
Citation: Amran, G.A.; Alsharam,

M.S.; Blajam, A.O.A.; Hasan, A.A.;

Alfaifi, M.Y.; Amran, M.H.; Gumaei,

A.; Eldin, S.M. Brain Tumor

Classification and Detection Using

Hybrid Deep Tumor Network.

Electronics 2022, 11, 3457.

https://doi.org/10.3390/

electronics11213457

Academic Editor: Taeshik Shon

Received: 29 September 2022

Accepted: 19 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Brain Tumor Classification and Detection Using Hybrid Deep
Tumor Network
Gehad Abdullah Amran 1,2,* , Mohammed Shakeeb Alsharam 3, Abdullah Omar A. Blajam 4, Ali A. Hasan 5,
Mohammad Y. Alfaifi 6, Mohammed H. Amran 7, Abdu Gumaei 8 and Sayed M. Eldin 9,*

1 Department of Management Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Department of Information Technology, Faculty of Computer Sciences and Information Technology,

Al-Razi University, Sana’a 216923, Yemen
3 Department of Computer Science Information Engineering, College of Computer Science and Technology,

Tianjin Agriculture University, Tianjin 061102, China
4 College of Computer Science, Zhejiang Normal University, Jinhua 321004, China
5 College of Software Engineering, Northeastern University, Hunnan, Shenyang 110169, China
6 Biology Department, College of Science, King Khalid University, Abha 62529, Saudi Arabia
7 Faculty of Medicine, Ogarev Mordovia State University in Saransk, Bol’shevistskaya Ulitsa 68,

430005 Saransk, Russia
8 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin

Abdulaziz University, Al-Kharj 11942, Saudi Arabia
9 Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
* Correspondence: jehad.westran@gmail.com (G.A.A.); sayed.eldin22@fue.edu.eg (S.M.E.)

Abstract: Brain tumor (BTs) is considered one of the deadly, destructive, and belligerent disease,
that shortens the average life span of patients. Patients with misdiagnosed and insufficient medical
treatment of BTs have less chance of survival. For tumor analysis, magnetic resonance imaging
(MRI) is often utilized. However, due to the vast data produced by MRI, manual segmentation in
a reasonable period of time is difficult, which limits the application of standard criteria in clinical
practice. So, efficient and automated segmentation techniques are required. The accurate early detec-
tion and segmentation of BTs is a difficult and challenging task in biomedical imaging. Automated
segmentation is an issue because of the considerable temporal and anatomical variability of brain
tumors. Early detection and treatment are therefore essential. To detect brain cancers or tumors,
different classical machine learning (ML) algorithms have been utilized. However, the main difficulty
with these models is the manually extracted features. This research provides a deep hybrid learning
(DeepTumorNetwork) model of binary BTs classification and overcomes the above-mentioned prob-
lems. The proposed method hybrid GoogLeNet architecture with a CNN model by eliminating the
5 layers of GoogLeNet and adding 14 layers of the CNN model that extracts features automatically.
On the same Kaggle (Br35H) dataset, the proposed model key performance indicator was compared
to transfer learning (TL) model (ResNet, VGG-16, SqeezNet, AlexNet, MobileNet V2) and different
ML/DL. Furthermore, the proposed approach outperformed based on a key performance indicator
(Acc, Recall, Precision, and F1-Score) of BTs classification. Additionally, the proposed methods exhib-
ited high classification performance measures, Accuracy (99.51%), Precision (99%), Recall (98.90%),
and F1-Score (98.50%). The proposed approaches show its superiority on recent sibling methods for
BTs classification. The proposed method outperformed current methods for BTs classification using
MRI images.

Keywords: transfer learning; deep learning; machine learning; magnetic resonance imaging; brain tumor

1. Introduction

A brain tumor (BTs) is an abnormal growth of brain cancerous cells. Usually, unregu-
lated and aberrant cell division is the root cause brain tumor. Primary brain tumors are
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divided into two categories: benign(healthy) and malignant(unhealthy) [1]. Tumors that
are benign can be removed easily, and they rarely reappear.

