revealed that the GBDOH has superior
solution quality (i.e., the number of UAVs used and total routing distance), where GBDOH
enhanced the average objective value by approximately 27% less than MOEA/D-N-UVRP
UVRP in an average time of approximately 5.2 ms.

In addition, we tested the GBDOH twice on a new benchmark dataset of the CVRP
known as XML100, released in 2021 [29]: (1) using the only initial solution algorithm,
and (2) using both the initial solution and the improved solution algorithm. We then
compared their results, which showed that when using the improved algorithm the average
route distances decreased by approximately 2.5%, while keeping the processing time fast
(11.078 milliseconds on average). This enhancement reflects significant cost savings in real
settings. Moreover, our research provides new benchmark baseline results for researchers
interested in employing the UCVRP to test their methods and compare their results.

In future works, we aim to enhance the GBDOH by changing the appendage to lighter
materials than water, so that the UAVs can carry more blood and serve more patients.
In addition, we aim to consider obstacle avoidance while minimizing the number of
UAVs used and the total routing distance within a short processing time. Moreover, new
variations of the problem could be investigated to reflect more realistic healthcare uses,
such as visiting charging stations for a UAV’s battery along its journey.
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Appendix A. The Details of the Initial Solution, Improved Solution, and the Time of
the Whole Process When Applying the GBDOH on the XML100 Dataset

See Tables A1–A3.
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Table A1. Results of the GBCDH on the XML100 dataset with centered depots and random customer positioning. The bold font indicates values that offer
improvements from the initial solution distance to the final solution distance.

Instance Category Average Statistics for Each Instance Code

Group# Demand_
Distribution

Average_
Route_Size

Instance
Group Code

Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution

Routes (UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

1

Small values
with large CV

Very short XML100_2121 29.11 33,687.3 29.11 33,306 0.0231 1.13
2 Short XML100_2122 18.07 25,410.59 18.07 24,903.44 0.0129 2.00
3 Medium XML100_2123 12.11 20,837.81 12.11 20,289.81 0.0105 2.63
4 Long XML100_2124 8.74 18,304.11 8.74 17,761 0.0102 2.97
5 Very long XML100_2125 6.56 16,458.04 6.56 15,732.3 0.008 4.41
6 Ultra-long XML100_2126 4.07 14,872.67 4.07 14,160.85 0.0089 4.79

7

Small values
with small CV

Very short XML100_2131 29.26 31,792.26 29.26 31,517.07 0.017 0.87
8 Short XML100_2132 17.63 23,519.48 17.63 23,145.11 0.0135 1.59
9 Medium XML100_2133 11.63 18,592.22 11.63 18,178.41 0.0104 2.23
10 Long XML100_2134 8.48 15,763.63 8.48 15,289.81 0.0094 3.01
11 Very long XML100_2135 5.96 14,095.89 5.96 13,656.44 0.0078 3.12
12 Ultra-long XML100_2136 3.59 12,125.11 3.59 11,734.37 0.0092 3.22

13

Large values
with large CV

Very short XML100_2141 29.44 34,137.15 29.44 33,797.44 0.0151 1.00
14 Short XML100_2142 18.89 27,102.15 18.89 26,388.89 0.0126 2.63
15 Medium XML100_2143 12.81 22,161.56 12.81 21,406.93 0.0101 3.41
16 Long XML100_2144 9.11 19,184.85 9.11 18,402.44 0.0093 4.08
17 Very long XML100_2145 6.44 17,169.96 6.44 16,356.22 0.0096 4.74
18 Ultra-long XML100_2146 3.81 14,993.26 3.81 13,979.48 0.0076 6.76

19

Large values
with small CV

Very short XML100_2151 30.67 32,440.3 30.67 32,154.74 0.0173 0.88
20 Short XML100_2152 17.74 23,154.15 17.74 22,796.96 0.0126 1.54
21 Medium XML100_2153 11.89 18,444.81 11.89 18,085.07 0.0105 1.95
22 Long XML100_2154 8.56 15,730.19 8.56 15,283.3 0.0089 2.84
23 Very long XML100_2155 5.78 13,651.93 5.78 13,333.11 0.0081 2.34
24 Ultra-long XML100_2156 3.63 12,010.56 3.63 11,688.19 0.0075 2.68
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Table A1. Cont.