Furthermore, principal and secondary brain tumors, often known as benign(healthy)
and malignant brain(unhealthy)tumors, are the two major classifications of tumors [2].
Primary brain tumors develop from cells that are already present in the brain, whereas
secondary brain tumors develop from cancer cells that have spread from other regions of
the body. Tumors that are benign develop slowly and disclose identifiable borders; their
removal is determined by the area of the brain in which they are located. Malignant brain
tumors, on the other hand, have a rapid growth rate, are dangerous, and do not have
obvious and exact margins due of their creeping root ability to spread to the tissues that
are adjacent.

Clinical procedures performed by doctors for primary diagnosis may include a physi-
cal examination, biopsy testing, and digital screening. After the physical examination and
the review of the patient’s history, the next step is imaging of the brain. Imaging the brain
is essential since the brain is composed of tissues that are extremely sensitive and fragile.
There are many other medical imaging modalities, but magnetic resonance imaging (MRI)
is the most effective technique for detecting abnormalities in brain regions and works well
on soft tissues [3]. Perfusion magnetic resonance imaging (fMRI), computed tomography
(CT), positron emission tomography (PET) is some of the other imaging technologies avail-
able. Effective therapy for a brain tumor, which may include chemotherapies or operations
depending on the patient’s health, can be directed toward the tumor’s location and status
if it is identified promptly and accurately [4–6].

Principal and secondary brain tumors, often known as benign (healthy) and malignant
brain(unhealthy)tumors, are the two major classifications of tumors. Primary brain tumors
develop from cells that are already present in the brain, whereas secondary brain tumors
develop from cancer cells that have spread from other regions of the body. Tumors that are
benign develop slowly and disclose identifiable borders; their removal is determined by
the area of the brain in which they are located. Malignant brain tumors, on the other hand,
have a rapid growth rate, are dangerous, and do not have obvious and exact margins due
of their creeping root ability to spread to the tissues that are adjacent.

Clinical procedures performed by doctors for primary diagnosis may include a physi-
cal examination, biopsy testing and digital screening. After the physical examination and
the review of the patient’s history, the next step is imaging of the brain. Imaging the brain
is essential since the brain is composed of tissues that are extremely sensitive and fragile.
There are many other medical imaging modalities, but magnetic resonance imaging (MRI)
is the most effective technique for detecting abnormalities in brain regions and works well
on soft tissues. Computed tomography (CT), perfusion magnetic resonance imaging (MRI),
functional magnetic resonance imaging (MRI), positron emission tomography (PET) is some
of the other imaging technologies available. Effective therapy for a brain tumor, which may
include chemotherapies or operations depending on the patient’s health, can be directed
toward the tumor’s location and status if it is identified promptly and accurately [7–9]

The manual diagnosis of BTs is laborious, time-consuming, arbitrary, and lacks pre-
cision; in contrast, in order to save people’s lives, we want a quantitative diagnosis that
is both early and accurate. In addition to this, in order to provide appropriate therapy,
medical professionals need an accurate measurement of the tumor’s location [10–13].

Various studies have been conducted [14,15], for BT classification using ML/DL. ML
approaches such as support vector machines (SVM) [16,17], k-nearest neighbor (KNN) [18],
artificial neural networks (ANNs) [19], principal component analysis (PCA), and decision
trees [20,21] have been introduced in the literature. Furthermore, these systems rely on
manual feature extraction, whereas the training process required the retrieval of mean
features. As a result, the detection and classification accuracy are dependent on the key
features. Building classifiers with machine learning (ML) requires a lot of memory and
processing time when working with large datasets and have less classification accuracy
(%) [22–24]. Furthermore, CNN layers are frequently employed mostly in the extraction
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of its features [23]. Since each neuron in an ANN is coupled to some other neuron, these
networks may extract information as well. The farther we delve into deep learning, the more
deeply linked the layers become, enabling them to perform superior in medical imaging.
CNN, for instance, is the most often applied DL model, with its primary application being
the classification of images of brain tumors [25]. Additionality, it is always competent to
use two hybrid model for better classification and detection. Various researchers used
hybridization with CNN model in biomedical imagining got satisfactory results [24–27].
As a result, we were inspired to utilize the hybrid strategy to increase the accuracy and
performance of current model in recognizing various types of BTs. To do this, we presented
a hybrid variant of the DeepTumorNet model for identifying and classifying BTs into normal
and BTs. In this method, the deep learning mechanism is employed to extract features,
and a SoftMax classifying layer is utilized to account for heterogeneity. In comparison to
the traditional technique ResNet [26,27], MobileNet V2 [28–34], Alex Net [27–30], Squeeze
Net [31,33], VGG-16 [31,34,35] the Kaggle dataset of brain tumors can be accessed by the
general public via figshare, the proposed model achieved the greatest BTs classification
accuracy recorded. Furthermore, the goal of the research project that we have proposed is
to attempt to answer the given question:

How precisely and effectively can the DeepTumorNet model detect and categorize
distinct forms of BT diseases?

Our key contribution to this study is as follows:

• We propose a hybrid DL-TL model to identify two different kinds of brain malignancies
(brain tumor) and (non-brain tumor (healthy).

• The proposed TL-DL detection technique shows superiority over current methods
and has the highest accuracy on the Kaggle dataset. A huge number of tests are done
with four distinct pre-trained DL models using TL strategies. Furthermore, in order to
reveal the effectiveness of prediction performance of the proposed methods, compared
with recent ML/DL and transfer learning model.

The organization of the paper is as follows. The introduction and background infor-
mation works are discussed in Sections 1 and 2, respectively. While the data processing
and proposed model are presented in Section 3. Section 4 presents an experimental study
and discussion and results. Section 5 contains the conclusion and future study.

2. Related Works

For BTs categorization and detection, various ML/DL models were employed [36].
DL model plays an important role in detection and classification in different areas [37–45].
In the literature, several alternative ways of identifying and classifying BTs have been
established using magnetic resonance (MR) FLAIR images. Zeineldin et al. [46] developed
a DNN technique for automated BTs segmentation. Their concept is comprised of two
interconnected core components, one for encoding and the other for decoding. A CNN is
specialized in extracting spatial information from the encoder part. A CNN is devoted to
extracting meaningful features in the encoder section. The generated semantic map is then
fed into the decoder part to produce the comprehensive probability map. The ResNet and
Dense Net were investigated in the final stage. Resnet-50 of the TL, was used to identify
BTs. Their experimental results were 95% accurate. In related work, Nawab et al. [47] used
block-wise transfer learning to obtain a 5-fold cross-validation and they achieved 94.82%.
To validate their approach, they employed a benchmark dataset based on T1-weighted
contrast-enhanced magnetic resonance imaging (CEMRI). Furthermore, Sarmad Maqsood
et al. [48] implemented fuzzy logic and U-NET CNN model for binary segmentation and
classification of BTs. They proposed that the model performed better as compared to other
sibling methods.

The detection accuracy attained with this conceptual framework was 97.5%. In [49],
Mircea et al. extracted wavelet coefficients from images using a feature-based technique.
The authors contend that wavelet transforms have a temporal resolution edge over Fourier
transforms, allowing to locate the location coordinates frequency of the images. As a
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classifier, a technique is used for 91% accuracy. V Rajinikanth et al. [50] show CADD system
with CNN model for segmentation and classification. They explained and investigated
different CADD systems. After the evaluation and investigation, the SVM model performed
97% accuracy using 10-fold cross validation.

Before this model could be trained, it was put through a validation process using the
deep learning algorithms Inception-v3 and DensNet201.They got 89% accuracy.

This collection has 155 illustrations of malignant BTs, normal and healthy tissue.
Furthermore, It was not possible to the CNNs fine-tune by utilizing the dataset was small in
size and the testing set was also insufficient to verify the correctness of the proposed model.

A model for the automatic classification of BTs was proposed using VGG-16 and the
BRaTs dataset [51]. B Badjie et al. [52] implemented DCNN model learning for binary MRI
image segmentation and classification, the proposed Alex Net CNN model indicated best
accuracy up to 90%.

P. Dvorak and colleagues selected the convolutional neural network as the learning
approach in [53] due to its ability to cope with feature correlation. They put the technique
through its tests on the publicly accessible data set (BRATS2014), which includes three sep-
arate segmentations of multimodal tasks. As a consequence, they were able to acquire
cutting-edge findings for the data set of BT segmentation, which contained 254 volumes of
multimodal and implemented only thirteen s to process every volume.