Instance Category Average Statistics for Each Instance Code

Group# Demand_
Distribution

Average_
Route_Size

Instance
Group Code

Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution

Routes (UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

25

Depending on
quadrant

Very short XML100_2161 29.56 33,800.93 29.56 33,453.78 0.0148 1.03
26 Short XML100_2162 18.96 24,788.81 18.96 24,304.19 0.012 1.95
27 Medium XML100_2163 12.78 20,905.15 12.78 20,155.22 0.0099 3.59
28 Long XML100_2164 8.74 17,699.52 8.74 16,946.19 0.0087 4.26
29 Very long XML100_2165 6.52 15,785.15 6.52 15,017.19 0.0079 4.87
30 Ultra-long XML100_2166 4.11 13,651.81 4.11 12,875 0.0075 5.69

31

Many small
values with few

large values

Very short XML100_2171 40.67 42,103.44 40.67 41,508.67 0.0141 1.41
32 Short XML100_2172 26.63 31,804.67 26.63 31,300.78 0.0108 1.58
33 Medium XML100_2173 17.96 26,450.11 17.96 25,677.19 0.0096 2.92
34 Long XML100_2174 13.19 23,262.81 13.19 22,574.41 0.009 2.96
35 Very long XML100_2175 10.11 20,413.63 10.11 19,620.7 0.0088 3.88
36 Ultra-long XML100_2176 7 17,782.15 7 17,011.63 0.0076 4.33

Average 15 21,780.23 15 21,216.45 0.0109 2.59

Table A2. Results of the GBCDH on the XML100 dataset with centered depots and clustered customer positioning. The bold font indicates values that offer
improvements from the initial solution distance to the final solution distance.

Instance Category Average Statistics for Each Instance Code

Group# Demand_
Distribution Average_Route_Size Instance Group

Code
Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution

Routes (UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

1

Small values
with large CV

Very short XML100_2221 32.42 30,998.73 32.42 30,804.42 0.0163 0.63
2 Short XML100_2222 18.73 20,984.27 18.73 20,631.96 0.012 1.68
3 Medium XML100_2223 12.08 17,122.23 12.08 16,588.08 0.0102 3.12
4 Long XML100_2224 8.77 13,325.23 8.77 12,830.54 0.0089 3.71
5 Very long XML100_2225 6.08 11,905.96 6.08 11,430.96 0.0081 3.99
6 Ultra-long XML100_2226 3.77 9947.58 3.77 9434.27 0.0073 5.16
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Table A2. Cont.

Instance Category Average Statistics for Each Instance Code

Group# Demand_
Distribution Average_Route_Size Instance Group

Code
Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution

Routes (UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

7

Small values
with small CV

Very short XML100_2231 29.88 28,327.42 29.88 28,162.15 0.0171 0.58
8 Short XML100_2232 17.54 19,132.23 17.54 18,813.35 0.0126 1.67
9 Medium XML100_2233 10.96 13,624.54 10.96 13,343.38 0.0097 2.06

10 Long XML100_2234 8.42 11,824.38 8.42 11,437.38 0.009 3.27
11 Very long XML100_2235 6.04 10,629.08 6.04 10,269.81 0.0079 3.38
12 Ultra-long XML100_2236 3.58 8416.35 3.58 7987.58 0.0078 5.09

13

Large values
with large CV

Very short XML100_2241 32 30,699.88 32 30,377.27 0.0156 1.05
14 Short XML100_2242 18.5 21,295.73 18.5 20,835.85 0.0116 2.16
15 Medium XML100_2243 12.12 16,094.23 12.12 15,478.77 0.0096 3.82
16 Long XML100_2244 9.15 14,986.46 9.15 14,434.15 0.0088 3.69
17 Very long XML100_2245 6.35 12,017.23 6.35 11,433.58 0.0092 4.86
18 Ultra-long XML100_2246 3.88 10,582.19 3.88 9688.12 0.0077 8.45

19

Large values
with small CV

Very short XML100_2251 28.08 25,058.08 28.08 24,897.23 0.0165 0.64
20 Short XML100_2252 17.38 18,785.62 17.38 18,524.35 0.012 1.39
21 Medium XML100_2253 11.35 13,691.31 11.35 13,429.65 0.0103 1.91
22 Long XML100_2254 8.65 12,299.38 8.65 11,938.12 0.009 2.94
23 Very long XML100_2255 5.85 10,265.46 5.85 9932.81 0.0082 3.24
24 Ultra-long XML100_2256 3.73 8767.08 3.73 8460.15 0.0073 3.50

25

Depending on
quadrant

Very short XML100_2261 31.04 30,554 31.04 30,349.69 0.015 0.67
26 Short XML100_2262 18.5 20,574.65 18.5 20,199.23 0.0117 1.82
27 Medium XML100_2263 12.5 15,843 12.5 15,426.96 0.0098 2.63
28 Long XML100_2264 9.12 13,168.77 9.12 12,677.96 0.0086 3.73
29 Very long XML100_2265 6.46 11,208.69 6.46 10,687 0.0085 4.65
30 Ultra-long XML100_2266 3.58 8979.46 3.58 8446.77 0.0082 5.93
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Table A2. Cont.