S. Irsheidat and colleagues created a model based on ANN in their paper referred
to as [54]. This model is capable of taking magnetic resonance images and analyzing
them using matrix operations and mathematical formulas. To generate reliable predictions
concerning the presence of brain cancers, this neural network was trained using magnetic
resonance images from 155 healthy brains and 98 tumors. The network was trained
using these images. Magnetic resonance imaging was used to produce 253 pictures in
the collection.

Sravya et al. [55] investigated the detection of BTs and presented various important
topics and approaches. Dolphin-SCA is a unique optimized DL approach for the identi-
fication and classification of BT described by Kumar et al. [56]. A deep CNN is used to
power the process by various researchers used a fuzzy based model in conjunction with
a dolphin echolocation-based sine cosine method for segmentation (DolphinSCA). The
obtained characteristics were utilized in a deep neural network that was built on power
statistical features and LDP and used Dolphin-SCA as its basis. The proposed technique
obtained the highest accuracy rate of 81.6% ever. S Maqsood et al. [57] introduced support
vector machine (SVM) with DCNNs for muti-model BTs detection with 96% accuracy.
Waghmare et al. [58] identified and classified BTs using a range of CNN architectures. All
the mentioned problem has issue of classification performance of BTs images, which is
resolved using the proposed model deep tumor network.

3. Methodology

This section shows the proposed work of the deep tumor network including two ma-
jor steps, data processing (data collection, data augmentation, and class labeling), and
the second step is the training approaches of the suggested methods and the process to
classify the Kaggle (Br35H) image dataset into the tumor and non-tumors class as shown
in Figures 1 and 2. In addition, the proposed model’s performance has also been assessed
using the major performance indicators (Acc, Recall, Prec, and F1-Score).
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3.1. Brain Tumor Kaggle Dataset

The experiments described in this study were performed by utilizing a publicly
accessible dataset acquired from a Kaggle (Br35H) [59]. This dataset consisted of 1500 brain
MRI images with tumors and 1500 brain MRI images without tumors. All images were
two-dimensional and had a height and width of 256 × 256 pixels. All images were skull-
stripped and labeled yes if they contained a tumor and no if they did not. Figure 1 shows
the dataset of images with and without tumors labeled yes and no, respectively. The
descriptions of the training and testing datasets are listed in Table 1, Figures 3 and 4.

Table 1. The brain dataset description.

Tumor
Class Images Patients Training

Samples
Validation
Samples

Testing
Samples

Class
Labels

BT Tumor 1050 68 1050 250 250 Yes (1)
No Tumor 1050 70 1050 250 250 No (0)
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3.2. Preprocessing of the Dataset

The publicly accessible Kaggle dataset contains a total of 3000 images, including
1500 brain tumor images while 1500 normal images have no brain tumor. All images must
be converted into 224 × 224 pixels. As a result, the dataset was pre-processed such that it
would be appropriate for the proposed methods. After the MRI scans images were first
normalized (that is, converted from mat to .jpg format), they were resized by making use
of the resize function that is available in Python, according to the image input sizes utilized
by the deep learning model that we have proposed as well as by other pretrained models.
As a result, the MRI pictures were scaled down to 224 by 224 pixels, while the DarkNet19
images were scaled down to 256 by 256 pixels. In addition, the images in the dataset were
divided into two groups: 90% were used for training, and 10% were used for testing also
using 10-fold cross validation. Additionally, the image data were labeled 0 for normal
while 1 for brain tumor detection was provided as input data for the proposed model.

3.3. Data Augmentation

The Kaggle dataset (Br35H) included 3000 images that were insufficient and need
data augmentation for size increasing, scaling, and rotating of the images and add noise.
The images were vertically and horizontally zoomed in at certain angles and increasing
the brightness which improve the training and classification performance of the proposed
model. Additionally, each image of the Kaggle dataset was augmented 17 times of the orig-
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inal dataset to avoid the overfishing issue [11]. Some of the data augmentation techniques
used in this research are as follows;

A. Position augmentation
In this process the position of the brain MRI images pixel is changed.

B. Scaling
In scaling process, the brain images are resized.

C. Cropping
In cropping process, a small portion of the brain MRI images is selected; here in this
study we selected the center of the brain images.

D. Brightness
In this step the brightness of the brain images is changed from original to a lighter one.

3.4. Row Major Order

In row-major order, the images of multi-dimensional arrays are stored in a single row
to ease the computing processing, because the RGB and Greyscale images are complex
multi-dimensional and need more computing resources.

3.5. Proposed Model

The hybrid DeepTumorNet model consists of CNN as a fundamental model hybrid
with GoogleNet. Initially, to train the CNN model may occasionally take a few days and is
a difficult task [30–48]. It is preferable to first train the proposed model implements the TL
model before hybridizing the CNN model. Additionally, in this study, we implemented
Google Net [26] model as the foundational model because the model won ILSVRC (2014)
ImageNet competition. The basic Google Net model consists of a total of 22 layer, including
convolution layers, average pooling layer (APS), normalization layers Global max-pooling
layers (GMXs), inception layers module, and fully connected layer (FCLs). The input
data of the Goo consist of 224 × 224 dimensions. A new input layer with the dimensions
224 × 224 by 1 was implemented in GoogleNet. Within the context of the pre-trained
google Net method, the ReLU AF was used. While this was going on, the ReLU activation
function ignored any negative values and substituted zero for them. The input image of
the Google Net consists of the 224 × 224 size with the ReLU activation function (RAF). The
RAF used to ignore the negative values and replace them with 0. Furthermore, ReAF has
upgraded to Leaky ReLU where all the negative values were replaced with positive ones.
Furthermore, in the Google Net, the last 5 layers were replaced by 14 additional layers of
the CNN model. In the CNN layers, ReAF was also replaced by Leaky ReAF. These changes
were accomplished without changes to the primary structure of the proposed model. After
adding these layers, the total number of layers was 27 layers.

For the first layers of CLs, the image size was shuffled and the filter size was 8 × 8.
The second had two deep CLs, consists of a 1 × 1 convolution block. It achieved 1 × 1
dimensionality reduction and a decrease in the number of parameters. Google Net consists
of different inception model that has various convolution kernels (CKs) size such as 1 × 1
to 5 × 5 with different features. At the beginning of the process, the important feature
was extracted. Similarly, the 1 × 1 CKs reduce processing time as well as prove enough
information as described in Table 2. In addition, CLs show more robust and precise
information about the feature, because the first layers of CLs extracted minute features
while the four CLs extracted high-level features. Furthermore, the addition of GaPLs
improved the validation accuracy of the proposed model. In addition, the Leaky ReAFs
were used to improve the proposed model expressiveness and solved the issue ReLU,
which resulted in improved classification performance as shown in Figure 4. Due to these
layers, the proposed model was able to extract the most important, deep, and discriminative
features which improve the classification performance as compared to other recent state-of-
the-art methods and ML/DL models.
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Table 2. Presents the number of parameters of the proposed model in brain tumor classification.

No. Layer Epsilon No of Filter Filter Size

Conv2D_layer 0.002 940 1 × 1
Batch Norm layer 0.001 - -
Clip ReLU layer
Group Conv2D layer 940 3 × 3
Batch Norm layer
Clip ReLU layer 0.002
Conv2D_layer 300 1 × 1
Batch Norm layer 0.002
Conv2D_layer 1260 1 × 1
Glob AVG Pool layer
FC layer
SoftMax
Class Layer

3.6. Input Image Data

The input image of the proposed DeepTumorNet model possesses the size of the
image which starts from the image layer. In this study, the image size 224 ×224 × 1 was
provided with the grayscale gradient, which shows the width, height, and corresponding
channel size including one image of a grayscale consisting of three colors (red, green, and
blue). In the initial training process, these images were passed through the input layers.

A. Convolutional layer
In this layer, the two major inputs were image filter and matrix. The mathematical op-
eration involved multiplying filter of the image generating input of the feature map.

B. Activation layer
In this layer, the rectifier linear units (ReLUs) were used, which speeds up the training
process and gives nonlinearity to the network model. The mathematical expression
of the activation function is shown in Equation (1).