Instance Category Average Statistics for Each Instance Code

Group# Demand_
Distribution Average_Route_Size Instance Group

Code
Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution

Routes (UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

31

Many small
values with few

large values

Very short XML100_2271 38.81 35,334.31 38.81 35,056.73 0.021 0.79
32 Short XML100_2272 26.85 26,728.5 26.85 26,385.08 0.0124 1.28
33 Medium XML100_2273 18.65 22,552.96 18.65 22,045.69 0.0104 2.25
34 Long XML100_2274 13.23 17,176 13.23 16,764.92 0.0089 2.39
35 Very long XML100_2275 10 15,734.81 10 15,261.19 0.0087 3.01
36 Ultra-long XML100_2276 6.96 12,861.04 6.96 12,281.42 0.0101 4.51

Average 15 17,263.8 15 16,854.07 0.0107 2.37

Table A3. Results of the GBCDH on the XML100 dataset with centered depots and random-clustered customer positioning. The bold font indicates values that offer
improvements from the initial solution distance to the final solution distance.

Instance Category Average Statistics for Each Instance Code

Group# Demand_Distribution Average_
Route_Size

Instance Group
Code

Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution Routes

(UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

1

Small values with
large CV

Very short XML100_2321 31 33,363.73 31 33,018.69 0.02 1.03
2 Short XML100_2322 17.65 24,077.85 17.65 23,582.92 0.02 2.06
3 Medium XML100_2323 11.62 19,353.54 11.62 18,757.96 0.01 3.08
4 Long XML100_2324 8.88 16,928.19 8.88 16,356.15 0.01 3.38
5 Very long XML100_2325 6.35 15,297.69 6.35 14,630 0.01 4.36
6 Ultra-long XML100_2326 3.73 13,057.65 3.73 12,373.42 0.01 5.24

7

Small values with
small CV

Very short XML100_2331 27.42 28,741.85 27.42 28,436.5 0.02 1.06
8 Short XML100_2332 17.77 22,199.69 17.77 21,767.04 0.01 1.95
9 Medium XML100_2333 11.65 17,325.81 11.65 16,978.46 0.01 2.00

10 Long XML100_2334 8.46 14,931.46 8.46 14,462.27 0.01 3.14
11 Very long XML100_2335 5.85 13,092.08 5.85 12,769.08 0.01 2.47
12 Ultra-long XML100_2336 3.42 11,302.31 3.42 10,871.35 0.01 3.81
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Table A3. Cont.

Instance Category Average Statistics for Each Instance Code

Group# Demand_Distribution Average_
Route_Size

Instance Group
Code

Initial Solution
Routes (UAVs)

Initial Solution
Distance

Improved
Solution Routes

(UAVs)

Improved
Solution
Distance

Run Time
(Seconds)

% Improvement
over Initial

Solution

13

Large values with
large CV

Very short XML100_2341 32.08 34,861.42 32.08 34,567.08 0.02 0.84
14 Short XML100_2342 19.35 26,249.38 19.35 25,523.62 0.01 2.76
15 Medium XML100_2343 12.38 20,298.04 12.38 19,666 0.01 3.11
16 Long XML100_2344 8.88 17,761.19 8.88 17,177.23 0.01 3.29
17 Very long XML100_2345 6.81 16,317.81 6.81 15,534.62 0.01 4.80
18 Ultra-long XML100_2346 3.69 14,429.46 3.69 13,412.23 0.01 7.05

19

Large values with
small CV

Very short XML100_2351 29.77 30,130.88 29.77 29,911.12 0.02 0.73
20 Short XML100_2352 17.96 22,164.19 17.96 21,895.54 0.01 1.21
21 Medium XML100_2353 11.54 17,315.85 11.54 16,998.85 0.01 1.83
22 Long XML100_2354 8.38 14,612.54 8.38 14,283.19 0.01 2.25
23 Very long XML100_2355 6.23 13,168.46 6.23 12,731.35 0.01 3.32
24 Ultra-long XML100_2356 3.62 10,980.23 3.62 10,583.69 0.01 3.61

25

Depending on
quadrant

Very short XML100_2361 33.23 35369 33.23 35,116.88 0.02 0.71
26 Short XML100_2362 19.27 24,612.54 19.27 24,107.35 0.01 2.05
27 Medium XML100_2363 12.15 19,226.04 12.15 18,562.92 0.01 3.45
28 Long XML100_2364 9.31 16,759.77 9.31 16,091.58 0.01 3.99
29 Very long XML100_2365 6.31 14,550.12 6.31 13,904.58 0.01 4.44
30 Ultra-long XML100_2366 3.92 13,234.73 3.92 12,187.96 0.01 7.91

31

Many small values
with few large values

Very short XML100_2371 39.58 39,652.46 39.58 39,186.5 0.02 1.18
32 Short XML100_2372 26.19 30,554.92 26.19 29,964.5 0.01 1.93
33 Medium XML100_2373 18.42 25,541.85 18.42 24,944.12 0.01 2.34
34 Long XML100_2374 13.81 21,978 13.81 21,321.19 0.01 2.99
35 Very long XML100_2375 10.15 19,090.81 10.15 18,356 0.01 3.85
36 Ultra-long XML100_2376 6.46 15,815.58 6.46 15,048.62 0.01 4.85

Average 15 20,676.31 15 20,141.13 0.01 2.59
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