ReLU_Act_Function (y) = y if y > 0
= 0 if y < 0.

(1)

In the case of positive inputs (y), ReLU action function returns the value (y) as the
output. However, when dealing with negative inputs, it returns a much smaller
number that is equal to 0.01 times y. As a result, in this scenario, no neuron is
rendered inactive, and we will no longer come across neurons that have died.

C. Batch normalization layers
The outputs that were created by the suggested convolution layers were used, and
the batch normalization layer was applied to normalize them. The training duration
of the recommended proposed model is shortened as a consequence of normalizing,
which makes the process of learning both more efficient and more rapidly achieved.
Normalization also makes the training period shorter.

D. Pooling layer
The convolutional layer’s primary limitation is that it only captures the location-
dependent features. Therefore, the categorization ends up being inaccurate if there
is even a little shift in the position of the feature inside the image. By rendering the
image more compact through the process of pooling, the network is able to bypass
this constraint. As a result, the representation is now invariant to relatively few
changes and particulars. Absolute pooling and average pooling were applied so that
the characteristics might be linked to one another.

E. Fully connected layer
In this layer, the features that were generated from the CLs are fed into the FC
layers. In the FC layer, every node is connected with another node and makes the
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relation between an input image and its associate’s class. This layer implements
SoftMax activation.

F. Loss function
During training, this function (Y) must be reduced. After the image has been pro-
cessed through all of the preceding layers, the output is calculated. The error rate is
computed after comparing it to the expected outcome using the loss function. This
technique is performed several times till its loss function is reduced. We used the
binary cross-entropy as our loss function (BCE). The mathematical expression for
BCE is shown in Equation (2).

BCE Lose =
1
n

N

∑
i=1

−(yi × log(pi) + (1 − yi)× log(1 − pi) (2)

In binary classification, the actual value of y may only take on one of two potential
forms: either 0 or 1. Therefore, in order to accurately determine the loss between the
expected and actual results, it is necessary to compare the actual value, which can either
be 0 or 1, with the probability that the input lines up with that category (where p(i) is the
probability that the category is 1, and 1 − p(i) is the probability that the category is 0).

G. SoftMax layer
The FC layer’s outcomes are more normally distributed because of the activation
function. SoftMax performs the probabilistic computation for the network and
generates work in positive values for each class.

H. Classification Layer
The classification layer is indeed the model’s final layer to be demonstrated. This
layer is utilized to generate the output by merging each input. As a consequence of
the SoftMax AF, a posterior distribution was obtained [34].

I. Grid search Hyperparameter optimization
Grid search hyperparameter is optimization approach that will methodically build
and evaluate a model for each combination of algorithms parameters specified in a
grid. In this problem, we tune the hypermeters by using grid search to find out the
optimal hypermeters-based best classification performance. Furthermore, the grid
search has optimal hyperparameter including epoch size = 100, Epsilon from 0.002,
filter size = 1 × 1, batch size = 100 and the learning rate = 0.009. Furthermore, grid
search optimization also used 10-fold cross validation. In 10-fold cross validation all the
process, both the training and the test would be carried out only once within each set
(fold). In order to avoid overfitting, 10-fold cross validation is the best technique to be
used. k-fold validation reduces this variance by averaging over k different partitions,
so the performance estimate is less sensitive to the partitioning of the data. In addition,
in 10-fold cross validation process the one dataset is then split into 10 equal parts using
a random number generator. Nine of those parts are put to use in training, while
the remaining tenth is set aside for examination. We carry out this process a total of
ten times, setting aside a different tenth of each iteration for evaluation each time.

3.7. Transfer Learning Model

Transfer learning employs a model that has already been trained to learn new, diverse
data and to utilize the characteristics that have already been learned to address one problem
as a springboard for solving other problems. In this work, we employed five pre-trained
CNN architectures to predict 1000 classes: Alex Net, ResNet, VGG-16, MobileNet-v2, and
SqueezNet. These architectures were trained using 1.2 M images. The labels of each object in
the image are generated probabilistically by these networks using the full image as an input.

A. ResNet
This model is related to Microsoft Research Center’s 50-layer Residual Network built
in the research [60] ResNet employs shortcut connections to speed up training for
improved service, which can decrease errors as complexity rises. Residual is linked
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to feature deduction. ResNet also addresses the issue of decreasing accuracy. Figure 5
depicts the ResNet model design.
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Figure 5. Presents the basic block diagram of ResNet model.

B. Mobile Net-V2
As illustrated in the study [61], Mobile Net-V2 model has two types of blocks. The
first block is made up of a series of linear bottleneck processes, whereas the second
is a skip connection. Batch normalization, convolution, and a modified RLU are all
included in both blocks. mobile-V2 has a total of 16 blocks.

C. VGG-16
Karen Simonyan and Andrew Zisserman of Oxford University’s Visual Geometry
Group Lab proposed VGG 16 in the article “VERY DEEP CONVOLUTIONAL NET-
WORKS FOR LARGE-SCALE IMAGE RECOGNITION” in 2014. In the 2014 ILSVRC
competition [61], this model took first and second place in the aforementioned cate-
gories as shown in Figure 6 [62].
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D. SqueezNet
Squeeze Net is an 18-layer deep convolutional neural network. A pretrained variant
of the network trained on over a thousand images of the ImageNet database may
be loaded. As a consequence, the network has learnt detailed visual features for
a diverse set of images. This method returns a Squeeze Net v1.1 network with
similar accuracy as Squeeze Net v1.0 but fewer floating-point computations per
prediction [63] as shown in Figure 7.

E. Alex Net
In Alex Net, the network is divided into 11 different layers. The network has a
significant number of layers, which makes feature extraction easier. In addition, the
extensive number of factors has a negative influence on overall performance. The
first layer that Alex Net has is called the convolution layer. The convolution layer is
the third and last layer, coming after the maximum pooling and normalizing layers.
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The classification procedure comes to a close with the application of the SoftMax
layer [64] as shown in Figure 8.
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4. Result and Discussion
4.1. Experimental Setup

Table 3 presents the experimental setup of are as follows.

Table 3. Describe the experimental setup.

Libraries Keras, Pandas, Tensor, NumPy,

CPU Intel, Cori7-processor

GPU NAVID, 32 GB

Software Python 3.7

RAM 16 GB

4.2. Evaluation Matrix

In order to evaluate the proposed model performance, the key metrices (Acc, Pres,
Recall, Pres, F1-Score) is used. Which shows the true positive (TP), false negative (FP), True
negative (TN), False positive (FP), as shown in Equations (3)–(7).
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The following are the key performance indicators:

Acc(%) =
TP + TN

TP + TN + FP + FN
(3)

Prec(%) =
TP

TP + FP
(4)

Recall(%) =
TP

TP + FN
(5)

Spec(%) =
TN

TN + FP
(6)

F1 − Score(%) =
2 × (Pres ∗ Recall)

Pres + Recall
(7)

This section compares the performance metrics of the proposed system with transfer
learning models (TL) such as VVG-16, SqeezNet, Mobile Net V2, ResNet Alex Net and in
brain tumor detection and classification utilizing key performance metrics.

Accuracy (%), Pres (%), Recall (%) and F1-Score (%) One of the core aspects that
exhibits the unique class efficiency in classification performance is accuracy.

Additionally, precision indicate the ratio of accuracy vs real time prediction and
specificity presents the percentage of negative class. For the evolution of the proposed
model the key performance indicators compared with other TL methods which shows
the proposed model shows best classification performance in terms of Accuracy (99.20),
Precsion (99.10%), specificity (98.2%), Recall (98.60%), and F1-Score (98%). Figure 9 shows
that the SqueezNet model has the lowest performance metric.
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4.3. Confusion Matrix

A confusion matrix is a performance assessment indicator that measures each class’s
detection. In this investigation, the proposed deep Tumor network’s confusion matrix
achieved good classification performance of binary tumor detection and properly classified
each type of brain tumor. Figure 10 shows that the TLs has the lowest performance metric.
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4.4. ROC Analysis

The receiver operating characteristic (ROC) curve is critical for evaluating brain tu-
mor detection. The ROC curve depicts the ratio of TPR to FPR for each class detection
performance. Figure 11 demonstrates that the proposed method outperforms than other TL
techniques on the ROC curve basis.
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Figure 11. The ROC of the proposed model with other TL model of BTs classification.

4.5. TNR, TPR, and MCC Analysis

In this subsection represents the analysis of TNR, TPR, and MCC of the proposed
model with best performer (Alex Net and Mobile Net) on Kaggle dataset. Figure 12 shows
that the proposed model performed excellent values of TPR, TNR, and MCC as compared
to another TL model.

4.6. Time Complexity (%)

The detection time is important factors or metrics indicated the effectiveness of the
model, which shows the internal sustainability to find out the features and performed
classification. The proposed model performed less detection time up to 3 ms as shown in
Figure 13. Furthermore, the proposed model time complexity is expressed using the big O
notation. The Big O notation (O(nˆ2) is the metric that is used most frequently to calculate
time complexity where “n” represents the initial samples of the population. The term
“worst-case scenario” is what “Big O” refers to precisely, and it may be used to represent
either the amount of time needed for an algorithm’s execution or the amount of space it
takes up.
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The proposed model efficiency was tested by comparing it with other DL models
using the same dataset. When compared to other models, the proposed methods have high
classification performance.

4.7. Comparative Results with Existing ML/DL Model

We compared the proposed deep tumor network to other excellent benchmark algo-
rithms such as LSTM, GRU, CNN, etc. Figure 14 shows the performance metrics accuracy
to check the performance of the model. Although the Deep Tumor Network is expecting
spectacular outcomes, all of these methods are being evaluated in terms of these parameters.
Furthermore, the proposed have some limitation, needed high computing resources (good
GPU) for the training process, which is high time complexity (ms).

When compared to other baseline methods from the existing literature, the perfor-
mance of our proposed model in binary tumor classification is remarkable, as shown
in Table 4.
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Table 4. Presents the comparative analysis of proposed model with recent ML/DL model.

Publication Classification Task Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

This work

Binary
classification task

Proposed model 99.1 98.9 98.6 98
[36] CNN 91.6 90.8 89.9 89.5
[33] MobileNet-V2 94.9 93.6 92.8 92.6
[34] KNN, SVM 95.8 94.2 94 93.6
[27] AlexNet 93.6 92.6 92 91.4
[35] VGG-16 92.9 91.5 921 90.9
[33] M-SVM 95.8 95 94.8 93
[34] ANN 93.7 92.5 91 90.50

5. Conclusions

This study proposed Google Net and CNN model hybrid models as defined as defined
as deep tumor networks for BTs detection. The GoogleNet model was adopted as the
foundation for the proposed model. The final five levels of GoogleNet were deleted
replaced by 14 layers of CNN model, each one deeper than the prior one. Furthermore, the
ReLU AFs were changed to a leaky Re-AF, although the basic CNN architecture remained
unchanged. The total number of layers increased from 22 to 33 once the changes were
implemented. The recommended hybrid model attained the highest classification accuracy
of 99.10% achieved. In addition, to define the BT types, we used the Kaggle brain tumor
dataset to train five deep CNN models implemented the TL technique. The results of
these models were then compared to those of the proposed model. The outcomes of the
investigations indicated that the proposed model was capable of distinguishing between
brain tumors with greater accuracy. Furthermore, the proposed approach was capable of
calculating more descriptive and discriminatory information, as well as precise features for
brain tumor detection, resulting in a high degree of accuracy when compared to existing
state-of-the-art techniques. Furthermore, the results of the studies show clearly that the
CNN model that used transfer teaching methods offered the best potential performance
level. In contrast to the other pre-trained models, the hybrid framework achieved the best
level of accuracy.
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Furthermore, in the following work, we will conduct experiments on the dataset
using a limited number of MRI scans of the brain, including any malignant lesions and a
significant number of normal scans, with the proposed model trying to extract information
that was more comprehensive, discriminatory, and with precise features. As a result,
before categorizing the Kaggle dataset of the brain into two groups (brain tumor and
non-brain tumors), an effective segmentation technique for brain MRI data should be
applied. Furthermore, we wish to assess the efficacy of the hybrid approach presented for
application with different types of data in the areas of biomedical imaging, as COVID-19,
lung disease, and asthma diagnosis.
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